Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Virus Genes ; 60(5): 563-567, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38907176

RESUMO

The cotton leafroll dwarf virus (CLDV), an important viral pathogen responsible for substantial losses in cotton crops, has recently emerged in the United States (US). Although CLDV shares similarities with other members of the genus Polerovirus in terms of encoded proteins, their functional characteristics remain largely unexplored. In this study, we expressed and analyzed each protein encoded by CLDV to determine its intracellular localization using fluorescence protein fusion. We also evaluated their potential to induce plant responses, such as the induction of hypersensitive response-like necrosis and the generation of reactive oxygen species. Our findings show that the proteins encoded by CLDV exhibit comparable localization patterns and elicit similar robust plant responses as observed with cognate proteins from other viruses within the genus Polerovirus. This study contributes to our understanding of the functional repertoire of genes carried by Polerovirus members, particularly to CLDV that has recently emerged as a widespread viral pathogen infecting cotton in the US.


Assuntos
Gossypium , Luteoviridae , Doenças das Plantas , Proteínas Virais , Gossypium/virologia , Luteoviridae/genética , Luteoviridae/patogenicidade , Doenças das Plantas/virologia , Proteínas Virais/genética , Proteínas Virais/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Int J Mol Sci ; 23(4)2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35216065

RESUMO

P0 proteins encoded by poleroviruses Brassica yellows virus (BrYV) and Potato leafroll virus (PLRV) are viral suppressors of RNA silencing (VSR) involved in abolishing host RNA silencing to assist viral infection. However, other roles that P0 proteins play in virus infection remain unclear. Here, we found that C-terminal truncation of P0 resulted in compromised systemic infection of BrYV and PLRV. C-terminal truncation affected systemic but not local VSR activities of P0 proteins, but neither transient nor ectopic stably expressed VSR proteins could rescue the systemic infection of BrYV and PLRV mutants. Moreover, BrYV mutant failed to establish systemic infection in DCL2/4 RNAi or RDR6 RNAi plants, indicating that systemic infection might be independent of the VSR activity of P0. Partially rescued infection of BrYV mutant by the co-infected PLRV implied the functional conservation of P0 proteins within genus. However, although C-terminal truncation mutant of BrYV P0 showed weaker interaction with its movement protein (MP) when compared to wild-type P0, wild-type and mutant PLRV P0 showed similar interaction with its MP. In sum, our findings revealed the role of P0 in virus systemic infection and the requirement of P0 carboxyl terminal region for the infection.


Assuntos
Luteoviridae/genética , Luteoviridae/patogenicidade , Proteína P0 da Mielina/genética , Proteínas Virais/genética , Brassica/virologia , Mutação/genética , Doenças das Plantas/virologia , Proteínas de Plantas/genética , Interferência de RNA/fisiologia , Nicotiana/virologia
3.
Virus Genes ; 57(3): 289-292, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33630229

RESUMO

In 2018 virus-like symptoms, typical of polerovirus infection were observed in several oilseed rape crops in northern Greece. In order to identify the etiological agent of these symptoms a polerovirus-generic RT-PCR assay was applied. Sequencing of the amplicons revealed the presence of virus isolates genetically close to turnip yellows virus (TuYV). Further molecular characterization of the near complete genome of '1-2', 'Geo1', 'Geo7' and 'Geo15' isolates revealed that they share > 96% nt identity with various TuYV sequences. On the other hand, the fifth, characterized isolate from oilseed rape, termed '1-1', showed higher sequence similarity to brassica yellows virus (BrYV) regarding the 5' part of the complete coding sequence, whereas the 3' part was closely related to TuYV isolates. A recombination analysis using RDP indicated the presence of a putative breakpoint (nucleotide position 2964) in '1-1' genome and it is proposed that the virus isolate '1-1' might be an interspecies recombinant between BrYV and TuYV. To our knowledge, this is the first time that the complete coding sequences of Greek TuYV isolates have been determined and the first detection of a BrYV/TuYV recombinant isolate infecting oilseed rape in Greece.


Assuntos
Genoma Viral/genética , Luteoviridae/genética , Doenças das Plantas/genética , Vírus de Plantas/genética , Brassica napus/virologia , Grécia , Luteoviridae/patogenicidade , Filogenia , Doenças das Plantas/virologia , Vírus de Plantas/patogenicidade
4.
Virus Genes ; 55(2): 253-256, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30697673

RESUMO

Brassica yellows virus (BrYV), prevalently distributed throughout mainland China and South Korea while triggering serious diseases in cruciferous crops, is proposed to be a new species in the genus Polerovirus within the family Luteoviridae. There are three distinct genotypes (BrYV-A, BrYV-B and BrYV-C) reported in cabbage and radish. Here, we describe a new BrYV isolate infecting tobacco plants in the field, which was named BrYV-NtabQJ. The complete genome sequence of BrYV-NtabQJ is 5741 nt in length, and 89% of the sequence shares higher sequence identities (about 90%) with different BrYV isolates. However, it possesses a quite divergent region within ORF5, which is more close to Beet western yellows virus (BWYV), Beet mild yellowing virus (BMYV) and Beet chlorosis virus (BChV). A significant recombination event was then detected among BrYV-NtabQJ, BrYV-B Beijng isolate (BrYV-BBJ) and BWYV Leonurus sibiricus isolate (BWYV-LS). It is proposed that BrYV-NtabQJ might be an interspecific recombinant between BrYV-BBJ and BWYV-LS, and the recombination might result in the successful aphid transmission of BrYV from cruciferous crops to tobacco. And it also poses new challenges for BrYV diagnosis and the vegetable production.


Assuntos
Luteoviridae/genética , Nicotiana/virologia , Filogenia , Doenças das Plantas/virologia , Brassica/virologia , Transferência Genética Horizontal/genética , Genoma Viral , Genótipo , Especificidade de Hospedeiro/genética , Luteoviridae/patogenicidade , Luteovirus/genética , Fases de Leitura Aberta , Raphanus/virologia , Nicotiana/genética
5.
Virol J ; 15(1): 90, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29792207

RESUMO

BACKGROUND: Maize lethal necrosis is caused by a synergistic co-infection of Maize chlorotic mottle virus (MCMV) and a specific member of the Potyviridae, such as Sugarcane mosaic virus (SCMV), Wheat streak mosaic virus (WSMV) or Johnson grass mosaic virus (JGMV). Typical maize lethal necrosis symptoms include severe yellowing and leaf drying from the edges. In Kenya, we detected plants showing typical and atypical symptoms. Both groups of plants often tested negative for SCMV by ELISA. METHODS: We used next-generation sequencing to identify viruses associated to maize lethal necrosis in Kenya through a metagenomics analysis. Symptomatic and asymptomatic leaf samples were collected from maize and sorghum representing sixteen counties. RESULTS: Complete and partial genomes were assembled for MCMV, SCMV, Maize streak virus (MSV) and Maize yellow dwarf virus-RMV (MYDV-RMV). These four viruses (MCMV, SCMV, MSV and MYDV-RMV) were found together in 30 of 68 samples. A geographic analysis showed that these viruses are widely distributed in Kenya. Phylogenetic analyses of nucleotide sequences showed that MCMV, MYDV-RMV and MSV are similar to isolates from East Africa and other parts of the world. Single nucleotide polymorphism, nucleotide and polyprotein sequence alignments identified three genetically distinct groups of SCMV in Kenya. Variation mapped to sequences at the border of NIb and the coat protein. Partial genome sequences were obtained for other four potyviruses and one polerovirus. CONCLUSION: Our results uncover the complexity of the maize lethal necrosis epidemic in Kenya. MCMV, SCMV, MSV and MYDV-RMV are widely distributed and infect both maize and sorghum. SCMV population in Kenya is diverse and consists of numerous strains that are genetically different to isolates from other parts of the world. Several potyviruses, and possibly poleroviruses, are also involved.


Assuntos
Gammaherpesvirinae/genética , Genoma Viral , Luteoviridae/genética , Potyviridae/genética , Potyvirus/genética , Zea mays/virologia , Sequência de Aminoácidos , Proteínas do Capsídeo/genética , Mapeamento Cromossômico , Gammaherpesvirinae/classificação , Gammaherpesvirinae/isolamento & purificação , Gammaherpesvirinae/patogenicidade , Sequenciamento de Nucleotídeos em Larga Escala , Quênia , Luteoviridae/classificação , Luteoviridae/isolamento & purificação , Luteoviridae/patogenicidade , Metagenômica/métodos , Filogenia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Polimorfismo Genético , Potyviridae/classificação , Potyviridae/isolamento & purificação , Potyviridae/patogenicidade , Potyvirus/classificação , Potyvirus/isolamento & purificação , Potyvirus/patogenicidade , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sorghum/virologia
6.
Z Naturforsch C J Biosci ; 73(11-12): 423-438, 2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30067514

RESUMO

Solanum tuberosum (potato) is the second most important vegetable crop in Egypt. It is locally consumed, manufactured or supplied for export to Europe and other Arab countries. Potato is subject to infection by a number of plant viruses, which affect its yield and quality. Potato virus Y (PVY), potato leaf roll virus (PLRV), and Alfalfa mosaic virus (AMV) were detected in major potato-growing areas surveyed. Multiplex-RT-PCR assay was used for the detection of these three viruses in one reaction using three specific primer pairs designed to amplify genomic parts of each virus (1594 bp for PLRV, 795 bp for AMV, 801 bp for PVY). All three viruses were detected in a single reaction mixture in naturally infected field-grown potatoes. Multiplex RT-PCR improved sensitivity necessary for the early detection of infection. Incidence of single, double, or triple infection has been recorded in some locations. Full-length sequencing has been performed for an Egyptian FER isolate of PLRV. Through phylogenetic analysis, it was shown to occupy the same clade with isolate JokerMV10 from Germany. Complete nucleotide sequence of an Egyptian FER isolate of AMV and phylogenetic analysis was also performed; we propose that it is a new distinct strain of AMV belonging to a new subgroup IIC. This is the first complete nucleotide sequence of an Egyptian isolate of AMV. Genetic biodiversity of devastating potato viruses necessitates continuous monitoring of new genetic variants of such viruses.


Assuntos
Vírus do Mosaico da Alfafa/genética , Genoma Viral , Luteoviridae/genética , Microbiota , Solanum tuberosum/virologia , Vírus do Mosaico da Alfafa/patogenicidade , Egito , Luteoviridae/patogenicidade
7.
Transgenic Res ; 25(6): 813-828, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27544267

RESUMO

An inverted repeat construct corresponding to a segment of the potato leaf roll virus coat protein gene was created under control of a constitutive promoter and transferred into a transformation vector with a heat inducible Cre-loxP system to excise the nptII antibiotic resistance marker gene. Fifty-eight transgenic events were evaluated for resistance to PLRV by greenhouse inoculations, which lead to the identification of 7 highly resistant events, of which 4 were extremely resistant. This resistance was also highly effective against accumulation in subsequent tuber generations from inoculated plants, which has not been reported before. Northern blot analysis showed correlation of PLRV specific siRNA accumulation with the level of PLRV resistance. Heat mediated excision of the nptII antibiotic resistance gene in PLRV resistant events was highly efficient in one event with full excision in 71 % of treated explants. On the other hand 8 out of 10 analyzed events showed truncated T-DNA insertions lacking one of the two loxP sites as determined by PCR and confirmed by sequencing flanking regions in 2 events, suggesting cryptic LB sites in the non-coding region between the nptII gene and the flanking loxP site. Accordingly, it is proposed to modify the Cre-loxP vector by reducing the 1 kb size of the region between nptII, loxP, and the LB.


Assuntos
Sequências Repetidas Invertidas/genética , Plantas Geneticamente Modificadas/genética , Solanum tuberosum/genética , Proteínas do Envelope Viral/genética , DNA Bacteriano/genética , Vetores Genéticos/genética , Integrases/genética , Luteoviridae/genética , Luteoviridae/patogenicidade , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/virologia , Interferência de RNA , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/virologia
8.
Mol Plant Microbe Interact ; 26(2): 257-65, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23013438

RESUMO

In addition to being essential for translation of eukaryotic mRNA, translation initiation factors are also key components of plant-virus interactions. In order to address the involvement of these factors in the infectious cycle of poleroviruses (aphid-transmitted, phloem-limited viruses), the accumulation of three poleroviruses was followed in Arabidopsis thaliana mutant lines impaired in the synthesis of translation initiation factors in the eIF4E and eIF4G families. We found that efficient accumulation of Turnip yellows virus (TuYV) in A. thaliana relies on the presence of eIF (iso)4G1, whereas Beet mild yellowing virus (BMYV) and Beet western yellows virus-USA (BWYV-USA) rely, instead, on eIF4E1. A role for these factors in the infectious processes of TuYV and BMYV was confirmed by direct interaction in yeast between these specific factors and the 5' viral genome-linked protein of the related virus. Although the underlying molecular mechanism is still unknown, this study reveals a totally unforeseen situation in which closely related viruses belonging to the same genus use different translation initiation factors for efficient infection of A. thaliana.


Assuntos
Arabidopsis/virologia , Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Luteoviridae/genética , Doenças das Plantas/virologia , Animais , Afídeos/virologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação Eucariótico 4G/genética , Interações Hospedeiro-Patógeno , Insetos Vetores/virologia , Luteoviridae/patogenicidade , Luteoviridae/fisiologia , Mutação , Proteínas Recombinantes , Especificidade da Espécie , Técnicas do Sistema de Duplo-Híbrido , Virulência
9.
J Proteome Res ; 11(5): 2968-81, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22390342

RESUMO

Protein interactions are critical determinants of insect transmission for viruses in the family Luteoviridae. Two luteovirid structural proteins, the capsid protein (CP) and the readthrough protein (RTP), contain multiple functional domains that regulate virus transmission. There is no structural information available for these economically important viruses. We used Protein Interaction Reporter (PIR) technology, a strategy that uses chemical cross-linking and high resolution mass spectrometry, to discover topological features of the Potato leafroll virus (PLRV) CP and RTP that are required for the diverse biological functions of PLRV virions. Four cross-linked sites were repeatedly detected, one linking CP monomers, two within the RTP, and one linking the RTP and CP. Virus mutants with triple amino acid deletions immediately adjacent to or encompassing the cross-linked sites were defective in virion stability, RTP incorporation into the capsid, and aphid transmission. Plants infected with a new, infectious PLRV mutant lacking 26 amino acids encompassing a cross-linked site in the RTP exhibited a delay in the appearance of systemic infection symptoms. PIR technology provided the first structural insights into luteoviruses which are crucially lacking and are involved in vector-virus and plant-virus interactions. These are the first cross-linking measurements on any infectious, insect-transmitted virus.


Assuntos
Afídeos/virologia , Interações Hospedeiro-Patógeno , Insetos Vetores/virologia , Luteoviridae/patogenicidade , Mapeamento de Interação de Proteínas/métodos , Solanum tuberosum/virologia , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Sequência de Aminoácidos , Animais , Afídeos/metabolismo , Sítios de Ligação , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Comportamento Alimentar , Luteoviridae/isolamento & purificação , Luteoviridae/fisiologia , Espectrometria de Massas , Dados de Sequência Molecular , Doenças das Plantas/virologia , Plasmídeos/genética , Plasmídeos/metabolismo , Nicotiana/virologia , Montagem de Vírus
10.
Plant Mol Biol ; 80(4-5): 443-60, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22987114

RESUMO

Small RNAs (sRNAs) are a class of non-coding RNAs ranging from 20- to 40-nucleotides (nts) that are present in most eukaryotic organisms. In plants, sRNAs are involved in the regulation of development, the maintenance of genome stability and the antiviral response. Viruses, however, can interfere with and exploit the silencing-based regulatory networks, causing the deregulation of sRNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). To understand the impact of viral infection on the plant sRNA pathway, we deep sequenced the sRNAs in cotton leaves infected with Cotton leafroll dwarf virus (CLRDV), which is a member of the economically important virus family Luteoviridae. A total of 60 putative conserved cotton miRNAs were identified, including 19 new miRNA families that had not been previously described in cotton. Some of these miRNAs were clearly misregulated during viral infection, and their possible role in symptom development and disease progression is discussed. Furthermore, we found that the 24-nt heterochromatin-associated siRNAs were quantitatively and qualitatively altered in the infected plant, leading to the reactivation of at least one cotton transposable element. This is the first study to explore the global alterations of sRNAs in virus-infected cotton plants. Our results indicate that some CLRDV-induced symptoms may be correlated with the deregulation of miRNA and/or epigenetic networks.


Assuntos
Elementos de DNA Transponíveis , Gossypium/genética , Luteoviridae/patogenicidade , MicroRNAs/genética , RNA de Plantas/genética , Sequência de Bases , Primers do DNA , Gossypium/virologia , Reação em Cadeia da Polimerase em Tempo Real
11.
Virus Genes ; 45(3): 567-74, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22903753

RESUMO

Potato leafroll virus (PLRV) is a destructive virus of potatoes and responsible for high yield losses wherever potatoes are grown. In this study, DNA fragments containing ORF0 from each of nine PLRV isolates was sequenced. Sequence analysis data using 36 isolates from 12 different countries including 14 Iranian isolates showed that the identities of ORF0 at both nucleotide and amino acid levels between the Iranian isolates were 96-100 % and these isolates were more similar to the European PLRV isolates than to the other isolates. Furthermore, phylogenetic and population genetic analysis were carried out on the basis of full-length ORF0 and overlapping and non-overlapping regions of ORF0 and ORF1 (ORF0/1) which revealed that PLRV isolates were not geographically resolved. Also, we identified negative selection with different ratios for each of the mentioned genomic regions suggesting effects of F-box motif and -1 frameshift on ORF0 non-overlapping region and ORF0/1 in the selection pressure, respectively. Five recombination events were detected in the Iranian, Australian, and European isolates suggesting an important role for this phenomenon in influencing genetic diversity within this virus population.


Assuntos
Luteoviridae/genética , Fases de Leitura Aberta , RNA Viral/genética , Solanum tuberosum/virologia , Sequência de Bases , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Variação Genética , Irã (Geográfico) , Luteoviridae/classificação , Luteoviridae/patogenicidade , Filogenia , Doenças das Plantas/virologia , Folhas de Planta/virologia , Recombinação Genética , Seleção Genética , Alinhamento de Sequência , Análise de Sequência de DNA
12.
BMC Mol Biol ; 12: 40, 2011 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-21864377

RESUMO

BACKGROUND: In response to infection, viral genomes are processed by Dicer-like (DCL) ribonuclease proteins into viral small RNAs (vsRNAs) of discrete sizes. vsRNAs are then used as guides for silencing the viral genome. The profile of vsRNAs produced during the infection process has been extensively studied for some groups of viruses. However, nothing is known about the vsRNAs produced during infections of members of the economically important family Luteoviridae, a group of phloem-restricted viruses. Here, we report the characterization of a population of vsRNAs from cotton plants infected with Cotton leafroll dwarf virus (CLRDV), a member of the genus Polerovirus, family Luteoviridae. RESULTS: Deep sequencing of small RNAs (sRNAs) from leaves of CLRDV-infected cotton plants revealed that the vsRNAs were 21- to 24-nucleotides (nt) long and that their sequences matched the viral genome, with higher frequencies of matches in the 3- region. There were equivalent amounts of sense and antisense vsRNAs, and the 22-nt class of small RNAs was predominant. During infection, cotton Dcl transcripts appeared to be up-regulated, while Dcl2 appeared to be down-regulated. CONCLUSIONS: This is the first report on the profile of sRNAs in a plant infected with a virus from the family Luteoviridae. Our sequence data strongly suggest that virus-derived double-stranded RNA functions as one of the main precursors of vsRNAs. Judging by the profiled size classes, all cotton DCLs might be working to silence the virus. The possible causes for the unexpectedly high accumulation of 22-nt vsRNAs are discussed. CLRDV is the causal agent of Cotton blue disease, which occurs worldwide. Our results are an important contribution for understanding the molecular mechanisms involved in this and related diseases.


Assuntos
Gossypium/genética , Gossypium/virologia , Luteoviridae/genética , Doenças das Plantas/genética , Doenças das Plantas/virologia , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Genoma de Planta , Genoma Viral , Luteoviridae/metabolismo , Luteoviridae/patogenicidade , Dados de Sequência Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Interferente Pequeno/genética , RNA Viral/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo
13.
Arch Virol ; 156(12): 2251-5, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21874520

RESUMO

The genomic RNA sequences of two genotypes of a brassica-infecting polerovirus from China were determined. Sequence analysis revealed that the virus was closely related to but significantly different from turnip yellows virus (TuYV). This virus and other poleroviruses, including TuYV, had less than 90% amino acid sequence identity in all gene products except the coat protein. Based on the molecular criterion (>10% amino acid sequence difference) for species demarcation in the genus Polerovirus, the virus represents a distinct species for which the name Brassica yellows virus (BrYV) is proposed. Interestingly, there were two genotypes of BrYV, which mainly differed in the 5'-terminal half of the genome.


Assuntos
Brassica/virologia , Luteoviridae/genética , Luteoviridae/patogenicidade , Doenças das Plantas/virologia , Sequência de Bases , China , Primers do DNA/genética , Genoma Viral , Genótipo , Luteoviridae/classificação , Filogenia , RNA Viral/genética
14.
Sci Rep ; 11(1): 7149, 2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785787

RESUMO

Yellow leaf disease caused by sugarcane yellow leaf virus (SCYLV) is one of the most prevalent diseases worldwide. In this study, six near-complete genome sequences of SCYLV were determined to be 5775-5881 bp in length. Phylogenetic analysis revealed that the two SCYLV isolates from Réunion Island, France, and four from China were clustered into REU and CUB genotypes, respectively, based on 50 genomic sequences (this study = 6, GenBank = 44). Meanwhile, all 50 isolates were clustered into three phylogroups (G1-G3). Twelve significant recombinant events occurred in intra- and inter-phylogroups between geographical origins and host crops. Most recombinant hotspots were distributed in coat protein read-through protein (RTD), followed by ORF0 (P0) and ORF1 (P1). High genetic divergences of 12.4% for genomic sequences and 6.0-24.9% for individual genes were determined at nucleotide levels. The highest nucleotide diversity (π) was found in P0, followed by P1 and RdRP. In addition, purifying selection was a main factor restricting variability in SCYLV populations. Infrequent gene flow between Africa and the two subpopulations (Asia and America) were found, whereas frequent gene flow between Asia and America subpopulations was observed. Taken together, our findings facilitate understanding of genetic diversity and evolutionary dynamics of SCYLV.


Assuntos
Evolução Molecular , Genes Virais , Luteoviridae/genética , Saccharum/virologia , África , América , Ásia , Resistência à Doença/genética , Variação Genética , Genômica , Geografia , Luteoviridae/isolamento & purificação , Luteoviridae/patogenicidade , Fases de Leitura Aberta/genética , Filogenia , Doenças das Plantas/genética , Doenças das Plantas/virologia , RNA Viral/genética , RNA Viral/isolamento & purificação , Recombinação Genética , Saccharum/genética , Alinhamento de Sequência
15.
Insect Mol Biol ; 19 Suppl 2: 259-72, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20482656

RESUMO

Aphids are the primary vectors of plant viruses. Transmission can occur via attachment to the cuticle lining of the insect (non-circulative transmission) or after internalization in the insect cells with or without replication (circulative transmission). In this paper, we have focused on the circulative and non-propagative mode during which virions enter the cell following receptor-mediated endocytosis, are transported across the cell in vesicles and released by exocytosis without replicating. The correct uptake, transport and delivery of the vesicles cargo relies on the participation of proteins from different families which have been identified in the Acyrthosiphon pisum genome. Assemblage of this annotated dataset provides a useful basis to improve our understanding of the molecules and mechanisms involved in virus transmission by A. pisum and other aphid species.


Assuntos
Afídeos/genética , Afídeos/virologia , Genoma de Inseto , Vírus de Plantas/patogenicidade , Actinas/genética , Actinas/fisiologia , Animais , Afídeos/patogenicidade , Afídeos/fisiologia , Clatrina/genética , Clatrina/fisiologia , Vesículas Revestidas por Clatrina/genética , Vesículas Revestidas por Clatrina/fisiologia , Vesículas Revestidas por Clatrina/virologia , Dinaminas/genética , Dinaminas/fisiologia , Endocitose/genética , Endocitose/fisiologia , Exocitose/genética , Exocitose/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/fisiologia , Insetos Vetores/virologia , Luteoviridae/patogenicidade , Pisum sativum/parasitologia , Pisum sativum/virologia , Filogenia , Doenças das Plantas/parasitologia , Doenças das Plantas/virologia , Proteínas SNARE/genética , Proteínas SNARE/fisiologia , Sinaptotagminas/genética , Sinaptotagminas/fisiologia , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/fisiologia
16.
PLoS One ; 15(9): e0239199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32941541

RESUMO

Miscanthus sinensis is a grass used for sugarcane breeding and bioenergy production. Using high throughput sequencing technologies, we identified a new viral genome in infected M. sinensis leaf tissue displaying yellow fleck symptoms. This virus is most related to members of the genus Polerovirus in the family Luteoviridae. The canonical ORFs were computationally identified, the P3 coat protein was expressed, and virus-like particles were purified and found to conform to icosahedral shapes, characteristic of the family Luteoviridae. We propose the name Miscanthus yellow fleck virus for this new virus.


Assuntos
Luteoviridae/genética , Filogenia , Poaceae/virologia , Luteoviridae/classificação , Luteoviridae/patogenicidade , Luteoviridae/ultraestrutura
17.
Virus Res ; 277: 197847, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31887329

RESUMO

Turnip yellows virus (TuYV; family Luteoviridae, genus Polerovirus) is the most economically damaging virus infecting canola (Brassica napus) in the south-west Australian grainbelt. However, the impact of TuYV infection at different growth stages on canola seed yield has not been examined. This information is vital for implementing targeted management strategies. Four glasshouse experiments were conducted to examine seed yield losses incurred by an open-pollinated (ATR Bonito) and hybrid (Hyola® 404RR) canola cultivar when aphid-inoculated with TuYV at GS12 (two leaves unfolded), GS17 (seven leaves unfolded), GS30 (beginning of stem elongation) and GS65 (full flowering). When inoculated at GS12 and GS17, cv. Bonito plants incurred 30 % and 36 % seed yield losses, respectively, compared to healthy plants. Similarly, cv. 404RR incurred 41 % and 26 % seed yield losses at GS12 and GS17, respectively. However, when inoculated at GS30, whilst cv. Bonito plants incurred a 26 % seed yield loss, cv. 404RR incurred no significant loss. Neither cultivar incurred seed yield losses from inoculation at GS65. Additional information was collected from these experiments to improve sampling protocols to enhance TuYV detection, with a molecular and serological technique. When canola plants were at pre-flowering growth stages, TuYV was reliably detected 7-14 days after inoculation (DAI) in the youngest leaf. Once flowering had begun, TuYV was consistently detected 7-14 DAI in petals and flower buds. In contrast, regardless of growth stage, testing the oldest leaf regularly resulted in delayed detection or false negatives. Information generated in this study helps to quantify the value of management strategies targeted at preventing TuYV spread in pre-flowering canola crops and ultimately increase the efficiency of resource use.


Assuntos
Brassica napus/fisiologia , Brassica napus/virologia , Luteoviridae/patogenicidade , Sementes/virologia , Austrália , Biomassa , Luteoviridae/genética , Doenças das Plantas/virologia , Folhas de Planta/virologia
18.
J Virol Methods ; 276: 113760, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31712092

RESUMO

Cotton production is widely effected by Cotton Leaf Curl Virus (CLCuV) in world posing serious losses to cotton yield.The CRT genes from CLCuV resistant G. arboreum and CLCuV susceptible G. hirsutum were cloned and sequenced to know the differences of protein composition in both species. Molecular techniques were used to isolate full length putative biotic stress resistance genes from G. arboreum besides the analysis of identified novel genes in model plant tobacco (Nicotiana tabacum) for resistance to cotton leaf curl disease complex. It was found that transgenic plants over expressing Hydroperoxidelyase (HPL) genes exhibited higher enzyme activity than wild type. In addition the genome sequence information was used for the purpose of gene isolation. Even for the enhanced expression of Calreticulin (CRT), AOS and HPL in G. hirsutum, it still showed susceptibility against CLCuV suggesting alternative genes and pathways involved for the expression of resistance.


Assuntos
Resistência à Doença/genética , Genes de Plantas , Gossypium/genética , Nicotiana/virologia , Doenças das Plantas/virologia , Gossypium/enzimologia , Lipoxigenase/genética , Luteoviridae/patogenicidade , Doenças das Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/virologia , Estresse Fisiológico
19.
Sci Rep ; 10(1): 22016, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-33328519

RESUMO

Viruses cause many severe plant diseases, resulting in immense losses of crop yield worldwide. Therefore, developing novel approaches to control plant viruses is crucial to meet the demands of a growing world population. Recently, RNA interference (RNAi) has been widely used to develop virus-resistant plants. Once genome replication and assembly of virion particles is completed inside the host plant, mature virions or sometimes naked viral genomes spread cell-to-cell through plasmodesmata by interacting with the virus-encoded movement protein (MP). We used the RNAi approach to suppress MP gene expression, which in turn prevented potato leafroll virus (PLRV) systemic infection in Solanum tuberosum cv. Khufri Ashoka. Potato plants agroinfiltrated with MP siRNA constructs exhibited no rolling symptoms upon PLRV infection, indicating that the silencing of MP gene expression is an efficient method for generating PLRV-resistant potato plants. Further, we identified novel ATPase motifs in MP that may be involved in DNA binding and translocation through plasmodesmata. We also showed that the ATPase activity of MP was stimulated in the presence of DNA/RNA. Overall, our findings provide a robust technology to generate PLRV-resistant potato plants, which can be extended to other species. Moreover, this approach also contributes to the study of genome translocation mechanisms of plant viruses.


Assuntos
Adenosina Trifosfatases/química , Luteoviridae/crescimento & desenvolvimento , Proteínas do Movimento Viral em Plantas/química , Proteínas do Movimento Viral em Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Replicação Viral/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Vetores Genéticos/metabolismo , Interações Hospedeiro-Patógeno , Luteoviridae/patogenicidade , Doenças das Plantas/virologia , Folhas de Planta/virologia , Proteínas do Movimento Viral em Plantas/isolamento & purificação , Domínios Proteicos , Solanum tuberosum/genética , Solanum tuberosum/virologia
20.
Arch Virol ; 154(5): 791-9, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19347243

RESUMO

Chickpea chlorotic stunt virus (CpCSV), a proposed new member of the genus Polerovirus (family Luteoviridae), has been reported only from Ethiopia. In attempts to determine the geographical distribution and variability of CpCSV, a pair of degenerate primers derived from conserved domains of the luteovirus coat protein (CP) gene was used for RT-PCR analysis of various legume samples originating from five countries and containing unidentified luteoviruses. Sequencing of the amplicons provided evidence for the occurrence of CpCSV also in Egypt, Morocco, Sudan, and Syria. Phylogenetic analysis of the CP nucleotide sequences of 18 samples from the five countries revealed the existence of two geographic groups of CpCSV isolates differing in CP sequences by 8-10%. Group I included isolates from Ethiopia and Sudan, while group II comprised those from Egypt, Morocco and Syria. For distinguishing these two groups, a simple RFLP test using HindIII and/or PvuII for cleavage of CP-gene-derived PCR products was developed. In ELISA and immunoelectron microscopy, however, isolates from these two groups could not be distinguished with rabbit antisera raised against a group-I isolate from Ethiopia (CpCSV-Eth) and a group-II isolate from Syria (CpCSV-Sy). Since none of the ten monoclonal antibodies (MAbs) that had been produced earlier against CpCSV-Eth reacted with group-II isolates, further MAbs were produced. Of the seven MAbs raised against CpCSV-Sy, two reacted only with CpCSV-Sy and two others with both CpCSV-Sy and -Eth. This indicated that there are group I- and II-specific and common (species-specific) epitopes on the CpCSV CP and that the corresponding MAbs are suitable for specific detection and discrimination of CpCSV isolates. Moreover, CpCSV-Sy (group II) caused more severe stunting and yellowing in faba bean than CpCSV-Eth (group I). In conclusion, our data indicate the existence of a geographically associated variation in the molecular, serological and presumably biological properties of CpCSV.


Assuntos
Proteínas do Capsídeo/genética , Fabaceae/virologia , Variação Genética , Luteoviridae/classificação , Filogenia , África do Norte , Sequência de Aminoácidos , Ásia Ocidental , Geografia , Luteoviridae/genética , Luteoviridae/patogenicidade , Dados de Sequência Molecular , Polimorfismo de Fragmento de Restrição , RNA Viral/genética , Análise de Sequência de RNA , Especificidade da Espécie , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA