Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.802
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Analyst ; 149(13): 3596-3606, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38767610

RESUMO

Real-time and non-invasive assessment of tissue health is crucial for maximizing the potential of microphysiological systems (MPS) for drug-induced nephrotoxicity screening. Although impedance has been widely considered as a measure of the barrier function, it has not been incorporated to detect cell detachment in MPS with top and bottom microfluidic channels separated by a porous membrane. During cell delamination from the porous membrane, the resistance between both channels decreases, while capacitance increases, allowing the detection of such detachment. Previously reported concepts have solely attributed the decrease in the resistance to the distortion of the barrier function, ignoring the resistance and capacitance changes due to cell detachment. Here, we report a two-channel MPS with integrated indium tin oxide (ITO) electrodes capable of measuring impedance in real time. The trans-epithelial electrical resistance (TEER) and tissue reactance (capacitance) were extracted from the impedance profiles. We attributed the anomalous initial increase observed in TEER, upon cisplatin administration, to the distortion of tight junctions. Cell detachment was captured by sudden jumps in capacitance. TEER profiles illuminated the effects of cisplatin and cimetidine treatments in a dose-dependent and polarity-dependent manner. The correspondence between TEER and barrier function was validated for a continuous tissue using the capacitance profiles. These results demonstrate that capacitance can be used as a real-time and non-invasive indicator of confluence and will support the accuracy of the drug-induced cytotoxicity assessed by TEER profiles in the two-channel MPS for the barrier function of a cell monolayer.


Assuntos
Cisplatino , Impedância Elétrica , Túbulos Renais Proximais , Cisplatino/toxicidade , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/patologia , Animais , Compostos de Estanho/química , Compostos de Estanho/toxicidade , Cinética , Cimetidina/farmacologia , Adesão Celular/efeitos dos fármacos , Eletrodos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Linhagem Celular , Humanos , Junções Íntimas/efeitos dos fármacos
2.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33876770

RESUMO

The bacterium Clostridium perfringens causes severe, sometimes lethal gastrointestinal disorders in humans, including enteritis and enterotoxemia. Type F strains produce an enterotoxin (CpE) that causes the third most common foodborne illness in the United States. CpE induces gut breakdown by disrupting barriers at cell-cell contacts called tight junctions (TJs), which are formed and maintained by claudins. Targeted binding of CpE to specific claudins, encoded by its C-terminal domain (cCpE), loosens TJ barriers to trigger molecular leaks between cells. Cytotoxicity results from claudin-bound CpE complexes forming pores in cell membranes. In mammalian tissues, ∼24 claudins govern TJ barriers-but the basis for CpE's selective targeting of claudins in the gut was undetermined. We report the structure of human claudin-4 in complex with cCpE, which reveals that enterotoxin targets a motif conserved in receptive claudins and how the motif imparts high-affinity CpE binding to these but not other subtypes. The structural basis of CpE targeting is supported by binding affinities, kinetics, and half-lives of claudin-enterotoxin complexes and by the cytotoxic effects of CpE on claudin-expressing cells. By correlating the binding residence times of claudin-CpE complexes we determined to claudin expression patterns in the gut, we uncover that the primary CpE receptors differ in mice and humans due to sequence changes in the target motif. These findings provide the molecular and structural element CpE employs for subtype-specific targeting of claudins during pathogenicity of C. perfringens in the gut and a framework for new strategies to treat CpE-based illnesses in domesticated mammals and humans.


Assuntos
Claudina-4/química , Enterotoxinas/química , Junções Íntimas/efeitos dos fármacos , Animais , Sítios de Ligação , Claudina-4/metabolismo , Clostridium perfringens , Enterotoxinas/toxicidade , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Células Sf9 , Spodoptera , Junções Íntimas/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(18)2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33906946

RESUMO

Intracarotid arterial hyperosmolar mannitol (ICAHM) blood-brain barrier disruption (BBBD) is effective and safe for delivery of therapeutics for central nervous system malignancies. ICAHM osmotically alters endothelial cells and tight junction integrity to achieve BBBD. However, occurrence of neuroinflammation following hemispheric BBBD by ICAHM remains unknown. Temporal proteomic changes in rat brains following ICAHM included increased damage-associated molecular patterns, cytokines, chemokines, trophic factors, and cell adhesion molecules, indicative of a sterile inflammatory response (SIR). Proteomic changes occurred within 5 min of ICAHM infusion and returned to baseline by 96 h. Transcriptomic analyses following ICAHM BBBD further supported an SIR. Immunohistochemistry revealed activated astrocytes, microglia, and macrophages. Moreover, proinflammatory proteins were elevated in serum, and proteomic and histological findings from the contralateral hemisphere demonstrated a less pronounced SIR, suggesting neuroinflammation beyond regions of ICAHM infusion. Collectively, these results demonstrate ICAHM induces a transient SIR that could potentially be harnessed for neuroimmunomodulation.


Assuntos
Barreira Hematoencefálica/efeitos dos fármacos , Imunidade Inata/genética , Inflamação/genética , Manitol/farmacologia , Animais , Barreira Hematoencefálica/metabolismo , Artérias Carótidas/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Moléculas de Adesão Celular/sangue , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/genética , Quimiocinas/sangue , Citocinas/sangue , Células Endoteliais/efeitos dos fármacos , Humanos , Inflamação/sangue , Ratos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/genética
4.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33443222

RESUMO

Effective therapies for alcohol-associated liver disease (ALD) are limited; therefore, the discovery of new therapeutic agents is greatly warranted. Toll-like receptor 7 (TLR7) is a pattern recognition receptor for single-stranded RNA, and its activation prevents liver fibrosis. We examined liver and intestinal damage in Tlr7-/- mice to determine the role of TLR7 in ALD pathogenesis. In an alcoholic hepatitis (AH) mouse model, hepatic steatosis, injury, and inflammation were induced by chronic binge ethanol feeding in mice, and Tlr7 deficiency exacerbated these effects. Because these results demonstrated that endogenous TLR7 signaling activation is protective in the AH mouse model, we hypothesized that TLR7 activation may be an effective therapeutic strategy for ALD. Therefore, we investigated the therapeutic effect of TLR7 agonistic agent, 1Z1, in the AH mouse model. Oral administration of 1Z1 was well tolerated and prevented intestinal barrier disruption and bacterial translocation, which thus suppressed ethanol-induced hepatic injury, steatosis, and inflammation. Furthermore, 1Z1 treatment up-regulated the expression of antimicrobial peptides, Reg3b and Reg3g, in the intestinal epithelium, which modulated the microbiome by decreasing and increasing the amount of Bacteroides and Lactobacillus, respectively. Additionally, 1Z1 up-regulated intestinal interleukin (IL)-22 expression. IL-22 deficiency abolished the protective effects of 1Z1 in ethanol-induced liver and intestinal damage, suggesting intestinal IL-22 as a crucial mediator for 1Z1-mediated protection in the AH mouse model. Collectively, our results indicate that TLR7 signaling exerts protective effects in the AH mouse model and that a TLR7 ligand, 1Z1, holds therapeutic potential for the treatment of AH.


Assuntos
Etanol/toxicidade , Interleucinas/metabolismo , Mucosa Intestinal/metabolismo , Hepatopatias Alcoólicas/tratamento farmacológico , Glicoproteínas de Membrana/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 7 Toll-Like/metabolismo , Administração Oral , Animais , Bacteroides/efeitos dos fármacos , Modelos Animais de Doenças , Fígado Gorduroso/complicações , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Inflamação/complicações , Inflamação/genética , Inflamação/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Lactobacillus/efeitos dos fármacos , Ligantes , Hepatopatias Alcoólicas/genética , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/fisiopatologia , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs , Proteínas Associadas a Pancreatite/genética , Proteínas Associadas a Pancreatite/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Proteínas Citotóxicas Formadoras de Poros/genética , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Transdução de Sinais/genética , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/patologia , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/genética , Interleucina 22
5.
Ecotoxicol Environ Saf ; 280: 116578, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38861803

RESUMO

Sertoli cells (SCs) maintain testicular homeostasis and promote spermatogenesis by forming the blood-testis barrier (BTB) and secreting growth factors. The pro-proliferative and anti-apoptotic effects of nerve growth factor (NGF) on SCs have been proved previously. It is still unclear whether the damage effect of arsenic on testis is related to the inhibition of NGF expression, and whether NGF can mitigate arsenic-induced testicular damage by decreasing the damage of SCs induced by arsenic. Here, the lower expression of NGF in testes of arsenic exposed mice (freely drinking water containing 15 mg/l of NaAsO2) was observed through detection of Western blot and Real-time PCR. Subsequently, hematoxylin and eosin (HE) staining, Evans blue staining and transmission electron microscopy were used to evaluate the pathology, BTB permeability and tight junction integrity in testes of control mice, arsenic exposed mice (freely drinking water containing 15 mg/l of NaAsO2) and arsenic + NGF treated mice (freely drinking water containing 15 mg/l of NaAsO2 + intraperitoneal injection with 30 µg/kg of NGF), respectively. Evidently, spermatogenic tubule epithelial cells in testis of arsenic exposed mice were disordered and the number of cell layers was reduced, accompanied by increased permeability and damaged integrity of the tight junction in BTB, but these changes were less obvious in testes of mice treated with arsenic + NGF. In addition, the sperm count, motility and malformation rate of mice treated with arsenic + NGF were also improved. On the basis of the above experiments, the viability and apoptosis of primary cultured SCs treated with arsenic (10 µM NaAsO2) or arsenic + NGF (10 µM NaAsO2 + 100 ng/mL NGF) were detected by Cell counting kit-8 (CCK8) and transferase-mediated DUTP-biotin nick end labeling (TUNEL) staining, respectively. It is found that NGF ameliorated the decline of growth activity and the increase of apoptosis in arsenic-induced SCs. This remarkable biological effect that NGF inhibited the increase of Bax expression and the decrease of Bcl-2 expression in arsenic-induced SCs was also determined by western blot and Real-time PCR. Moreover, the decrease in transmembrane resistance (TEER) and the expression of tight junction proteins ZO-1 and occludin was mitigated in SCs induced by arsenic due to NGF treatment. In conclusion, the above results confirmed that NGF could ameliorate the injury effects of arsenic on testis, which might be related to the function of NGF to inhibit arsenic-induced SCs injury.


Assuntos
Arsênio , Barreira Hematotesticular , Fator de Crescimento Neural , Células de Sertoli , Testículo , Animais , Masculino , Células de Sertoli/efeitos dos fármacos , Células de Sertoli/metabolismo , Camundongos , Arsênio/toxicidade , Testículo/efeitos dos fármacos , Testículo/patologia , Barreira Hematotesticular/efeitos dos fármacos , Espermatogênese/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos
6.
Am J Pathol ; 191(5): 872-884, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33607043

RESUMO

Defective intestinal tight junction (TJ) barrier is an important pathogenic factor of inflammatory bowel disease. To date, no effective therapies that specifically target the intestinal TJ barrier are available. The purpose of this study was to identify probiotic bacterial species or strains that induce a rapid and sustained enhancement of intestinal TJ barrier and protect against the development of intestinal inflammation by targeting the TJ barrier. After high-throughput screening of >20 Lactobacillus and other probiotic bacterial species or strains, a specific strain of Lactobacillus acidophilus, referred to as LA1, uniquely produced a marked enhancement of the intestinal TJ barrier. LA1 attached to the apical membrane surface of intestinal epithelial cells in a Toll-like receptor (TLR)-2-dependent manner and caused a rapid increase in enterocyte TLR-2 membrane expression and TLR-2/TLR-1 and TLR-2/TLR-6 hetero-complex-dependent enhancement in intestinal TJ barrier function. Oral administration of LA1 caused a rapid enhancement in mouse intestinal TJ barrier, protected against a dextran sodium sulfate (DSS) increase in intestinal permeability, and prevented the DSS-induced colitis in a TLR-2- and intestinal TJ barrier-dependent manner. In conclusion, we report for the first time that a specific strain of LA causes a strain-specific enhancement of intestinal TJ barrier through a novel mechanism that involves the TLR-2 receptor complex and protects against the DSS-induced colitis by targeting the intestinal TJ barrier.


Assuntos
Colite/prevenção & controle , Inflamação/prevenção & controle , Lactobacillus acidophilus/fisiologia , Probióticos , Receptor 2 Toll-Like/metabolismo , Animais , Colite/induzido quimicamente , Colite/microbiologia , Colite/patologia , Sulfato de Dextrana/efeitos adversos , Células Epiteliais/patologia , Intestinos/efeitos dos fármacos , Intestinos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Permeabilidade/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/patologia , Receptor 2 Toll-Like/genética
7.
Blood ; 136(6): 749-754, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32548640

RESUMO

Several studies demonstrate that hemolysis and free heme in circulation cause endothelial barrier dysfunction and are associated with severe pathological conditions such as acute respiratory distress syndrome, acute chest syndrome, and sepsis. However, the precise molecular mechanisms involved in the pathology of heme-induced barrier disruption remain to be elucidated. In this study, we investigated the role of free heme in the endothelial barrier integrity and mechanisms of heme-mediated intracellular signaling of human lung microvascular endothelial cells (HLMVECs). Heme, in a dose-dependent manner, induced a rapid drop in the endothelial barrier integrity of HLMVECs. An investigation into barrier proteins revealed that heme primarily affected the tight junction proteins zona occludens-1, claudin-1, and claudin-5, which were significantly reduced after heme exposure. The p38MAPK/HSP27 pathway, involved in the regulation of endothelial cytoskeleton remodeling, was also significantly altered after heme treatment, both in HLMVECs and mice. By using a knockout (KO) mouse for MKK3, a key regulator of the p38MAPK pathway, we showed that this KO effectively decreased heme-induced endothelial barrier dysfunction. Taken together, our results indicate that targeting the p38MAPK pathway may represent a crucial treatment strategy in alleviating hemolytic diseases.


Assuntos
Permeabilidade Capilar/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Heme/farmacologia , MAP Quinase Quinase 3/fisiologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Animais , Antígenos CD/análise , Caderinas/análise , Permeabilidade Capilar/fisiologia , Células Cultivadas , Claudinas/análise , Células Endoteliais/fisiologia , Proteínas de Choque Térmico HSP27/fisiologia , Proteínas de Choque Térmico/fisiologia , Hemólise , Humanos , Pulmão/irrigação sanguínea , MAP Quinase Quinase 3/deficiência , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Knockout , Microvasos/citologia , Chaperonas Moleculares/fisiologia , Junções Íntimas/efeitos dos fármacos , Proteína da Zônula de Oclusão-1/análise , Proteínas Quinases p38 Ativadas por Mitógeno
8.
Exp Eye Res ; 216: 108945, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35038456

RESUMO

The VEGF-A-induced functional impairment of the barrier formed by retinal endothelial cells (REC) can be prevented and even - at least temporarily - reverted by trapping the growth factor in a complex with a VEGF-binding protein or by inhibiting the activity of the VEGF receptor 2 (VEGFR2). In an approach to emulate the clinically relevant situation of constant exposure to effectors, we investigated (1) whether prolonged exposure to VEGF-A165 for up to six days results in a different type of disturbance of the barrier formed by immortalized bovine REC (iBREC) and (2) whether alterations of the barrier induced by VEGF-A165 can indeed be sustainably reverted by subsequent treatment with the VEGF-A-binding proteins ranibizumab or brolucizumab. As a measure of barrier integrity, the cell index (CI) of iBREC cultivated on gold electrodes was monitored continuously. CI values declined shortly after addition of the growth factor and then remained low for more than six days over which considerable amounts of both extra- and intracellular VEGF-A were measured. Interestingly, the specific VEGFR2 inhibitor nintedanib normalized the lowered CI when added to iBREC pre-treated with VEGF-A165 for one day, but failed to do so when cells had been exposed to the growth factor for six days. Expression of the tight junction (TJ) protein claudin-5 was unchanged early after addition of VEGF-A165 but higher after prolonged treatment, whereas decreased amounts of the TJ-protein claudin-1 remained low, and increased expression of the plasmalemma vesicle-associated protein (PLVAP) remained high during further exposure. After two days, the characteristic even plasma membrane stainings of claudin-1 or claudin-5 appeared weaker or disordered, respectively. After six days the subcellular localization of claudin-5 was similar to that of control cells again, but claudin-1 remained relocated from the plasma membrane. To counteract these effects of VEGF-A165, brolucizumab or ranibizumab was added after one day, resulting in recovery of the then lowered CI to normal values within a few hours. However, despite the VEGF antagonist being present, the CI declined again two days later to values that were just slightly higher than without VEGF inhibition during further assessment for several days. At this stage, neither the supernatants nor whole cell extracts from iBREC treated with VEGF-A165 and its antagonists contained significant amounts of free VEGF-A. Treatment of VEGF-A165-challenged iBREC with ranibizumab or brolucizumab normalized expression of claudin-1 and claudin-5, but not completely that of PLVAP. Interestingly, the characteristic VEGF-A165-induced relocalization of claudin-1 from the plasma membrane was reverted within one day by any of the VEGF antagonists, but reappeared despite their presence after further exposure for several days. Taken together, barrier dysfunction induced by VEGF-A165 results from deregulated para- and transcellular flow but the precise nature or magnitude of underlying changes on a molecular level clearly depend on the time of exposure, evolving into a stage of VEGF-A165-independent barrier impairment. These findings also provide a plausible explanation for resistance to treatment with VEGF-A antagonists frequently observed in clinical practice.


Assuntos
Células Endoteliais/efeitos dos fármacos , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/farmacologia , Vasos Retinianos/citologia , Junções Íntimas/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Anticorpos Monoclonais Humanizados/uso terapêutico , Transporte Biológico , Western Blotting , Bovinos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Claudina-1/metabolismo , Claudina-5/metabolismo , Eletroforese em Gel de Poliacrilamida , Células Endoteliais/metabolismo , Ensaio de Imunoadsorção Enzimática , Humanos , Ranibizumab/uso terapêutico
9.
FASEB J ; 35(11): e21854, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34597422

RESUMO

Ammonia is one of the major metabolites produced by intestinal microorganisms; however, its role in intestinal homeostasis is poorly understood. The present study investigated the regulation of intestinal tight junction (TJ) proteins by ammonia and the underlying mechanisms in human intestinal Caco-2 cells. Ammonia (15, 30, and 60 mM) increased the permeability of the cells in a dose-dependent manner, as indicated by reduced transepithelial electrical resistance and increased dextran flux. Immunoblot and immunofluorescence analyses revealed that the ammonia-induced increase in TJ permeability reduced the membrane localization of TJ proteins such as zonula occludens (ZO)1, ZO2, occludin, claudin-1, and claudin-3. DNA microarray analysis identified a biological pathway "response to reactive oxygen species" enriched by ammonia treatment, indicating the induction of oxidative stress in the cells. Ammonia treatment also increased the malondialdehyde content and decreased the ratio of reduced to oxidized glutathione. Meanwhile, ammonia treatment-induced mitochondrial dysfunction, as indicated by the downregulation of genes associated with the electron transport chain, reduction of the cellular ATP, NADH, and tricarboxylic acid cycle intermediate content, and suppression of the mitochondrial membrane potential. In contrast, N-acetyl cysteine reversed the ammonia-induced impairment of TJ permeability and structure without affecting the mitochondrial parameters. Collectively, ammonia impaired the TJ barrier by increasing oxidative stress in Caco-2 cells. A mitochondrial dysfunction is possibly an event preceding ammonia-induced oxidative stress. The findings of this study could potentially improve our understanding of the interplay between intestinal microorganisms and their hosts.


Assuntos
Amônia/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Trifosfato de Adenosina/metabolismo , Células CACO-2 , Glutationa/metabolismo , Humanos , Interleucina-8/biossíntese , Mucosa Intestinal/metabolismo , Malondialdeído/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , NADP/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Insuficiência Renal Crônica/metabolismo
10.
Inflamm Res ; 71(3): 357-368, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35107605

RESUMO

OBJECTIVE: The maintenance of tight junction integrity contributes significantly to epithelial barrier function. If barrier function is destroyed, cell permeability increases and the movement of pathogens is promoted, further increasing the susceptibility to secondary infection. Here, we examined the protective effects of wogonin on rhinovirus (RV)-induced tight junction disruption. Additionally, we examined the signaling molecules responsible for anti-inflammatory activities in human nasal epithelial (HNE) cells. METHODS AND RESULTS: Primary HNE cells grown at an air-liquid interface and RPMI 2650 cells were infected apically with RV. Incubation with RV resulted in disruption of tight junction proteins (ZO-1, E-cadherin, claudin-1, and occludin) in the HNE cells. Cell viability of wogonin-treated HNE cells was measured using the MTT assay. Pretreatment with wogonin decreased RV-induced disruption of tight junctions in HNE cells. Furthermore, wogonin significantly decreased RV-induced phosphorylation of Akt/NF-κB and ERK1/2. Additionally, RV-induced generation of reactive oxygen species and RV-induced up-regulation of the production of inflammatory cytokines IL-8 and IL-6 were diminished by wogonin in HNE cells. CONCLUSION: Wogonin inhibits HRV-induced tight junction disruption via the suppression of inflammatory responses and phosphorylation of Akt/NF-κB and ERK1/2 in HNE cells. These finds will facilitate the development of novel therapeutic strategies.


Assuntos
Flavanonas , Proteína Quinase 3 Ativada por Mitógeno , NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Rhinovirus , Junções Íntimas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Flavanonas/farmacologia , Humanos , Sistema de Sinalização das MAP Quinases , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Infecções por Picornaviridae/tratamento farmacológico , Infecções por Picornaviridae/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Rhinovirus/metabolismo , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Junções Íntimas/patologia
11.
Mar Drugs ; 20(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35200617

RESUMO

This study aimed to investigate the protective effect of the metabolites produced by a new Lactiplantibacillus plantarum strain BF1-13, isolated from deep seawater (DSW), on the intestinal epithelial barrier against the dysfunction induced by hydrogen peroxide (H2O2) and to elucidate the mechanism underlying the effect. Protective effect of the metabolites by strain BF1-13 on the barrier function of the intestinal epithelial model treated with H2O2 was investigated by the transepithelial electrical resistance (TEER). The metabolites enhanced the Claudin-4 (CLDN-4) expression, including at the transcription level, indicated by immunofluorescence staining and quantitative RT-PCR. The metabolites also showed a suppression of aquaporin3 (AQP3) expression. Lactic acid (LA) produced by this strain of homofermentative lactic acid bacteria (LAB) had a similar enhancement on CLDN-4 expression. The metabolites of L. plantarum strain BF1-13 alleviated the dysfunction of intestinal epithelial barrier owing to its enhancement on the tight junctions (TJs) by LA, along with its suppression on AQP3-facilitating H2O2 intracellular invasion into Caco-2 cells. This is the first report on the enhancement of TJs by LA produced by LAB.


Assuntos
Mucosa Intestinal/efeitos dos fármacos , Lactobacillus plantarum/metabolismo , Substâncias Protetoras/farmacologia , Aquaporina 3/genética , Células CACO-2 , Humanos , Peróxido de Hidrogênio/toxicidade , Mucosa Intestinal/patologia , Ácido Láctico/metabolismo , Lactobacillus plantarum/isolamento & purificação , Substâncias Protetoras/isolamento & purificação , Água do Mar , Junções Íntimas/efeitos dos fármacos
12.
Proc Natl Acad Sci U S A ; 116(36): 17817-17824, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31434788

RESUMO

The human pathogenic bacterium Clostridium perfringens secretes an enterotoxin (CpE) that targets claudins through its C-terminal receptor-binding domain (cCpE). Isoform-specific binding by CpE causes dissociation of claudins and tight junctions (TJs), resulting in cytotoxicity and breakdown of the gut epithelial barrier. Here, we present crystal structures of human claudin-9 (hCLDN-9) in complex with cCpE at 3.2 and 3.3 Å. We show that hCLDN-9 is a high-affinity CpE receptor and that hCLDN-9-expressing cells undergo cell death when treated with CpE but not cCpE, which lacks its cytotoxic domain. Structures reveal cCpE-induced alterations to 2 epitopes known to enable claudin self-assembly and expose high-affinity interactions between hCLDN-9 and cCpE that explain isoform-specific recognition. These findings elucidate the molecular bases for hCLDN-9 selective ion permeability and binding by CpE, and provide mechanisms for how CpE disrupts gut homeostasis by dissociating claudins and TJs to affect epithelial adhesion and intercellular transport.


Assuntos
Claudinas/química , Claudinas/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Toxinas Biológicas/química , Toxinas Biológicas/toxicidade , Animais , Sítios de Ligação , Enterotoxinas/química , Enterotoxinas/metabolismo , Enterotoxinas/toxicidade , Humanos , Mucosa Intestinal/patologia , Camundongos , Modelos Biológicos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Toxinas Biológicas/metabolismo
13.
Int J Mol Sci ; 23(6)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35328419

RESUMO

The published literature makes a very strong case that a wide range of disease morbidity associates with and may in part be due to epithelial barrier leak. An equally large body of published literature substantiates that a diverse group of micronutrients can reduce barrier leak across a wide array of epithelial tissue types, stemming from both cell culture as well as animal and human tissue models. Conversely, micronutrient deficiencies can exacerbate both barrier leak and morbidity. Focusing on zinc, Vitamin A and Vitamin D, this review shows that at concentrations above RDA levels but well below toxicity limits, these micronutrients can induce cell- and tissue-specific molecular-level changes in tight junctional complexes (and by other mechanisms) that reduce barrier leak. An opportunity now exists in critical care-but also medical prophylactic and therapeutic care in general-to consider implementation of select micronutrients at elevated dosages as adjuvant therapeutics in a variety of disease management. This consideration is particularly pointed amidst the COVID-19 pandemic.


Assuntos
Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Micronutrientes/metabolismo , Vitamina A/metabolismo , Vitamina D/metabolismo , Zinco/metabolismo , Animais , COVID-19/epidemiologia , COVID-19/metabolismo , COVID-19/virologia , Humanos , Micronutrientes/farmacologia , Pandemias/prevenção & controle , SARS-CoV-2/fisiologia , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Vitamina A/farmacologia , Vitamina D/farmacologia , Vitaminas/metabolismo , Vitaminas/farmacologia , Zinco/farmacologia
14.
Am J Physiol Cell Physiol ; 320(3): C448-C461, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33471620

RESUMO

Gram-negative bacterial lipopolysaccharide (LPS) increases the susceptibility of cells to pathogenic diseases, including inflammatory diseases and septic syndrome. In our experiments, we examined whether LPS induces epithelial barrier disruption in secretory epithelia and further investigated its underlying mechanism. The activities of Ca2+-activated Cl- channels (CACC) and epithelial Na+ channels (ENaC) were monitored with a short-circuit current using an Ussing chamber. Epithelial membrane integrity was estimated via transepithelial electrical resistance and paracellular permeability assays. We found that the apical application of LPS evoked short-circuit current (Isc) through the activation of CACC and ENaC. Although LPS disrupted epithelial barrier integrity, this was restored with the inhibition of CACC and ENaC, indicating the role of CACC and ENaC in the regulation of paracellular pathways. We confirmed that LPS, CACC, or ENaC activation evoked apical membrane depolarization. The exposure to a high-K+ buffer increased paracellular permeability. LPS induced the rapid redistribution of zonula occludens-1 (ZO-1) and reduced the expression levels of ZO-1 in tight junctions through apical membrane depolarization and tyrosine phosphorylation. However, the LPS-induced epithelial barrier disruption and degradation of ZO-1 were largely recovered by blocking CACC and ENaC. Furthermore, although LPS-impaired epithelial barrier became vulnerable to secondary bacterial infections, this vulnerability was prevented by inhibiting CACC and ENaC. We concluded that LPS induces the disruption of epithelial barrier integrity through the activation of CACC and ENaC, resulting in apical membrane depolarization and the subsequent tyrosine phosphorylation of ZO-1.


Assuntos
Canais de Cloreto/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Lipopolissacarídeos/farmacologia , Canais de Sódio/metabolismo , Animais , Células Cultivadas , Masculino , Potenciais da Membrana/efeitos dos fármacos , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
15.
Am J Physiol Cell Physiol ; 321(1): C104-C116, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33909502

RESUMO

Chronic alcohol alters the immune system enhancing the susceptibility to inflammation, bacterial, and viral infections in alcohol users. We have shown that alcohol causes increased permeability of mesenteric lymphatic vessels in alcohol-fed rats. The mechanisms of alcohol-induced lymphatic leakage are unknown. Endothelial cell monolayer permeability is controlled by junctional proteins complexes called tight junctions (TJ) and adherens junctions (AJ), and each can be regulated by MAPK activation. We hypothesize that ethanol induces lymphatic endothelial cell (LEC) permeability via disruption of LEC TJ through MAPK activation. An in vitro model of rat LECs was used. Ethanol-supplemented medium was added at concentrations of 0, 25, and 50 mM to confluent cells. Resistance-based barrier function, transwell permeability, cell viability, TJ, AJ, and MAPK protein activity, TJ and AJ gene expressions, and the role of p38 MAPK in barrier function regulation were measured. Ethanol increased the permeability of LECs compared to controls that was not associated with decreased cell viability. LECs treated with 50 mM ethanol showed an increase in phosphorylated levels of p38. No significant changes in TJ and AJ gene or protein expressions were observed after ethanol treatment. p38 inhibition prevented ethanol-induced increases in permeability. These findings suggest that p38 may play a role in the regulation of ethanol-induced LEC permeability, but altered permeability may not be associated with decreased TJ or AJ protein expression. Further investigation into junctional protein localization is needed to better understand the effects of ethanol on lymphatic endothelial cell-to-cell contacts and hyperpermeability.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Etanol/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Junções Aderentes/efeitos dos fármacos , Junções Aderentes/metabolismo , Animais , Animais Recém-Nascidos , Antígenos CD/genética , Antígenos CD/metabolismo , Transporte Biológico , Caderinas/genética , Caderinas/metabolismo , Claudina-5/genética , Claudina-5/metabolismo , Derme/citologia , Derme/metabolismo , Cultura em Câmaras de Difusão , Impedância Elétrica , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Ocludina/genética , Ocludina/metabolismo , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Ratos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
J Cell Physiol ; 236(8): 5771-5784, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33400297

RESUMO

Microbes employ autoinducers of quorum sensing (QS) for population communication. Although the autoinducer of Pseudomonas aeruginosa LasI-LasR system, N-(3-oxododecanoyl)- l-homoserine lactone (3OC12), has been reported with deleterious effects on host cells, its biological effects on integrity of the intestinal epithelium and epithelial barrier are still unclear and need further investigation. In the present study, flow cytometry, transcriptome analysis and western blot technology have been adopted to investigate the potential molecular mechanisms of 3OC12 and its structurally similar analogs damage to intestinal epithelial cells. Our results indicated that 3OC12 and 3OC14 trigger apoptosis rather than necrosis and ferroptosis in intestinal epithelial cells. RNA-sequencing combined with bioinformatics analysis showed that 3OC12 and 3OC14 reduced the expression of genes from extracellular matrix (ECM)-receptor interaction pathway. Consistently, protein expressions from ECM and tight junction-associated pathway were significantly reduced after 3OC12 and 3OC14 challenge. In addition, 3OC12 and 3OC14 led to blocked cell cycle, decreased mitochondrial membrane potential, increased reactive oxygen species level and elevated Ca2+ concentration. Reversely, the antioxidant NAC could effectively mitigate the reduced expression of ECM and tight junction proteins caused by 3OC12 and 3OC14 challenge. Collectively, this study demonstrated that QS autoinducer exposure to intestinal epithelial cells ablates the ECM and tight junctions by triggering oxidative stress and apoptosis, and finally disrupts the intestinal epithelial barrier. These findings provide a rationale for defensing QS-dependent bacterial infections and potential role of NAC for alleviating the syndrome.


Assuntos
4-Butirolactona/análogos & derivados , Apoptose/fisiologia , Células Epiteliais/efeitos dos fármacos , Matriz Extracelular/metabolismo , Homosserina/análogos & derivados , Junções Íntimas/efeitos dos fármacos , 4-Butirolactona/metabolismo , 4-Butirolactona/farmacologia , Animais , Células Epiteliais/metabolismo , Matriz Extracelular/efeitos dos fármacos , Homosserina/metabolismo , Homosserina/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Lactonas/metabolismo , Camundongos , Pseudomonas aeruginosa/metabolismo , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo
17.
Pflugers Arch ; 473(2): 287-311, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33386991

RESUMO

TGF-ß1 is a major mediator of airway tissue remodelling during atopic asthma and affects tight junctions (TJs) of airway epithelia. However, its impact on TJs of ciliated epithelia is sparsely investigated. Herein we elaborated effects of TGF-ß1 on TJs of primary human bronchial epithelial cells. We demonstrate that TGF-ß1 activates TGF-ß1 receptors TGFBR1 and TGFBR2 resulting in ALK5-mediated phosphorylation of SMAD2. We observed that TGFBR1 and -R2 localize specifically on motile cilia. TGF-ß1 activated accumulation of phosphorylated SMAD2 (pSMAD2-C) at centrioles of motile cilia and at cell nuclei. This triggered an increase in paracellular permeability via cellular redistribution of claudin 3 (CLDN3) from TJs into cell nuclei followed by disruption of epithelial integrity and formation of epithelial lesions. Only ciliated cells express TGF-ß1 receptors; however, nuclear accumulations of pSMAD2-C and CLDN3 redistribution were observed with similar time course in ciliated and non-ciliated cells. In summary, we demonstrate a role of motile cilia in TGF-ß1 sensing and showed that TGF-ß1 disturbs TJ permeability of conductive airway epithelia by redistributing CLDN3 from TJs into cell nuclei. We conclude that the observed effects contribute to loss of epithelial integrity during atopic asthma.


Assuntos
Brônquios/efeitos dos fármacos , Cílios/efeitos dos fármacos , Claudina-3/metabolismo , Células Epiteliais/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Brônquios/metabolismo , Células Cultivadas , Cílios/metabolismo , Claudina-3/genética , Impedância Elétrica , Células Epiteliais/metabolismo , Humanos , Permeabilidade , Fosforilação , Transporte Proteico , Receptor do Fator de Crescimento Transformador beta Tipo I/agonistas , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/agonistas , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Junções Íntimas/genética , Junções Íntimas/metabolismo
18.
J Neurochem ; 158(4): 980-996, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34033116

RESUMO

Postoperative delirium (POD) is a common post-operative complication in elderly patients that is associated with increased morbidity and mortality. However, the neuropathogenesis of this complication remains unknown. The blood-cerebrospinal fluid barrier (BCB) and brain-blood barrier (BBB) are composed of tight junctions between cells that form physical barriers, and BBB damage plays an important role in the neuropathogenesis of POD. Nevertheless, the role of BCB in POD remains to be elucidated. Herein, we investigated the effect of adenosine A2A receptor (A2A R), a key regulator of the permeability of barriers, on surgery-induced increased permeability of BCB and POD-like behaviors. Open field, buried food, and Y maze tests were used to evaluate behavioral changes in rats after surgery. Levels of tight junction proteins, adherens junction proteins, A2A R, GTP-RhoA, and ROCK2 in the choroid plexus were assessed by western blotting. The concentrations of NaFI and FITC-dextran in the cerebrospinal fluid (CSF) were detected by fluorescence spectrophotometry. Transmission electron microscopy was applied to observe the ultrastructure of the choroid plexus. Surgery/anesthesia decreased the levels of tight junction (e.g., ZO-1, occludin, and claudin1) proteins, increased concentrations of NaFI and FITC-dextran in CSF, damaged the ultrastructure of choroid plexus, and induced POD-like behaviors in rats. An A2A R antagonist alleviated POD-like behaviors in rats. Furthermore, the A2A R antagonist increased the levels of tight junction proteins and restored the permeability of BCB in rats with POD. Fasudil, a selective Rho-associated protein kinase 2 (ROCK2) inhibitor, ameliorated POD-like behaviors induced by A2A R activation. Moreover, fasudil also abolished the increased levels of GTP-RhoA/ROCK2, decreased levels of tight junction proteins, and increased permeability of BCB caused by A2A R activation. Our findings demonstrate that A2A R might participate in regulating BCB permeability in rats with POD via the RhoA/ROCK2 signaling pathway, which suggests the potential of A2A R as a therapeutic target for POD.


Assuntos
Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Comportamento Animal/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Delírio/tratamento farmacológico , Delírio/psicologia , Complicações Pós-Operatórias/tratamento farmacológico , Complicações Pós-Operatórias/psicologia , Receptor A2A de Adenosina/efeitos dos fármacos , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/uso terapêutico , Animais , Plexo Corióideo/patologia , Delírio/induzido quimicamente , Feminino , Aprendizagem em Labirinto/efeitos dos fármacos , Permeabilidade , Ratos , Ratos Sprague-Dawley , Fluoreto de Sódio/líquido cefalorraquidiano , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/efeitos dos fármacos
19.
Am J Physiol Gastrointest Liver Physiol ; 320(6): G983-G989, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33881350

RESUMO

Larazotide acetate (LA) is a single-chain peptide of eight amino acids that acts as a tight junction regulator to restore intestinal barrier function. LA is currently being studied in phase III clinical trials and is orally administered to adult patients with celiac disease as an adjunct therapeutic to enhance intestinal barrier function that has been disrupted by gliadin-induced immune reactivity. Mechanistically, LA is thought to act as a zonulin antagonist to reduce zonulin-induced increases in barrier permeability and has been associated with the redistribution and rearrangement of tight junction proteins and actin filaments to restore intestinal barrier function. More recently, LA has been linked to inhibition of myosin light chain kinase, which likely reduces tension on actin filaments, thereby facilitating tight junction closure. Small (rodent) and large (porcine) animal studies have been conducted that demonstrate the importance of LA as a tight junction regulatory peptide in conditions other than celiac disease, including collagen-induced arthritis in mice and intestinal ischemic injury in pigs.


Assuntos
Doença Celíaca/tratamento farmacológico , Oligopeptídeos/farmacologia , Junções Íntimas/efeitos dos fármacos , Animais , Doença Celíaca/metabolismo , Humanos , Oligopeptídeos/uso terapêutico , Permeabilidade , Proteínas de Junções Íntimas/metabolismo , Junções Íntimas/metabolismo
20.
Am J Physiol Gastrointest Liver Physiol ; 320(4): G521-G530, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33085904

RESUMO

Infants born under 1,500 g have an increased incidence of necrotizing enterocolitis in the ileum and the colon, which is a life-threatening intestinal necrosis. This is in part due to excessive inflammation in the immature intestine to colonizing bacteria because of an immature innate immune response. Breastmilk complex carbohydrates create metabolites of colonizing bacteria in the form of short-chain fatty acids (SCFAs). We studied the effect of breastmilk metabolites, SCFAs, on immature intestine with regard to anti-inflammatory effects. This showed that acetate, propionate, and butyrate were all anti-inflammatory to an IL-1ß inflammatory stimulus. In this study, to further define the mechanism of anti-inflammation, we created transcription profiles of RNA from immature human enterocytes after exposure to butyrate with and without an IL-1ß inflammatory stimulus. We demonstrated that butyrate stimulates an increase in tight-junction and mucus genes and if we inhibit these genes, the anti-inflammatory effect is partially lost. SCFAs, products of microbial metabolism of complex carbohydrates of breastmilk oligosaccharides, have been found with this study to induce an anti-IL-1ß response that is associated with an upregulation of tight junctions and mucus genes in epithelial cells (H4 cells). These studies suggest that breastmilk in conjunction with probiotics can reduce excessive inflammation with metabolites that are anti-inflammatory and stimulate an increase in the mucosal barrier.NEW & NOTEWORTHY This study extends previous observations to define the anti-inflammatory properties of butyrate, a short-chain fatty acid produced by the metabolism of breastmilk oligosaccharides by colonizing bacteria. Using transcription profiling of immature enterocyte genes, after exposure to butyrate and an IL-1ß stimulus, we showed that tight-junction genes and mucus genes were increased, which contributed to the anti-inflammatory effect.


Assuntos
Anti-Inflamatórios/farmacologia , Butiratos/farmacologia , Colo/efeitos dos fármacos , Enterocolite Necrosante/prevenção & controle , Enterócitos/efeitos dos fármacos , Íleo/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Leite Humano/metabolismo , Animais , Animais Recém-Nascidos , Butiratos/metabolismo , Linhagem Celular , Colo/metabolismo , Enterocolite Necrosante/metabolismo , Enterócitos/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Íleo/metabolismo , Interleucina-1beta/farmacologia , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , Muco/metabolismo , Permeabilidade , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/metabolismo , Técnicas de Cultura de Tecidos , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA