Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.392
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 185(6): 980-994.e15, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35303428

RESUMO

The emergence of hypervirulent clade 2 Clostridioides difficile is associated with severe symptoms and accounts for >20% of global infections. TcdB is a dominant virulence factor of C. difficile, and clade 2 strains exclusively express two TcdB variants (TcdB2 and TcdB4) that use unknown receptors distinct from the classic TcdB. Here, we performed CRISPR/Cas9 screens for TcdB4 and identified tissue factor pathway inhibitor (TFPI) as its receptor. Using cryo-EM, we determined a complex structure of the full-length TcdB4 with TFPI, defining a common receptor-binding region for TcdB. Residue variations within this region divide major TcdB variants into 2 classes: one recognizes Frizzled (FZD), and the other recognizes TFPI. TFPI is highly expressed in the intestinal glands, and recombinant TFPI protects the colonic epithelium from TcdB2/4. These findings establish TFPI as a colonic crypt receptor for TcdB from clade 2 C. difficile and reveal new mechanisms for CDI pathogenesis.


Assuntos
Toxinas Bacterianas , Clostridioides difficile , Proteínas de Bactérias/química , Toxinas Bacterianas/química , Clostridioides difficile/genética , Lipoproteínas/genética
2.
Nature ; 628(8006): 130-138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38448586

RESUMO

Genome-wide association analyses using high-throughput metabolomics platforms have led to novel insights into the biology of human metabolism1-7. This detailed knowledge of the genetic determinants of systemic metabolism has been pivotal for uncovering how genetic pathways influence biological mechanisms and complex diseases8-11. Here we present a genome-wide association study for 233 circulating metabolic traits quantified by nuclear magnetic resonance spectroscopy in up to 136,016 participants from 33 cohorts. We identify more than 400 independent loci and assign probable causal genes at two-thirds of these using manual curation of plausible biological candidates. We highlight the importance of sample and participant characteristics that can have significant effects on genetic associations. We use detailed metabolic profiling of lipoprotein- and lipid-associated variants to better characterize how known lipid loci and novel loci affect lipoprotein metabolism at a granular level. We demonstrate the translational utility of comprehensively phenotyped molecular data, characterizing the metabolic associations of intrahepatic cholestasis of pregnancy. Finally, we observe substantial genetic pleiotropy for multiple metabolic pathways and illustrate the importance of careful instrument selection in Mendelian randomization analysis, revealing a putative causal relationship between acetone and hypertension. Our publicly available results provide a foundational resource for the community to examine the role of metabolism across diverse diseases.


Assuntos
Biomarcadores , Estudo de Associação Genômica Ampla , Metabolômica , Feminino , Humanos , Gravidez , Acetona/sangue , Acetona/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Colestase Intra-Hepática/sangue , Colestase Intra-Hepática/genética , Colestase Intra-Hepática/metabolismo , Estudos de Coortes , Estudo de Associação Genômica Ampla/métodos , Hipertensão/sangue , Hipertensão/genética , Hipertensão/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Espectroscopia de Ressonância Magnética , Análise da Randomização Mendeliana , Redes e Vias Metabólicas/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Complicações na Gravidez/sangue , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo
3.
PLoS Biol ; 22(1): e3002451, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38180978

RESUMO

Lipoproteins of the opportunistic pathogen Staphylococcus aureus play a crucial role in various cellular processes and host interactions. Consisting of a protein and a lipid moiety, they support nutrient acquisition and anchor the protein to the bacterial membrane. Recently, we identified several processed and secreted small linear peptides that derive from the secretion signal sequence of S. aureus lipoproteins. Here, we show, for the first time, that the protein moiety of the S. aureus lipoprotein CamS has a biological role that is distinct from its associated linear peptide staph-cAM373. The small peptide was shown to be involved in interspecies horizontal gene transfer, the primary mechanism for the dissemination of antibiotic resistance among bacteria. We provide evidence that the CamS protein moiety is a potent repressor of cytotoxins, such as α-toxin and leukocidins. The CamS-mediated suppression of toxin transcription was reflected by altered disease severity in in vivo infection models involving skin and soft tissue, as well as bloodstream infections. Collectively, we have uncovered the role of the protein moiety of the staphylococcal lipoprotein CamS as a previously uncharacterized repressor of S. aureus toxin production, which consequently regulates virulence and disease outcomes. Notably, the camS gene is conserved in S. aureus, and we also demonstrated the muted transcriptional response of cytotoxins in 2 different S. aureus lineages. Our findings provide the first evidence of distinct biological functions of the protein moiety and its associated linear peptide for a specific lipoprotein. Therefore, lipoproteins in S. aureus consist of 3 functional components: a lipid moiety, a protein moiety, and a small linear peptide, with putative different biological roles that might not only determine the outcome of host-pathogen interactions but also drive the acquisition of antibiotic resistance determinants.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Lipoproteínas/genética , Interações Hospedeiro-Patógeno , Moléculas de Adesão Celular , Citotoxinas , Peptídeos
4.
Mol Cell ; 75(3): 498-510.e5, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31256988

RESUMO

In addition to defense against foreign DNA, the CRISPR-Cas9 system of Francisella novicida represses expression of an endogenous immunostimulatory lipoprotein. We investigated the specificity and molecular mechanism of this regulation, demonstrating that Cas9 controls a highly specific regulon of four genes that must be repressed for bacterial virulence. Regulation occurs through a protospacer adjacent motif (PAM)-dependent interaction of Cas9 with its endogenous DNA targets, dependent on a non-canonical small RNA (scaRNA) and tracrRNA. The limited complementarity between scaRNA and the endogenous DNA targets precludes cleavage, highlighting the evolution of scaRNA to repress transcription without lethally targeting the chromosome. We show that scaRNA can be reprogrammed to repress other genes, and with engineered, extended complementarity to an exogenous target, the repurposed scaRNA:tracrRNA-FnoCas9 machinery can also direct DNA cleavage. Natural Cas9 transcriptional interference likely represents a broad paradigm of regulatory functionality, which is potentially critical to the physiology of numerous Cas9-encoding pathogenic and commensal organisms.


Assuntos
Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas/genética , Francisella/genética , Virulência/genética , DNA/genética , Clivagem do DNA , Regulação Bacteriana da Expressão Gênica/genética , Lipoproteínas/biossíntese , Lipoproteínas/genética , RNA/genética , Transcrição Gênica
5.
Proc Natl Acad Sci U S A ; 120(6): e2218473120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716372

RESUMO

The outer membrane (OM) is the defining feature of gram-negative bacteria and is an essential organelle. Accordingly, OM assembly pathways and their essential protein components are conserved throughout all gram-negative species. Lipoprotein trafficking lies at the heart of OM assembly since it supplies several different biogenesis machines with essential lipoproteins. The Escherichia coli Lol trafficking pathway relies on an inner membrane LolCDE transporter that transfers newly made lipoproteins to the chaperone LolA, which rapidly traffics lipoproteins across the periplasm to LolB for insertion into the OM. Strikingly, many gram-negative species (like Caulobacter vibrioides) do not produce LolB, yet essential lipoproteins are still trafficked to the OM. How the final step of trafficking occurs in these organisms has remained a long-standing mystery. We demonstrate that LolA from C. vibrioides can complement the deletion of both LolA and LolB in E. coli, revealing that this protein possesses both chaperone and insertion activities. Moreover, we define the region of C. vibrioides LolA that is responsible for its bifunctionality. This knowledge enabled us to convert E. coli LolA into a similarly bifunctional protein, capable of chaperone and insertion activities. We propose that a bifunctional LolA eliminates the need for LolB. Our findings provide an explanation for why some gram-negative species have retained an essential LolA yet completely lack a dedicated LolB protein.


Assuntos
Proteínas de Escherichia coli , Proteínas Periplásmicas de Ligação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Periplásmicas de Ligação/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo
6.
PLoS Genet ; 19(10): e1010776, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37871041

RESUMO

Sinorhizobium meliloti is a model alpha-proteobacterium for investigating microbe-host interactions, in particular nitrogen-fixing rhizobium-legume symbioses. Successful infection requires complex coordination between compatible host and endosymbiont, including bacterial production of succinoglycan, also known as exopolysaccharide-I (EPS-I). In S. meliloti EPS-I production is controlled by the conserved ExoS-ChvI two-component system. Periplasmic ExoR associates with the ExoS histidine kinase and negatively regulates ChvI-dependent expression of exo genes, necessary for EPS-I synthesis. We show that two extracytoplasmic proteins, LppA (a lipoprotein) and JspA (a lipoprotein and a metalloprotease), jointly influence EPS-I synthesis by modulating the ExoR-ExoS-ChvI pathway and expression of genes in the ChvI regulon. Deletions of jspA and lppA led to lower EPS-I production and competitive disadvantage during host colonization, for both S. meliloti with Medicago sativa and S. medicae with M. truncatula. Overexpression of jspA reduced steady-state levels of ExoR, suggesting that the JspA protease participates in ExoR degradation. This reduction in ExoR levels is dependent on LppA and can be replicated with ExoR, JspA, and LppA expressed exogenously in Caulobacter crescentus and Escherichia coli. Akin to signaling pathways that sense extracytoplasmic stress in other bacteria, JspA and LppA may monitor periplasmic conditions during interaction with the plant host to adjust accordingly expression of genes that contribute to efficient symbiosis. The molecular mechanisms underlying host colonization in our model system may have parallels in related alpha-proteobacteria.


Assuntos
Fabaceae , Sinorhizobium meliloti , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas de Bactérias/metabolismo , Fabaceae/metabolismo , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Simbiose/genética , Endopeptidases/genética , Transdução de Sinais/genética , Lipoproteínas/genética , Lipoproteínas/metabolismo , Regulação Bacteriana da Expressão Gênica , Polissacarídeos Bacterianos
7.
J Biol Chem ; 300(5): 107236, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552741

RESUMO

The complement system serves as the first line of defense against invading pathogens by promoting opsonophagocytosis and bacteriolysis. Antibody-dependent activation of complement occurs through the classical pathway and relies on the activity of initiating complement proteases of the C1 complex, C1r and C1s. The causative agent of Lyme disease, Borrelia burgdorferi, expresses two paralogous outer surface lipoproteins of the OspEF-related protein family, ElpB and ElpQ, that act as specific inhibitors of classical pathway activation. We have previously shown that ElpB and ElpQ bind directly to C1r and C1s with high affinity and specifically inhibit C2 and C4 cleavage by C1s. To further understand how these novel protease inhibitors function, we carried out a series of hydrogen-deuterium exchange mass spectrometry (HDX-MS) experiments using ElpQ and full-length activated C1s as a model of Elp-protease interaction. Comparison of HDX-MS profiles between unbound ElpQ and the ElpQ/C1s complex revealed a putative C1s-binding site on ElpQ. HDX-MS-guided, site-directed ElpQ mutants were generated and tested for direct binding to C1r and C1s using surface plasmon resonance. Several residues within the C-terminal region of ElpQ were identified as important for protease binding, including a single conserved tyrosine residue that was required for ElpQ- and ElpB-mediated complement inhibition. Collectively, our study identifies key molecular determinants for classical pathway protease recognition by Elp proteins. This investigation improves our understanding of the unique complement inhibitory mechanism employed by Elp proteins which serve as part of a sophisticated complement evasion system present in Lyme disease spirochetes.


Assuntos
Proteínas da Membrana Bacteriana Externa , Borrelia burgdorferi , Via Clássica do Complemento , Humanos , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Borrelia burgdorferi/imunologia , Borrelia burgdorferi/metabolismo , Borrelia burgdorferi/genética , Complemento C1r/metabolismo , Complemento C1r/genética , Complemento C1s/metabolismo , Complemento C1s/genética , Complemento C1s/química , Via Clássica do Complemento/imunologia , Lipoproteínas/metabolismo , Lipoproteínas/genética , Lipoproteínas/química , Lipoproteínas/imunologia , Doença de Lyme/genética , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Ligação Proteica
8.
Mol Microbiol ; 122(2): 230-242, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38994873

RESUMO

Enterococcus faecalis is an opportunistic pathogen frequently causing nosocomial infections. The virulence of this organism is underpinned by its capacity to evade phagocytosis, allowing dissemination in the host. Immune evasion requires a surface polysaccharide produced by all enterococci, known as the enterococcal polysaccharide antigen (EPA). EPA consists of a cell wall-anchored rhamnose backbone substituted by strain-specific polysaccharides called 'decorations', essential for the biological activity of this polymer. However, the structural determinants required for innate immune evasion remain unknown, partly due to a lack of suitable validated assays. Here, we describe a quantitative, in vitro assay to investigate how EPA decorations alter phagocytosis. Using the E. faecalis model strain OG1RF, we demonstrate that a mutant with a deletion of the locus encoding EPA decorations can be used as a platform strain to express heterologous decorations, thereby providing an experimental system to investigate the inhibition of phagocytosis by strain-specific decorations. We show that the aggregation of cells lacking decorations is increasing phagocytosis and that this process does not involve the recognition of lipoproteins by macrophages. Collectively, our work provides novel insights into innate immune evasion by enterococci and paves the way for further studies to explore the structure/function relationship of EPA decorations.


Assuntos
Enterococcus faecalis , Evasão da Resposta Imune , Lipoproteínas , Macrófagos , Fagocitose , Enterococcus faecalis/imunologia , Enterococcus faecalis/metabolismo , Enterococcus faecalis/genética , Lipoproteínas/metabolismo , Lipoproteínas/genética , Macrófagos/microbiologia , Macrófagos/imunologia , Macrófagos/metabolismo , Polissacarídeos Bacterianos/metabolismo , Polissacarídeos Bacterianos/imunologia , Humanos , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/genética , Imunidade Inata , Virulência , Animais , Camundongos
9.
Hum Genomics ; 18(1): 19, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347599

RESUMO

The causal relationships between plasma metabolites and cholelithiasis/cholecystitis risks remain elusive. Using two-sample Mendelian randomization, we found that genetic proxied plasma campesterol level showed negative correlation with the risk of both cholelithiasis and cholecystitis. Furthermore, the increased risk of cholelithiasis is correlating with the increased level of plasma campesterol. Lastly, genetic colocalization study showed that the leading SNP, rs4299376, which residing at the ABCG5/ABCG8 gene loci, was shared by plasma campesterol level and cholelithiasis, indicating that the aberrant transportation of plant sterol/cholesterol from the blood stream to the bile duct/gut lumen might be the key in preventing cholesterol gallstone formation.


Assuntos
Colecistite , Colesterol/análogos & derivados , Cálculos Biliares , Fitosteróis , Humanos , Lipoproteínas/genética , Análise da Randomização Mendeliana , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Colecistite/epidemiologia , Colecistite/genética , Cálculos Biliares/epidemiologia , Cálculos Biliares/genética , Cálculos Biliares/metabolismo
10.
Hum Genomics ; 18(1): 85, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39090729

RESUMO

Sitosterolemia is a rare inherited disorder caused by mutations in the ABCG5/ABCG8 genes. These genes encode proteins involved in the transport of plant sterols. Mutations in these genes lead to decreased excretion of phytosterols, which can accumulate in the body and lead to a variety of health problems, including premature coronary artery disease. We conducted the first genome-wide association study (GWAS) in the Middle East/North Africa population to identify genetic determinants of plant sterol levels in Qatari people. GWAS was performed on serum levels of ß-sitosterol and campesterol using the Metabolon platform from Qatar Biobank (QBB) and genome sequence data provided by Qatar Genome Program. A trans-ancestry meta-analysis of data from our Qatari cohort with summary statistics from a previously published large cohort (9758 subjects) of European ancestry was conducted. Using conditional analysis, we identified two independent single nucleotide polymorphisms associated with ß-sitosterol (rs145164937 and rs4299376), and two others with campesterol (rs7598542 and rs75901165) in the Qatari population in addition to previously reported variants. All of them map to the ABCG5/8 locus except rs75901165 which is located within the Intraflagellar Transport 43 (IFT43) gene. The meta-analysis replicated most of the reported variants, and our study provided significant support for the association of variants in SCARB1 and ABO with sitosterolemia. Evaluation of a polygenic risk score devised from European GWAS data showed moderate performance when applied to QBB (adjusted-R2 = 0.082). These findings provide new insights into the genetic architecture of phytosterol metabolism while showing the importance including under-represented populations in future GWAS studies.


Assuntos
Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Estudo de Associação Genômica Ampla , Erros Inatos do Metabolismo Lipídico , Fitosteróis , Polimorfismo de Nucleotídeo Único , Sitosteroides , Humanos , Fitosteróis/sangue , Fitosteróis/genética , Fitosteróis/efeitos adversos , Polimorfismo de Nucleotídeo Único/genética , Sitosteroides/sangue , Erros Inatos do Metabolismo Lipídico/genética , Erros Inatos do Metabolismo Lipídico/sangue , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Masculino , Feminino , Enteropatias/genética , Enteropatias/sangue , Adulto , Colesterol/sangue , Colesterol/análogos & derivados , Hipercolesterolemia/genética , Hipercolesterolemia/sangue , Pessoa de Meia-Idade , Lipoproteínas/sangue , Lipoproteínas/genética , Transportadores de Cassetes de Ligação de ATP/genética
11.
Proc Natl Acad Sci U S A ; 119(38): e2123117119, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36099298

RESUMO

Acinetobacter baumannii is a clinically important, predominantly health care-associated gram-negative bacterium with high rates of emerging resistance worldwide. Given the urgent need for novel antibacterial therapies against A. baumannii, we focused on inhibiting lipoprotein biosynthesis, a pathway that is essential for envelope biogenesis in gram-negative bacteria. The natural product globomycin, which inhibits the essential type II signal peptidase prolipoprotein signal peptidase (LspA), is ineffective against wild-type A. baumannii clinical isolates due to its poor penetration through the outer membrane. Here, we describe a globomycin analog, G5132, that is more potent against wild-type and clinical A. baumannii isolates. Mutations leading to G5132 resistance in A. baumannii map to the signal peptide of a single hypothetical gene, which we confirm encodes an alanine-rich lipoprotein and have renamed lirL (prolipoprotein signal peptidase inhibitor resistance lipoprotein). LirL is a highly abundant lipoprotein primarily localized to the inner membrane. Deletion of lirL leads to G5132 resistance, inefficient cell division, increased sensitivity to serum, and attenuated virulence. Signal peptide mutations that confer resistance to G5132 lead to the accumulation of diacylglyceryl-modified LirL prolipoprotein in untreated cells without significant loss in cell viability, suggesting that these mutations overcome a block in lipoprotein biosynthetic flux by decreasing LirL prolipoprotein substrate sensitivity to processing by LspA. This study characterizes a lipoprotein that plays a critical role in resistance to LspA inhibitors and validates lipoprotein biosynthesis as a antibacterial target in A. baumannii.


Assuntos
Acinetobacter baumannii , Antibacterianos , Ácido Aspártico Endopeptidases , Proteínas de Bactérias , Farmacorresistência Bacteriana , Furanos , Deleção de Genes , Lipoproteínas , Inibidores de Proteases , Piridinas , Acinetobacter baumannii/efeitos dos fármacos , Acinetobacter baumannii/enzimologia , Acinetobacter baumannii/genética , Antibacterianos/farmacologia , Ácido Aspártico Endopeptidases/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Furanos/farmacologia , Lipoproteínas/biossíntese , Lipoproteínas/genética , Peptídeos/farmacologia , Inibidores de Proteases/farmacologia , Sinais Direcionadores de Proteínas/genética , Piridinas/farmacologia
12.
J Biol Chem ; 299(8): 105031, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37437888

RESUMO

Bacterial lipoproteins are structurally divided into two groups, based on their lipid moieties: diacylated (present in Gram-positive bacteria) and triacylated (present in some Gram-positive and most Gram-negative bacteria). Diacylated and triacylated lipid moieties differ by a single amide-linked fatty acid chain. Lipoproteins induce host innate immune responses by the mammalian Toll-like receptor 2 (TLR2). In this study, we added a lipid moiety to recombinant OMP26, a native nonlipidated (NL) membrane protein of Haemophilus influenzae, and characterized it extensively under different expression conditions using flow cytometry, LC/MS, and MALDI-TOF. We also investigated the ability of NL and lipidated (L) OMP26 to induce in vitro stimulation of HEK Blue-hTLR2-TR1 and hTLR-TLR6 cells. Our L-OMP26 was predominantly expressed in diacylated form, so we employed an additional gene copy of apolipoprotein N-acetyltransferase enzyme (Lnt)-rich Escherichia coli strain that further acylates the diacyl lipoproteins to enhance the production of triacylated L-OMP26. The diacyl and triacyl versions of L-OMP26, intended as a vaccine for use in humans, were characterized and evaluated as protein vaccine components in a mouse model. We found that the diacyl and triacyl L-OMP26 protein formulations differed markedly in their immune-stimulatory activity, with diacylated L-OMP26 stimulating higher adaptive immune responses compared with triacylated L-OMP26 and both stimulating higher adaptive immune response compared to NL-OMP26. We also constructed and characterized an L-OMP26φNL-P6 fusion protein, where NL-P6 protein (a commonly studied H. influenzae vaccine candidate) was recombinantly fused to L-OMP26. We observed a similar pattern of lipidation (predominantly diacylated) in the L-OMP26φNL-P6 fusion protein.


Assuntos
Infecções por Haemophilus , Vacinas Anti-Haemophilus , Camundongos , Animais , Humanos , Proteínas da Membrana Bacteriana Externa/genética , Lipoproteínas/genética , Proteínas Recombinantes/genética , Infecções por Haemophilus/prevenção & controle , Haemophilus influenzae/genética , Mamíferos
13.
Infect Immun ; 92(5): e0044723, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38629841

RESUMO

Streptococcus pneumoniae, a common colonizer of the upper respiratory tract, invades nasopharyngeal epithelial cells without causing disease in healthy participants of controlled human infection studies. We hypothesized that surface expression of pneumococcal lipoproteins, recognized by the innate immune receptor TLR2, mediates epithelial microinvasion. Mutation of lgt in serotype 4 (TIGR4) and serotype 6B (BHN418) pneumococcal strains abolishes the ability of the mutants to activate TLR2 signaling. Loss of lgt also led to the concomitant decrease in interferon signaling triggered by the bacterium. However, only BHN418 lgt::cm but not TIGR4 lgt::cm was significantly attenuated in epithelial adherence and microinvasion compared to their respective wild-type strains. To test the hypothesis that differential lipoprotein repertoires in TIGR4 and BHN418 lead to the intraspecies variation in epithelial microinvasion, we employed a motif-based genome analysis and identified an additional 525 a.a. lipoprotein (pneumococcal accessory lipoprotein A; palA) encoded by BHN418 that is absent in TIGR4. The gene encoding palA sits within a putative genetic island present in ~10% of global pneumococcal isolates. While palA was enriched in the carriage and otitis media pneumococcal strains, neither mutation nor overexpression of the gene encoding this lipoprotein significantly changed microinvasion patterns. In conclusion, mutation of lgt attenuates epithelial inflammatory responses during pneumococcal-epithelial interactions, with intraspecies variation in the effect on microinvasion. Differential lipoprotein repertoires encoded by the different strains do not explain these differences in microinvasion. Rather, we postulate that post-translational modifications of lipoproteins may account for the differences in microinvasion.IMPORTANCEStreptococcus pneumoniae (pneumococcus) is an important mucosal pathogen, estimated to cause over 500,000 deaths annually. Nasopharyngeal colonization is considered a necessary prerequisite for disease, yet many people are transiently and asymptomatically colonized by pneumococci without becoming unwell. It is therefore important to better understand how the colonization process is controlled at the epithelial surface. Controlled human infection studies revealed the presence of pneumococci within the epithelium of healthy volunteers (microinvasion). In this study, we focused on the regulation of epithelial microinvasion by pneumococcal lipoproteins. We found that pneumococcal lipoproteins induce epithelial inflammation but that differing lipoprotein repertoires do not significantly impact the magnitude of microinvasion. Targeting mucosal innate immunity and epithelial microinvasion alongside the induction of an adaptive immune response may be effective in preventing pneumococcal colonization and disease.


Assuntos
Células Epiteliais , Lipoproteínas , Infecções Pneumocócicas , Streptococcus pneumoniae , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/patogenicidade , Humanos , Lipoproteínas/genética , Lipoproteínas/metabolismo , Lipoproteínas/imunologia , Células Epiteliais/microbiologia , Células Epiteliais/imunologia , Infecções Pneumocócicas/imunologia , Infecções Pneumocócicas/microbiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Receptor 2 Toll-Like/metabolismo , Receptor 2 Toll-Like/genética , Receptor 2 Toll-Like/imunologia , Nasofaringe/microbiologia , Mutação , Aderência Bacteriana
14.
Mol Microbiol ; 120(3): 397-407, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37455652

RESUMO

The ß-barrel assembly machinery (Bam) complex facilitates the assembly of outer membrane proteins (OMPs) in gram-negative bacteria. The Bam complex is conserved and essential for bacterial viability and consists of five subunits, BamA-E. BamA is the transmembrane component, and its ß-barrel domain opens laterally to allow folding and insertion of incoming OMPs. The remaining components are regulatory, among which only BamD is essential. Previous studies suggested that BamB regulates BamA directly, while BamE and BamC serve as BamD regulators. However, specific molecular details of their functions remain unknown. Our previous research demonstrated that BamE plays a specialized role in assembling the complex between the lipoprotein RcsF and its OMP partners, required for the Regulator of Capsule Synthesis (Rcs) stress response. Here, we used RcsF/OmpA as a model substrate to investigate BamE function. Our results challenge the current view that BamE only serves as a BamD regulator. We show that BamE also directly interacts with BamA. BamE interaction with both BamA and BamD is important for function. Our genetic and biochemical analysis shows that BamE stabilizes the Bam complex and promotes bidirectional signaling interaction between BamA and BamD. This BamE function becomes essential when direct BamA/BamD communication is impeded.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo
15.
Mol Microbiol ; 119(5): 586-598, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36920223

RESUMO

Bacterial two-component signal transduction systems provide sensory inputs for appropriately adapting gene expression. These systems rely on a histidine kinase that phosphorylates a response regulator which alters gene expression. Several two-component systems include additional sensory components that can activate the histidine kinase. In Escherichia coli, the lipoprotein NlpE was identified as a sensor for the Cpx cell envelope stress response. It has remained unclear how NlpE signals to Cpx in the periplasm. In this study, we used a combination of genetics, biochemistry, and AlphaFold2 complex modeling to uncover the molecular details of how NlpE triggers the Cpx response through an interaction with the CpxA histidine kinase. Remarkably, only a short loop of NlpE is required to activate the Cpx response. A single substitution in this loop inactivates NlpE signaling to Cpx and abolishes an in vivo biochemical NlpE:CpxA interaction. An independent AlphaFold multimer prediction supported a role for the loop and predicted an interaction interface at CpxA. Mutations in this CpxA region specifically blind the histidine kinase to NlpE activation but preserve the ability to respond to other cell envelope stressors. Hence, our work additionally reveals a previously unrecognized complexity in signal integration by the CpxA periplasmic sensor domain.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas da Membrana Bacteriana Externa/metabolismo , Histidina Quinase/genética , Histidina Quinase/metabolismo , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Regulação Bacteriana da Expressão Gênica/genética
16.
Ann Hum Genet ; 88(3): 194-211, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38108658

RESUMO

Many inherited conditions cause hepatocellular cholestasis in infancy, including progressive familial intrahepatic cholestasis (PFIC), a heterogeneous group of diseases with highly overlapping symptoms. In our study, six unrelated Tunisian infants with PFIC suspicion were the subject of a panel-target sequencing followed by an exhaustive bioinformatic and modeling investigations. Results revealed five disease-causative variants including known ones: (the p.Asp482Gly and p.Tyr354 * in the ABCB11 gene and the p.Arg446 * in the ABCC2 gene), a novel p.Ala98Cys variant in the ATP-binding cassette subfamily G member 5 (ABCG5) gene and a first homozygous description of the p.Gln312His in the ABCB11 gene. The p.Gln312His disrupts the interaction pattern of the bile salt export pump as well as the flexibility of the second intracellular loop domain harboring this residue. As for the p.Ala98Cys, it modulates both the interactions within the first nucleotide-binding domain of the bile transporter and its accessibility. Two additional potentially modifier variants in cholestasis-associated genes were retained based on their pathogenicity (p.Gly758Val in the ABCC2 gene) and functionality (p.Asp19His in the ABCG8 gene). Molecular findings allowed a PFIC2 diagnosis in five patients and an unexpected diagnosis of sisterolemia in one case. The absence of genotype/phenotype correlation suggests the implication of environmental and epigenetic factors as well as modifier variants involved directly or indirectly in the bile composition, which could explain the cholestasis phenotypic variability.


Assuntos
Colestase Intra-Hepática , Colestase , Lactente , Humanos , Recém-Nascido , Membro 11 da Subfamília B de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Colestase Intra-Hepática/diagnóstico , Colestase Intra-Hepática/genética , Colestase/genética , Estudos de Associação Genética , Mutação , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Lipoproteínas/genética
17.
EMBO J ; 39(5): e102246, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32009249

RESUMO

The peptidoglycan (PG) sacculus provides bacteria with the mechanical strength to maintain cell shape and resist osmotic stress. Enlargement of the mesh-like sacculus requires the combined activity of peptidoglycan synthases and hydrolases. In Escherichia coli, the activity of two PG synthases is driven by lipoproteins anchored in the outer membrane (OM). However, the regulation of PG hydrolases is less well understood, with only regulators for PG amidases having been described. Here, we identify the OM lipoprotein NlpI as a general adaptor protein for PG hydrolases. NlpI binds to different classes of hydrolases and can specifically form complexes with various PG endopeptidases. In addition, NlpI seems to contribute both to PG elongation and division biosynthetic complexes based on its localization and genetic interactions. Consistent with such a role, we reconstitute PG multi-enzyme complexes containing NlpI, the PG synthesis regulator LpoA, its cognate bifunctional synthase, PBP1A, and different endopeptidases. Our results indicate that peptidoglycan regulators and adaptors are part of PG biosynthetic multi-enzyme complexes, regulating and potentially coordinating the spatiotemporal action of PG synthases and hydrolases.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Lipoproteínas/metabolismo , Complexos Multienzimáticos , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Parede Celular/enzimologia , Endopeptidases/genética , Endopeptidases/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Lipoproteínas/genética , N-Acetil-Muramil-L-Alanina Amidase/genética , Peptidoglicano/metabolismo
18.
Biochem Biophys Res Commun ; 717: 150057, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38718568

RESUMO

Leptospirosis is a widespread zoonotic infectious disease of human and veterinary concern caused by pathogenic spirochetes of the genus Leptospira. To date, little progress towards understanding leptospiral pathogenesis and identification of virulence factors has been made, which is the main bottleneck for developing effective measures against the disease. Some leptospiral proteins, including LipL32, Lig proteins, LipL45, and LipL21, are being considered as potential virulence factors or vaccine candidates. However, their function remains to be established. LipL45 is the most expressed membrane lipoprotein in leptospires, upregulated when the bacteria are transferred to temperatures resembling the host, expressed during infection, suppressed after culture attenuation, and known to suffer processing in vivo and in vitro, generating fragments. Based on body of evidence, we hypothesized that the LipL45 processing might occur by an auto-cleavage event, deriving two fragments. The results presented here, based on bioinformatics, structure modeling analysis, and experimental data, corroborate that LipL45 processing probably includes a self-catalyzed non-proteolytic event and suggest the participation of LipL45 in cell-surface signaling pathways, as the protein shares structural similarities with bacterial sigma regulators. Our data indicate that LipL45 might play an important role in response to environmental conditions, with possible function in the adaptation to the host.


Assuntos
Leptospira , Lipoproteínas , Lipoproteínas/metabolismo , Lipoproteínas/química , Lipoproteínas/genética , Leptospira/metabolismo , Leptospira/química , Fator sigma/metabolismo , Fator sigma/química , Fator sigma/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Modelos Moleculares , Leptospirose/metabolismo , Leptospirose/microbiologia
19.
Mol Carcinog ; 63(6): 1174-1187, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38501385

RESUMO

Sorbin and SH3 domain-containing 2 (SORBS2) is an RNA-binding protein and has been implicated in the development of some cancers. However, its role in bladder cancer (BC) is yet to be established. The expression of SORBS2 in BC tissues was determined from the Gene Expression Omnibus and Gene Expression Profiling Interactive Analysis databases and collected paired tumor/normal samples. The effects of SORBS2 on BC cells were detected by CCK-8, colony formation, Transwell, dual-luciferase, RNA immunoprecipitation, chromatin immunoprecipitation, and DNA pull-down assays. In vivo, BC cell growth and metastasis were studied by a xenograft subcutaneous model and a tail-vein metastasis model. The results showed that SORBS2 expression was significantly decreased in BC tissues and cells. SORBS2 overexpression inhibited cell proliferation, migration, invasion, and epithelial-mesenchymal transition in vitro and tumor growth and metastasis in vivo, while silencing SORBS2 produced the opposite effect. Mechanistically, we found that SORBS2 enhanced the stability of tissue factor pathway inhibitor (TFPI) mRNA via direct binding to its 3' UTR. Restoration of TFPI expression reversed SORBS2 knockdown-induced malignant phenotypes of BC cells. In addition, SORBS2 expression was negatively regulated by the transcription factor specificity protein 1 (SP1). Conversely, SORBS2 can be transcriptionally regulated by SP1 and inhibit BC cell growth and metastasis via stabilization of TFPI mRNA, indicating SORBS2 may be a promising therapeutic target for BC.


Assuntos
Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a RNA , Fator de Transcrição Sp1 , Neoplasias da Bexiga Urinária , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Camundongos Endogâmicos BALB C , Camundongos Nus , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo
20.
PLoS Pathog ; 18(5): e1010511, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35605029

RESUMO

Hematogenous dissemination is a critical step in the evolution of local infection to systemic disease. The Lyme disease (LD) spirochete, which efficiently disseminates to multiple tissues, has provided a model for this process, in particular for the key early event of pathogen adhesion to the host vasculature. This occurs under shear force mediated by interactions between bacterial adhesins and mammalian cell-surface proteins or extracellular matrix (ECM). Using real-time intravital imaging of the Lyme spirochete in living mice, we previously identified BBK32 as the first LD spirochetal adhesin demonstrated to mediate early vascular adhesion in a living mouse; however, deletion of bbk32 resulted in loss of only about half of the early interactions, suggesting the existence of at least one other adhesin (adhesin-X) that promotes early vascular interactions. VlsE, a surface lipoprotein, was identified long ago by its capacity to undergo rapid antigenic variation, is upregulated in the mammalian host and required for persistent infection in immunocompetent mice. In immunodeficient mice, VlsE shares functional overlap with OspC, a multi-functional protein that displays dermatan sulfate-binding activity and is required for joint invasion and colonization. In this research, using biochemical and genetic approaches as well as intravital imaging, we have identified VlsE as adhesin-X; it is a dermatan sulfate (DS) adhesin that efficiently promotes transient adhesion to the microvasculature under shear force via its DS binding pocket. Intravenous inoculation of mice with a low-passage infectious B. burgdorferi strain lacking both bbk32 and vlsE almost completely eliminated transient microvascular interactions. Comparative analysis of binding parameters of VlsE, BBK32 and OspC provides a possible explanation why these three DS adhesins display different functionality in terms of their ability to promote early microvascular interactions.


Assuntos
Adesinas Bacterianas , Variação Antigênica , Antígenos de Bactérias , Proteínas de Bactérias , Borrelia burgdorferi , Lipoproteínas , Doença de Lyme , Microvasos , Adesinas Bacterianas/genética , Adesinas Bacterianas/imunologia , Animais , Variação Antigênica/genética , Variação Antigênica/imunologia , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Aderência Bacteriana/genética , Aderência Bacteriana/imunologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Borrelia burgdorferi/genética , Borrelia burgdorferi/imunologia , Dermatan Sulfato/imunologia , Lipoproteínas/genética , Lipoproteínas/imunologia , Doença de Lyme/genética , Doença de Lyme/imunologia , Doença de Lyme/microbiologia , Mamíferos , Camundongos , Microvasos/imunologia , Microvasos/microbiologia , Resistência ao Cisalhamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA