Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.062
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Am J Pathol ; 194(6): 975-988, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423356

RESUMO

Radiation-induced enteritis, a significant concern in abdominal radiation therapy, is associated closely with gut microbiota dysbiosis. The mucus layer plays a pivotal role in preventing the translocation of commensal and pathogenic microbes. Although significant expression of REGγ in intestinal epithelial cells is well established, its role in modulating the mucus layer and gut microbiota remains unknown. The current study revealed notable changes in gut microorganisms and metabolites in irradiated mice lacking REGγ, as compared to wild-type mice. Concomitant with gut microbiota dysbiosis, REGγ deficiency facilitated the infiltration of neutrophils and macrophages, thereby exacerbating intestinal inflammation after irradiation. Furthermore, fluorescence in situ hybridization assays unveiled an augmented proximity of bacteria to intestinal epithelial cells in REGγ knockout mice after irradiation. Mechanistically, deficiency of REGγ led to diminished goblet cell populations and reduced expression of key goblet cell markers, Muc2 and Tff3, observed in both murine models, minigut organoid systems and human intestinal goblet cells, indicating the intrinsic role of REGγ within goblet cells. Interestingly, although administration of broad-spectrum antibiotics did not alter the goblet cell numbers or mucin 2 (MUC2) secretion, it effectively attenuated inflammation levels in the ileum of irradiated REGγ absent mice, bringing them down to the wild-type levels. Collectively, these findings highlight the contribution of REGγ in counteracting radiation-triggered microbial imbalances and cell-autonomous regulation of mucin secretion.


Assuntos
Enterite , Microbioma Gastrointestinal , Células Caliciformes , Homeostase , Camundongos Knockout , Animais , Enterite/microbiologia , Enterite/metabolismo , Enterite/patologia , Camundongos , Células Caliciformes/patologia , Células Caliciformes/metabolismo , Humanos , Proteínas Associadas a Pancreatite/metabolismo , Mucina-2/metabolismo , Disbiose/microbiologia , Disbiose/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Fator Trefoil-3/metabolismo , Camundongos Endogâmicos C57BL , Lesões por Radiação/metabolismo , Lesões por Radiação/microbiologia , Lesões por Radiação/patologia , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/microbiologia
2.
PLoS Comput Biol ; 20(1): e1011400, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38289964

RESUMO

Metastasis is the process through which cancer cells break away from a primary tumor, travel through the blood or lymph system, and form new tumors in distant tissues. One of the preferred sites for metastatic dissemination is the brain, affecting more than 20% of all cancer patients. This figure is increasing steadily due to improvements in treatments of primary tumors. Stereotactic radiosurgery (SRS) is one of the main treatment options for patients with a small or moderate number of brain metastases (BMs). A frequent adverse event of SRS is radiation necrosis (RN), an inflammatory condition caused by late normal tissue cell death. A major diagnostic problem is that RNs are difficult to distinguish from BM recurrences, due to their similarities on standard magnetic resonance images (MRIs). However, this distinction is key to choosing the best therapeutic approach since RNs resolve often without further interventions, while relapsing BMs may require open brain surgery. Recent research has shown that RNs have a faster growth dynamics than recurrent BMs, providing a way to differentiate the two entities, but no mechanistic explanation has been provided for those observations. In this study, computational frameworks were developed based on mathematical models of increasing complexity, providing mechanistic explanations for the differential growth dynamics of BMs relapse versus RN events and explaining the observed clinical phenomenology. Simulated tumor relapses were found to have growth exponents substantially smaller than the group in which there was inflammation due to damage induced by SRS to normal brain tissue adjacent to the BMs, thus leading to RN. ROC curves with the synthetic data had an optimal threshold that maximized the sensitivity and specificity values for a growth exponent ß* = 1.05, very close to that observed in patient datasets.


Assuntos
Neoplasias Encefálicas , Lesões por Radiação , Radiocirurgia , Humanos , Recidiva Local de Neoplasia/radioterapia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Lesões por Radiação/etiologia , Lesões por Radiação/patologia , Lesões por Radiação/cirurgia , Necrose/etiologia , Necrose/cirurgia , Estudos Retrospectivos
3.
J Neuroinflammation ; 21(1): 162, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915029

RESUMO

Radiation retinopathy (RR) is a major side effect of ocular tumor treatment by plaque brachytherapy or proton beam therapy. RR manifests as delayed and progressive microvasculopathy, ischemia and macular edema, ultimately leading to vision loss, neovascular glaucoma, and, in extreme cases, secondary enucleation. Intravitreal anti-VEGF agents, steroids and laser photocoagulation have limited effects on RR. The role of retinal inflammation and its contribution to the microvascular damage occurring in RR remain incompletely understood. To explore cellular and vascular events after irradiation, we analyzed their time course at 1 week, 1 month and 6 months after rat eyes received 45 Gy X-beam photons. Müller glial cells, astrocytes and microglia were rapidly activated, and these markers of retinal inflammation persisted for 6 months after irradiation. This was accompanied by early cell death in the outer retina, which persisted at later time points, leading to retinal thinning. A delayed loss of small retinal capillaries and retinal hypoxia were observed after 6 months, indicating inner blood‒retinal barrier (BRB) alteration but without cell death in the inner retina. Moreover, activated microglial cells invaded the entire retina and surrounded retinal vessels, suggesting the role of inflammation in vascular alteration and in retinal cell death. Radiation also triggered early and persistent invasion of the retinal pigment epithelium by microglia and macrophages, contributing to outer BRB disruption. This study highlights the role of progressive and long-lasting inflammatory mechanisms in RR development and demonstrates the relevance of this rat model to investigate human pathology.


Assuntos
Modelos Animais de Doenças , Retina , Animais , Ratos , Retina/patologia , Retina/efeitos da radiação , Doenças Retinianas/etiologia , Doenças Retinianas/patologia , Inflamação/patologia , Inflamação/etiologia , Lesões Experimentais por Radiação/patologia , Lesões por Radiação/patologia , Lesões por Radiação/etiologia , Masculino , Microglia/efeitos da radiação , Microglia/patologia
4.
Neuropathol Appl Neurobiol ; 50(3): e12992, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38831600

RESUMO

PURPOSE: Radiation-induced brain injury, one of the side effects of cranial radiotherapy in tumour patients, usually results in durable and serious cognitive disorders. Microglia are important innate immune-effector cells in the central nervous system. However, the interaction between microglia and neurons in radiation-induced brain injury remains uncharacterised. METHODS AND MATERIALS: We established a microglia-neuron indirect co-culture model to assess the interaction between them. Microglia exposed to radiation were examined for pyroptosis using lactate dehydrogenase (LDH) release, Annexin V/PI staining, SYTOX staining and western blot. The role of nucleotide-binding oligomerisation domain-like receptor family pyrin domain containing 3 (NLRP3) was investigated in microglia exposed to radiation and in mouse radiation brain injury model through siRNA or inhibitor. Mini-mental state examination and cytokines in blood were performed in 23 patients who had experienced cranial irradiation. RESULTS: Microglia exerted neurotoxic features after radiation in the co-culture model. NLRP3 was up-regulated in microglia exposed to radiation, and then caspase-1 was activated. Thus, the gasdermin D protein was cleaved, and it triggered pyroptosis in microglia, which released inflammatory cytokines. Meanwhile, treatment with siRNA NLRP3 in vitro and NLRP3 inhibitor in vivo attenuated the damaged neuron cell and cognitive impairment, respectively. What is more, we found that the patients after radiation with higher IL-6 were observed to have a decreased MMSE score. CONCLUSIONS: These findings indicate that radiation-induced pyroptosis in microglia may promote radiation-induced brain injury via the secretion of neurotoxic cytokines. NLRP3 was evaluated as an important mediator in radiation-induced pyroptosis and a promising therapeutic target for radiation-induced brain injury.


Assuntos
Lesões Encefálicas , Microglia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Piroptose , Piroptose/efeitos da radiação , Piroptose/fisiologia , Microglia/metabolismo , Microglia/efeitos da radiação , Microglia/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Camundongos , Humanos , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Lesões Encefálicas/etiologia , Masculino , Neurônios/metabolismo , Neurônios/patologia , Neurônios/efeitos da radiação , Técnicas de Cocultura , Lesões por Radiação/patologia , Lesões por Radiação/metabolismo , Feminino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
5.
Oncology ; 102(7): 585-592, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160665

RESUMO

INTRODUCTION: Bladder cancer (BC) is sensitive to radiation treatment and a subset of patients experience radiation-induced injuries including shrinkage of bladder due to bladder fibrosis. METHODS: This study is a retrospective cohort study. Three Japanese BC patients were randomly selected. Using a microRNA (miRNA) array, comparing their samples with or without radiation-induced injuries, we have checked the clustering of miRNA expression. RESULTS: Hsa-miR-130a, hsa-miR-200c, hsa-miR-141, and hsa-miR-96 were found to be highly expressed (>50 times) in patients with fibrotic bladder shrinkage (FBS) compared to those with intact bladder (IB) function. In patients with FBS, hsa-miR-6835, hsa-miR-4675, hsa-miR-371a, and hsa-miR-6885 were detected to have lesser than half expression to IB patients. We have analyzed the significance of these genes in relation to overall survival of 409 BC patients retrieved from the Cancer Genome Atlas data set. All available cutoff values between the lower and upper quartiles of expression are used for the selected genes, and false discovery rate using the Benjamini-Hochberg method is computed to correct for multiple hypothesis testing. We have run combined survival analysis of the mean expression of these four miRNAs highly expressed in FBS patients. 175 patients with high expression had a longer median survival of 98.47 months than 23.73 months in 233 patients with low expression (hazard ratio [HR]: 0.53; 0.39-0.72, log-rank p value: 7.3e-0.5). Combination analysis of all 8 genes including hsa-miR-6835, hsa-miR-4675, hsa-miR-371a, and hsa-miR-6885 showed the same HR for OS. Target scanning for these miRNAs matched specific cytokines known as an early biomarker to develop radiation-induced fibrosis. CONCLUSIONS: BC patients with fibrotic radiation injury have specific miRNA expression profile targeting profibrotic cytokines and these miRNAs possibly render to favorable survival.


Assuntos
MicroRNAs , Lesões por Radiação , Neoplasias da Bexiga Urinária , Bexiga Urinária , Humanos , MicroRNAs/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/radioterapia , Neoplasias da Bexiga Urinária/patologia , Masculino , Estudos Retrospectivos , Feminino , Lesões por Radiação/genética , Lesões por Radiação/patologia , Idoso , Bexiga Urinária/patologia , Bexiga Urinária/efeitos da radiação , Bexiga Urinária/metabolismo , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Fibrose/genética
6.
Exp Eye Res ; 238: 109729, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38052338

RESUMO

PURPOSE: To characterize the neuronal and vascular pathology in vivo and in vitro in a mouse model of radiation retinopathy. METHODS: C57Bl/6J mice underwent cranial irradiation with 12 Gy and in vivo imaging by optical coherence tomography and of relative blood flow velocity by laser speckle flowgraphy for up to 3-6 months after irradiation. Retinal architecture, vascular density and leakage and apoptosis were analyzed by histology and immunohistochemistry before irradiation or at 10, 30, 240, and 365 days after treatment. RESULTS: The vascular density decreased in the plexiform layers starting at 30 days after irradiation. No impairment in retinal flow velocity was seen. Subtle perivascular leakage was present at 10 days, in particular in the outer plexiform layer. This corresponded to increased width of this layer. However, no significant change in the retinal thickness was detected by OCT-B scans. At 365 days after irradiation, the nuclear density was significantly reduced compared to baseline. Apoptosis was detected at 30 days and less prominent at 365 days. CONCLUSIONS: By histology, vascular leakage at 10 days was followed by increased neuronal apoptosis and loss of neuronal and vascular density. However, in vivo imaging approaches that are commonly used in human patients did not detect pathology in mice.


Assuntos
Lesões por Radiação , Doenças Retinianas , Humanos , Camundongos , Animais , Angiofluoresceinografia , Retina , Vasos Retinianos/patologia , Neurônios , Modelos Animais de Doenças , Lesões por Radiação/patologia , Doenças Retinianas/etiologia , Doenças Retinianas/patologia , Tomografia de Coerência Óptica/métodos
7.
Cell Commun Signal ; 22(1): 292, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802843

RESUMO

BACKGROUND: Hematopoietic stem cell (HSC) regeneration underlies hematopoietic recovery from myelosuppression, which is a life-threatening side effect of cytotoxicity. HSC niche is profoundly disrupted after myelosuppressive injury, while if and how the niche is reshaped and regulates HSC regeneration are poorly understood. METHODS: A mouse model of radiation injury-induced myelosuppression was built by exposing mice to a sublethal dose of ionizing radiation. The dynamic changes in the number, distribution and functionality of HSCs and megakaryocytes were determined by flow cytometry, immunofluorescence, colony assay and bone marrow transplantation, in combination with transcriptomic analysis. The communication between HSCs and megakaryocytes was determined using a coculture system and adoptive transfer. The signaling mechanism was investigated both in vivo and in vitro, and was consolidated using megakaryocyte-specific knockout mice and transgenic mice. RESULTS: Megakaryocytes become a predominant component of HSC niche and localize closer to HSCs after radiation injury. Meanwhile, transient insulin-like growth factor 1 (IGF1) hypersecretion is predominantly provoked in megakaryocytes after radiation injury, whereas HSCs regenerate paralleling megakaryocytic IGF1 hypersecretion. Mechanistically, HSCs are particularly susceptible to megakaryocytic IGF1 hypersecretion, and mTOR downstream of IGF1 signaling not only promotes activation including proliferation and mitochondrial oxidative metabolism of HSCs, but also inhibits ferritinophagy to restrict HSC ferroptosis. Consequently, the delicate coordination between proliferation, mitochondrial oxidative metabolism and ferroptosis ensures functional HSC expansion after radiation injury. Importantly, punctual IGF1 administration simultaneously promotes HSC regeneration and hematopoietic recovery after radiation injury, representing a superior therapeutic approach for myelosuppression. CONCLUSIONS: Our study identifies megakaryocytes as a last line of defense against myelosuppressive injury and megakaryocytic IGF1 as a novel niche signal safeguarding HSC regeneration.


Assuntos
Ferroptose , Células-Tronco Hematopoéticas , Fator de Crescimento Insulin-Like I , Megacariócitos , Regeneração , Animais , Células-Tronco Hematopoéticas/metabolismo , Megacariócitos/metabolismo , Megacariócitos/efeitos da radiação , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/genética , Ferroptose/genética , Camundongos , Camundongos Endogâmicos C57BL , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Lesões por Radiação/genética , Transdução de Sinais/efeitos da radiação
8.
J Neurooncol ; 166(1): 1-15, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38212574

RESUMO

PURPOSE: In this study we gathered and analyzed the available evidence regarding 17 different imaging modalities and performed network meta-analysis to find the most effective modality for the differentiation between brain tumor recurrence and post-treatment radiation effects. METHODS: We conducted a comprehensive systematic search on PubMed and Embase. The quality of eligible studies was assessed using the Assessment of Multiple Systematic Reviews-2 (AMSTAR-2) instrument. For each meta-analysis, we recalculated the effect size, sensitivity, specificity, positive and negative likelihood ratios, and diagnostic odds ratio from the individual study data provided in the original meta-analysis using a random-effects model. Imaging technique comparisons were then assessed using NMA. Ranking was assessed using the multidimensional scaling approach and by visually assessing surface under the cumulative ranking curves. RESULTS: We identified 32 eligible studies. High confidence in the results was found in only one of them, with a substantial heterogeneity and small study effect in 21% and 9% of included meta-analysis respectively. Comparisons between MRS Cho/NAA, Cho/Cr, DWI, and DSC were most studied. Our analysis showed MRS (Cho/NAA) and 18F-DOPA PET displayed the highest sensitivity and negative likelihood ratios. 18-FET PET was ranked highest among the 17 studied techniques with statistical significance. APT MRI was the only non-nuclear imaging modality to rank higher than DSC, with statistical insignificance, however. CONCLUSION: The evidence regarding which imaging modality is best for the differentiation between radiation necrosis and post-treatment radiation effects is still inconclusive. Using NMA, our analysis ranked FET PET to be the best for such a task based on the available evidence. APT MRI showed promising results as a non-nuclear alternative.


Assuntos
Neoplasias Encefálicas , Lesões por Radiação , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/radioterapia , Imageamento por Ressonância Magnética , Recidiva Local de Neoplasia/patologia , Metanálise em Rede , Lesões por Radiação/diagnóstico por imagem , Lesões por Radiação/patologia , Metanálise como Assunto
9.
J Neurooncol ; 168(1): 1-11, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38619777

RESUMO

PURPOSE: Radiation necrosis (RN) is a local inflammatory reaction that arises in response to radiation injury and may cause significant morbidity. This study aims to evaluate and compare the efficacy of bevacizumab and laser interstitial thermal therapy (LITT) in treating RN in patients with previously radiated central nervous system (CNS) neoplasms. METHODS: PubMed, Cochrane, Scopus, and EMBASE databases were screened. Studies of patients with radiation necrosis from primary or secondary brain tumors were included. Indirect meta-analysis with random-effect modeling was performed to compare clinical and radiological outcomes. RESULTS: Twenty-four studies were included with 210 patients in the bevacizumab group and 337 patients in the LITT group. Bevacizumab demonstrated symptomatic improvement/stability in 87.7% of cases, radiological improvement/stability in 86.2%, and steroid wean-off in 45%. LITT exhibited symptomatic improvement/stability in 71.2%, radiological improvement/stability in 64.7%, and steroid wean-off in 62.4%. Comparative analysis revealed statistically significant differences favoring bevacizumab in symptomatic improvement/stability (p = 0.02), while no significant differences were observed in radiological improvement/stability (p = 0.27) or steroid wean-off (p = 0.90). The rates of adverse reactions were 11.2% for bevacizumab and 14.9% for LITT (p = 0.66), with the majority being grade 2 or lower (72.2% for bevacizumab and 62.5% for LITT). CONCLUSION: Both bevacizumab and LITT exhibited favorable clinical and radiological outcomes in managing RN. Bevacizumab was found to be associated with better symptomatic control compared to LITT. Patient-, diagnosis- and lesion-related factors should be considered when choosing the ideal treatment modality for RN to enhance overall patient outcomes.


Assuntos
Bevacizumab , Necrose , Lesões por Radiação , Humanos , Bevacizumab/uso terapêutico , Lesões por Radiação/etiologia , Lesões por Radiação/tratamento farmacológico , Lesões por Radiação/patologia , Necrose/etiologia , Terapia a Laser/métodos , Neoplasias do Sistema Nervoso Central/radioterapia , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/terapia , Antineoplásicos Imunológicos/uso terapêutico , Antineoplásicos Imunológicos/efeitos adversos , Inibidores da Angiogênese/uso terapêutico
10.
J Neurooncol ; 168(3): 415-423, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38644464

RESUMO

AIM: We aimed to investigate the impact of concurrent antibody-drug conjugates (ADC) and radiotherapy on symptomatic radiation necrosis (SRN) in breast cancer patients with brain metastases (BM). METHODS: This multicenter retrospective study uses four institutional data. Eligibility criteria were histologically proven breast cancer, diagnosed BM with gadolinium-enhanced MRI, a Karnofsky performance status of 60 or higher, and radiotherapy for all BM lesions between 2017 and 2022. Patients with leptomeningeal dissemination were excluded. Concurrent ADC was defined as using ADC within four weeks before or after radiotherapy. The cumulative incidence of SRN until December 2023 with death as a competing event was compared between the groups with and without concurrent ADC. Multivariable analysis was performed using the Fine-Gray model. RESULTS: Among the 168 patients enrolled, 48 (29%) received ADC, and 19 (11%) had concurrent ADC. Of all, 36% were HER2-positive, 62% had symptomatic BM, and 33% had previous BM radiation histories. In a median follow-up of 31 months, 18 SRNs (11%) were registered (11 in grade 2 and 7 in grade 3). The groups with and without concurrent ADC had 5 SRNs in 19 patients and 13 SRNs in 149, and the two-year cumulative incidence of SRN was 27% vs. 7% (P = 0.014). Concurrent ADC was associated with a higher risk of SRN on multivariable analysis (subdistribution hazard ratio, 3.0 [95% confidence interval: 1.1-8.3], P = 0.030). CONCLUSIONS: This study suggests that concurrent ADC and radiotherapy are associated with a higher risk of SRN in HER2-positive breast cancer patients.


Assuntos
Neoplasias Encefálicas , Neoplasias da Mama , Imunoconjugados , Necrose , Lesões por Radiação , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/radioterapia , Feminino , Estudos Retrospectivos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/radioterapia , Pessoa de Meia-Idade , Lesões por Radiação/etiologia , Lesões por Radiação/patologia , Lesões por Radiação/epidemiologia , Adulto , Idoso , Seguimentos , Quimiorradioterapia/efeitos adversos
11.
J Neurooncol ; 168(2): 307-316, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38689115

RESUMO

OBJECTIVE: Radiation necrosis (RN) can be difficult to radiographically discern from tumor progression after stereotactic radiosurgery (SRS). The objective of this study was to investigate the utility of radiomics and machine learning (ML) to differentiate RN from recurrence in patients with brain metastases treated with SRS. METHODS: Patients with brain metastases treated with SRS who developed either RN or tumor reccurence were retrospectively identified. Image preprocessing and radiomic feature extraction were performed using ANTsPy and PyRadiomics, yielding 105 features from MRI T1-weighted post-contrast (T1c), T2, and fluid-attenuated inversion recovery (FLAIR) images. Univariate analysis assessed significance of individual features. Multivariable analysis employed various classifiers on features identified as most discriminative through feature selection. ML models were evaluated through cross-validation, selecting the best model based on area under the receiver operating characteristic (ROC) curve (AUC). Specificity, sensitivity, and F1 score were computed. RESULTS: Sixty-six lesions from 55 patients were identified. On univariate analysis, 27 features from the T1c sequence were statistically significant, while no features were significant from the T2 or FLAIR sequences. For clinical variables, only immunotherapy use after SRS was significant. Multivariable analysis of features from the T1c sequence yielded an AUC of 76.2% (standard deviation [SD] ± 12.7%), with specificity and sensitivity of 75.5% (± 13.4%) and 62.3% (± 19.6%) in differentiating radionecrosis from recurrence. CONCLUSIONS: Radiomics with ML may assist the diagnostic ability of distinguishing RN from tumor recurrence after SRS. Further work is needed to validate this in a larger multi-institutional cohort and prospectively evaluate it's utility in patient care.


Assuntos
Neoplasias Encefálicas , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Necrose , Recidiva Local de Neoplasia , Lesões por Radiação , Humanos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/diagnóstico por imagem , Feminino , Masculino , Lesões por Radiação/diagnóstico por imagem , Lesões por Radiação/etiologia , Lesões por Radiação/patologia , Pessoa de Meia-Idade , Necrose/diagnóstico por imagem , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/patologia , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Idoso , Radiocirurgia , Adulto , Diagnóstico Diferencial , Idoso de 80 Anos ou mais , Radiômica
12.
J Neurooncol ; 168(3): 547-553, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38748050

RESUMO

PURPOSE: The differentiation between adverse radiation effects (ARE) and tumor recurrence or progression (TRP) is a major decision-making point in the follow-up of patients with brain tumors. The advent of immunotherapy, targeted therapy and radiosurgery has made this distinction difficult to achieve in several clinical situations. Contrast clearance analysis (CCA) is a useful technique that can inform clinical decisions but has so far only been histologically validated in the context of high-grade gliomas. METHODS: This is a series of 7 patients, treated between 2018 and 2023, for various brain pathologies including brain metastasis, atypical meningioma, and high-grade glioma. MRI with contrast clearance analysis was used to inform clinical decisions and patients underwent surgical resection as indicated. The histopathology findings were compared with the CCA findings in all cases. RESULTS: All seven patients had been treated with gamma knife radiosurgery and were followed up with periodic MR imaging. All patients underwent CCA when the necessity to distinguish tumor recurrence from radiation necrosis arose, and subsequently underwent surgery as indicated. Concordance of CCA findings with histological findings was found in all cases (100%). CONCLUSIONS: Based on prior studies on GBM and the surgical findings in our series, delayed contrast extravasation MRI findings correlate well with histopathology across a wide spectrum of brain tumor pathologies. CCA can provide a quick diagnosis and have a direct impact on patients' treatment and outcomes.


Assuntos
Neoplasias Encefálicas , Meios de Contraste , Imageamento por Ressonância Magnética , Recidiva Local de Neoplasia , Radiocirurgia , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Imageamento por Ressonância Magnética/métodos , Recidiva Local de Neoplasia/diagnóstico por imagem , Recidiva Local de Neoplasia/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Adulto , Seguimentos , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/radioterapia , Glioma/patologia , Lesões por Radiação/diagnóstico por imagem , Lesões por Radiação/etiologia , Lesões por Radiação/patologia
13.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000262

RESUMO

Radiotherapy in the head-and-neck area is one of the main curative treatment options. However, this comes at the cost of varying levels of normal tissue toxicity, affecting up to 80% of patients. Mucositis can cause pain, weight loss and treatment delays, leading to worse outcomes and a decreased quality of life. Therefore, there is an urgent need for an approach to predicting normal mucosal responses in patients prior to treatment. We here describe an assay to detect irradiation responses in healthy oral mucosa tissue. Mucosa specimens from the oral cavity were obtained after surgical resection, cut into thin slices, irradiated and cultured for three days. Seven samples were irradiated with X-ray, and three additional samples were irradiated with both X-ray and protons. Healthy oral mucosa tissue slices maintained normal morphology and viability for three days. We measured a dose-dependent response to X-ray irradiation and compared X-ray and proton irradiation in the same mucosa sample using standardized automated image analysis. Furthermore, increased levels of inflammation-inducing factors-major drivers of mucositis development-could be detected after irradiation. This model can be utilized for investigating mechanistic aspects of mucositis development and can be developed into an assay to predict radiation-induced toxicity in normal mucosa.


Assuntos
Mucosa Bucal , Humanos , Mucosa Bucal/efeitos da radiação , Raios X/efeitos adversos , Lesões por Radiação/etiologia , Lesões por Radiação/patologia , Masculino , Mucosite/etiologia , Mucosite/patologia , Feminino , Relação Dose-Resposta à Radiação , Estomatite/etiologia , Estomatite/patologia , Adulto , Pessoa de Meia-Idade
14.
J Stroke Cerebrovasc Dis ; 33(7): 107699, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552890

RESUMO

BACKGROUND: Radiation treatment for diseases of the brain can result in hemorrhagic adverse radiation effects. The underlying pathologic substrate of brain bleeding after irradiation has not been elucidated, nor potential associations with induced somatic mutations. METHODS: We retrospectively reviewed our department's pathology database over 5 years and identified 5 biopsy specimens (4 patients) for hemorrhagic lesions after brain irradiation. Tissues with active malignancy were excluded. Samples were characterized using H&E, Perl's Prussian Blue, and Masson's Trichrome; immunostaining for B-cells (anti-CD20), T-cells (anti-CD3), endothelium (anti-CD31), macrophages (anti-CD163), α-smooth muscle actin, and TUNEL. DNA analysis was done by two panels of next-generation sequencing for somatic mutations associated with known cerebrovascular anomalies. RESULTS: One lesion involved hemorrhagic expansion among multifocal microbleeds that had developed after craniospinal irradiation for distant medulloblastoma treatment. Three bleeds arose in the bed of focally irradiated arteriovenous malformations (AVM) after confirmed obliteration. A fifth specimen involved the radiation field distinct from an irradiated AVM bed. From these, 2 patterns of hemorrhagic vascular pathology were identified: encapsulated hematomas and cavernous-like malformations. All lesions included telangiectasias with dysmorphic endothelium, consistent with primordial cavernous malformations with an associated inflammatory response. DNA analysis demonstrated genetic variants in PIK3CA and/or PTEN genes but excluded mutations in CCM genes. CONCLUSIONS: Despite pathologic heterogeneity, brain bleeding after irradiation is uniformly associated with primordial cavernous-like telangiectasias and disruption of genes implicated in dysangiogenesis but not genes implicated as causative of cerebral cavernous malformations. This may implicate a novel signaling axis as an area for future study.


Assuntos
Mutação , Lesões por Radiação , Humanos , Estudos Retrospectivos , Lesões por Radiação/genética , Lesões por Radiação/patologia , Lesões por Radiação/etiologia , Masculino , Feminino , Análise Mutacional de DNA , Adulto , Irradiação Craniana/efeitos adversos , Predisposição Genética para Doença , Classe I de Fosfatidilinositol 3-Quinases/genética , PTEN Fosfo-Hidrolase/genética , Pessoa de Meia-Idade , Biópsia , Adulto Jovem , Malformações Arteriovenosas Intracranianas/genética , Malformações Arteriovenosas Intracranianas/radioterapia , Malformações Arteriovenosas Intracranianas/patologia , Fatores de Risco , Fenótipo , Hemorragia Cerebral/genética , Hemorragia Cerebral/etiologia , Hemorragia Cerebral/patologia , Sequenciamento de Nucleotídeos em Larga Escala , Hemorragias Intracranianas/genética , Hemorragias Intracranianas/etiologia , Hemorragias Intracranianas/patologia , Bases de Dados Factuais
15.
Radiol Med ; 128(7): 813-827, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37289266

RESUMO

PURPOSE: The quantification of radiotherapy (RT)-induced functional and morphological brain alterations is fundamental to guide therapeutic decisions in patients with brain tumors. The magnetic resonance imaging (MRI) allows to define structural RT-brain changes, but it is unable to evaluate early injuries and to objectively quantify the volume tissue loss. Artificial intelligence (AI) tools extract accurate measurements that permit an objective brain different region quantification. In this study, we assessed the consistency between an AI software (Quibim Precision® 2.9) and qualitative neruroradiologist evaluation, and its ability to quantify the brain tissue changes during RT treatment in patients with glioblastoma multiforme (GBM). METHODS: GBM patients treated with RT and subjected to MRI assessment were enrolled. Each patient, pre- and post-RT, undergoes to a qualitative evaluation with global cerebral atrophy (GCA) and medial temporal lobe atrophy (MTA) and a quantitative assessment with Quibim Brain screening and hippocampal atrophy and asymmetry modules on 19 extracted brain structures features. RESULTS: A statistically significant strong negative association between the percentage value of the left temporal lobe and the GCA score and the left temporal lobe and the MTA score was found, while a moderate negative association between the percentage value of the right hippocampus and the GCA score and the right hippocampus and the MTA score was assessed. A statistically significant strong positive association between the CSF percentage value and the GCA score and a moderate positive association between the CSF percentage value and the MTA score was found. Finally, quantitative feature values showed that the percentage value of the cerebro-spinal fluid (CSF) statistically differences between pre- and post-RT. CONCLUSIONS: AI tools can support a correct evaluation of RT-induced brain injuries, allowing an objective and earlier assessment of the brain tissue modifications.


Assuntos
Glioblastoma , Lesões por Radiação , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/radioterapia , Glioblastoma/patologia , Inteligência Artificial , Dados Preliminares , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Lesões por Radiação/diagnóstico por imagem , Lesões por Radiação/patologia , Atrofia/patologia
16.
Int J Mol Sci ; 24(23)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38069378

RESUMO

Patients receiving cranial radiotherapy for primary and metastatic brain tumors may experience radiation-induced brain injury (RIBI). Thus far, there has been a lack of effective preventive and therapeutic strategies for RIBI. Due to its complicated underlying pathogenic mechanisms, it is rather difficult to develop a single approach to target them simultaneously. We have recently reported that Reprimo (RPRM), a tumor suppressor gene, is a critical player in DNA damage repair, and RPRM deletion significantly confers radioresistance to mice. Herein, by using an RPRM knockout (KO) mouse model established in our laboratory, we found that RPRM deletion alleviated RIBI in mice via targeting its multiple underlying mechanisms. Specifically, RPRM knockout significantly reduced hippocampal DNA damage and apoptosis shortly after mice were exposed to whole-brain irradiation (WBI). For the late-delayed effect of WBI, RPRM knockout obviously ameliorated a radiation-induced decline in neurocognitive function and dramatically diminished WBI-induced neurogenesis inhibition. Moreover, RPRM KO mice exhibited a significantly lower level of acute and chronic inflammation response and microglial activation than wild-type (WT) mice post-WBI. Finally, we uncovered that RPRM knockout not only protected microglia against radiation-induced damage, thus preventing microglial activation, but also protected neurons and decreased the induction of CCL2 in neurons after irradiation, in turn attenuating the activation of microglial cells nearby through paracrine CCL2. Taken together, our results indicate that RPRM plays a crucial role in the occurrence of RIBI, suggesting that RPRM may serve as a novel potential target for the prevention and treatment of RIBI.


Assuntos
Lesões Encefálicas , Lesões por Radiação , Animais , Humanos , Camundongos , Apoptose , Encéfalo/patologia , Lesões Encefálicas/genética , Lesões Encefálicas/prevenção & controle , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Glicoproteínas/antagonistas & inibidores , Glicoproteínas/metabolismo , Inflamação/patologia , Microglia , Lesões por Radiação/genética , Lesões por Radiação/prevenção & controle , Lesões por Radiação/patologia
17.
Undersea Hyperb Med ; 50(4): 421-424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055883

RESUMO

Introduction: Cerebral radiation necrosis is rarely encountered in pediatric patients. This case report describes a child with cerebral radiation necrosis who was successfully treated using corticosteroids, bevacizumab, and hyperbaric oxygenation. Case report: A 3-year-old boy developed progressive extremity weakness six months after the completion of radiation therapy for the treatment of a neuroepithelial malignancy. Treatment with corticosteroids and bevacizumab was initiated, but his symptoms did not improve, and he was then referred for hyperbaric oxygen therapy. After completing 60 hyperbaric treatments, he experienced significant improvements in mobility, which remained stable over the next year. Discussion: Cerebral radiation necrosis typically presents in children with symptoms of ataxia or headache. Corticosteroids and bevacizumab are common treatments, but hyperbaric oxygen therapy has also been studied as a therapeutic modality for this condition. When considering the use of hyperbaric oxygenation in pediatric patients, careful attention to treatment planning and patient safety can reduce the risks of adverse events such as middle ear barotrauma and confinement anxiety. Conclusion: In addition to other available pharmacologic therapies, hyperbaric oxygenation should be considered for the treatment of pediatric patients with cerebral radiation necrosis.


Assuntos
Lesões Encefálicas , Cérebro , Oxigenoterapia Hiperbárica , Lesões por Radiação , Pré-Escolar , Humanos , Masculino , Barotrauma/etiologia , Barotrauma/prevenção & controle , Bevacizumab/uso terapêutico , Oxigenoterapia Hiperbárica/efeitos adversos , Oxigenoterapia Hiperbárica/métodos , Necrose/etiologia , Necrose/terapia , Cérebro/patologia , Cérebro/efeitos da radiação , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Lesões Encefálicas/terapia , Lesões por Radiação/etiologia , Lesões por Radiação/patologia , Lesões por Radiação/terapia , Neoplasias Neuroepiteliomatosas/radioterapia
18.
BMC Oral Health ; 23(1): 697, 2023 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-37759230

RESUMO

BACKGROUND: Radiation therapy is the primary treatment for neck and head cancer patients; however, it causes the development of oral mucositis accompanied by tissue structure destruction and functional alteration. This study was conducted to evaluate the effect of different doses of vitamin E as a treatment for radiationinduced oral mucositis in rat model. METHODS: 35 male albino rats were randomly divided into five groups: control, untreated radiation mucositis (single dose of 20 Gy), treated radiation mucositis; radiation (single dose of 20 Gy) then vitamin E at doses of 300, 360 and 500 mg/Kg for seven days started 24 h after irradiation. Body weight and food intake were evaluated for each rat. The mucositis score was assessed every day. Rats were sacrificed once at the end of the experiment, and tongue specimens were stained with hematoxylin and eosin, anti P53 and anti Ki67 antibodies. RESULTS: Results indicated more food intake and less weight reduction in vitamin E treated groups and the contrary for gamma-irradiated group. Additionally, vitamin E delayed the onset and decreased the severity and duration of mucositis. It also restored the histological structure of lingual tongue papillae. Vitamin E treated groups showed a significant higher Ki67 and lower P53 expression as compared to untreated radiation group. The overall improvement increased as vitamin E dose increased. Finally, the amelioration can be attributed to the decreased apoptosis and increased proliferation of cells. CONCLUSIONS: Vitamin E especially at dose of 500 mg/Kg could be an effective treatment for radiation-induced oral mucositis.


Assuntos
Neoplasias de Cabeça e Pescoço , Mucosite , Lesões por Radiação , Estomatite , Humanos , Ratos , Masculino , Animais , Vitamina E/farmacologia , Vitamina E/uso terapêutico , Estomatite/tratamento farmacológico , Estomatite/etiologia , Estomatite/patologia , Lesões por Radiação/complicações , Lesões por Radiação/patologia , Língua/patologia
19.
BMC Genomics ; 23(1): 431, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681125

RESUMO

BACKGROUND: Radiation proctitis (RP) is the most common complication of radiotherapy for pelvic tumor. Currently there is a lack of effective clinical treatment and its underlying mechanism is poorly understood. In this study, we aimed to dynamically reveal the mechanism of RP progression from the perspective of RNomics using a mouse model, so as to help develop reasonable therapeutic strategies for RP. RESULTS: Mice were delivered a single dose of 25 Gy rectal irradiation, and the rectal tissues were removed at 4 h, 1 day, 3 days, 2 weeks and 8 weeks post-irradiation (PI) for both histopathological assessment and RNA-seq analysis. According to the histopathological characteristics, we divided the development process of our RP animal model into three stages: acute (4 h, 1 day and 3 days PI), subacute (2 weeks PI) and chronic (8 weeks PI), which could recapitulate the features of different stages of human RP. Bioinformatics analysis of the RNA-seq data showed that in the acute injury period after radiation, the altered genes were mainly enriched in DNA damage response, p53 signaling pathway and metabolic changes; while in the subacute and chronic stages of tissue reconstruction, genes involved in the biological processes of vessel development, extracellular matrix organization, inflammatory and immune responses were dysregulated. We further identified the hub genes in the most significant biological process at each time point using protein-protein interaction analysis and verified the differential expression of these genes by quantitative real-time-PCR analysis. CONCLUSIONS: Our study reveals the molecular events sequentially occurred during the course of RP development and might provide molecular basis for designing drugs targeting different stages of RP development.


Assuntos
Proctite , Lesões por Radiação , Animais , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Proctite/genética , Proctite/metabolismo , Lesões por Radiação/etiologia , Lesões por Radiação/patologia , Reto/metabolismo , Reto/patologia , Reto/efeitos da radiação , Transcriptoma
20.
Biochem Biophys Res Commun ; 601: 38-44, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35228119

RESUMO

Lung inflammation and fibrosis are common side effects of radiotherapy that can lead to serious reduction in the quality of life of patients. However, no effective treatment is available, and the mechanisms underlying its pathophysiology are poorly understood. Irradiation increases formyl peptide receptor 2 (FPR2) expression in lung tissue, and FPR2 agonists are known to promote the uptake of apoptosis cells, referred to as efferocytosis that is a hallmark of the resolution of inflammation. Herein, in a mouse model of radiation-induced lung injury (RILI), efferocytosis was induced by injecting apoptotic cells into the lung through the trachea, and its correlation with FPR expression and the effect of efferocytosis and FPR expression on RILI were assessed. Interestingly, when apoptotic cells were injected into the lung, the radiation-induced increase in FPR2 expression was further amplified. In the mouse model of RILI, apoptotic cell instillation reduced the volume of the damaged lung and prevented the decrease in lung function. Additionally, the expression of inflammatory cytokines, fibrosis-related markers, and oxidative stress-related markers was reduced by apoptotic cell instillation. Co-administration of apoptotic Jurkat cells and WRW4, the FPR2 antagonist, reversed these effects. These findings suggest that efferocytosis induced by apoptotic cell instillation and enhanced FPR2 expression attenuate RILI, thereby alleviating lung inflammation and fibrosis.


Assuntos
Pulmão , Pneumonia , Lesões por Radiação , Animais , Apoptose/efeitos da radiação , Fibrose , Humanos , Pulmão/metabolismo , Pulmão/patologia , Pulmão/efeitos da radiação , Camundongos , Fagocitose , Pneumonia/induzido quimicamente , Qualidade de Vida , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Receptores de Formil Peptídeo/metabolismo , Receptores de Lipoxinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA