Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 323(4): R422-R431, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35912999

RESUMO

Necrotizing enterocolitis (NEC) remains a devastating disease that affects preterm infants. Hydrogen sulfide (H2S) donors have been shown to reduce the severity of NEC, but the optimal compound has yet to be identified. We hypothesized that oral H2S-Mesalamine (ATB-429) would improve outcomes in experimental NEC, and its benefits would be dependent on endothelial nitric oxide synthase (eNOS) pathways. NEC was induced in 5-day-old wild-type (WT) and eNOS knockout (eNOSKO) pups by formula feeding and stress. Four groups were studied in both WT and eNOSKO mice: 1) breastfed controls, 2) NEC, 3) NEC + 50 mg/kg mesalamine, and 4) NEC + 130 mg/kg ATB-429. Mesalamine and ATB-429 doses were equimolar. Pups were monitored for sickness scores and perfusion to the gut was measured by Laser Doppler Imaging (LDI). After euthanasia of the pups, intestine and lung were hematoxylin and eosin-stained and scored for injury in a blind fashion. TLR4 expression was quantified by Western blot and IL-6 expression by ELISA. P < 0.05 was significant. Both WT and eNOSKO breastfed controls underwent normal development and demonstrated milder intestinal and pulmonary injury compared with NEC groups. For the WT groups, ATB-429 significantly improved weight gain, reduced clinical sickness score, and improved perfusion compared with the NEC group. In addition, WT ATB-429 pups had a significantly milder intestinal and pulmonary histologic injury when compared with NEC. ATB-429 attenuated the increase in TLR4 and IL-6 expression in the intestine. When the experiment was repeated in eNOSKO pups, ATB-429 offered no benefit in weight gain, sickness scores, perfusion, intestinal injury, pulmonary injury, or decreasing intestinal inflammatory markers. An H2S derivative of mesalamine improves outcomes in experimental NEC. Protective effects appear to be mediated through eNOS. Further research is warranted to explore whether ATB-429 may be an effective oral therapy to combat NEC.


Assuntos
Enterocolite Necrosante , Sulfeto de Hidrogênio , Doenças do Recém-Nascido , Lesão Pulmonar , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Dissulfetos , Enterocolite Necrosante/tratamento farmacológico , Enterocolite Necrosante/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Amarelo de Eosina-(YS)/farmacologia , Amarelo de Eosina-(YS)/uso terapêutico , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Hematoxilina/uso terapêutico , Humanos , Hidrogênio/metabolismo , Hidrogênio/farmacologia , Hidrogênio/uso terapêutico , Sulfeto de Hidrogênio/metabolismo , Recém-Nascido , Doenças do Recém-Nascido/metabolismo , Recém-Nascido Prematuro , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Mesalamina/metabolismo , Mesalamina/farmacologia , Mesalamina/uso terapêutico , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Sulfetos/metabolismo , Receptor 4 Toll-Like/metabolismo , Aumento de Peso
2.
J Gastroenterol Hepatol ; 36(6): 1580-1589, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33091174

RESUMO

BACKGROUND AND AIM: Limited data are available on the effects of fermentable fiber in altering intestinal pH and transit to predict efficacy-based delivery profiles of pH-dependent mesalamine coatings in ulcerative colitis (UC). This study aimed to examine regional pH and transit after acute changes in fermentable fiber intake in quiescent UC patients and their effects on drug release systems. METHODS: In a randomized, double-blind study, 18 patients with quiescent UC and 10 healthy controls were supplied meals high (13 g) or low (≤ 2 g) in fermentable fiber and subsequently ingested a wireless pH-motility capsule. After a ≥ 3-day washout, they crossed over to the other diet. Measurements of intestinal pH and transit were used to predict drug release for the various pH-dependent coatings. RESULTS: Increasing fermentable fiber intake lowered overall (median 6.2 [6.1-6.7] vs low: 6.9 [range or interquartile range: 6.4-7.4]; P = 0.01) and distal pH (7.8 [7.3-8.1] vs 8.2 [8.0-8.5]; P = 0.04) in controls. In UC patients, only cecal pH was decreased (high: 5.1 [4.8-5.5] vs low: 5.5 [5.3-5.7]; P < 0.01). Colonic transit in the UC cohort varied widely after a low-fiber intake but tended to normalize after the high fermentable fiber intake. Hypothetical coating dissolution profiles were heterogeneous in UC patients, with a multi-matrix delayed release system having the highest likelihood of patients (20-40%) with incomplete dissolution, and predominant small intestinal dissolution predicted for Eudragit L (94% patients) and S (44-69%). CONCLUSIONS: Patients with quiescent UC have abnormalities in intestinal pH and transit in response to acute changes in fermentable fiber intake. These have potentially detrimental effects on predicted luminal release patterns of pH-dependent 5-aminosalicylic acid release systems.


Assuntos
Colite Ulcerativa/metabolismo , Fibras na Dieta/administração & dosagem , Fibras na Dieta/farmacologia , Liberação Controlada de Fármacos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Trânsito Gastrointestinal/efeitos dos fármacos , Mesalamina/metabolismo , Administração Oral , Adulto , Idoso , Feminino , Fermentação , Humanos , Concentração de Íons de Hidrogênio , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
J Nanobiotechnology ; 19(1): 329, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34666761

RESUMO

BACKGROUND: There is an obvious correlation between ulcerative colitis and colorectal cancer, and the risk of colorectal cancer in patients with ulcerative colitis is increasing. Therefore, the combination therapy of anti-inflammatory and anti-tumor drugs may show promising to inhibit colon cancer. 5-aminosalicylic acid (5-ASA) with anti-inflammatory function is effective for maintaining remission in patients with ulcerative colitis and may also reduce colorectal cancer risk. Histone deacetylase (HDAC) plays an essential role in the progression of colon cancer. Butyric acid (BA) is a kind of HDAC inhibitor and thus shows tumor suppression to colon cancer. However, the volatile and corrosive nature of BA presents challenges in practical application. In addition, its clinical application is limited due to its non-targeting ability and low bioavailability. We aimed to synthesize a novel dual-prodrug of 5-ASA and BA, referred as BBA, to synergistically inhibit colon cancer. Further, based on the fact that folate receptor (FR) is over-expressed in most solid tumors and it has been identified to be a cancer stem cell surface marker in colon cancer, we took folate as the targeting ligand and used carboxymethyl-ß-cyclodextrin (CM-ß-CD) to carry BBA and thus prepared a novel inclusion complex of BBA/FA-PEG-CM-ß-CD. RESULTS: It was found that BBA/FA-PEG-CM-ß-CD showed significant inhibition in cell proliferation against colon cancer cells SW620. It showed a pro-longed in vivo circulation and mainly accumulated in tumor tissue. More importantly, BBA/FA-PEG-CM-ß-CD gave great tumor suppression effect against nude mice bearing SW620 xenografts. CONCLUSIONS: Therefore, BBA/FA-PEG-CM-ß-CD may have clinical potential in colon cancer therapy.


Assuntos
Antineoplásicos , Neoplasias do Colo/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Pró-Fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Ácido Butírico/metabolismo , Ácido Butírico/farmacocinética , Ácido Butírico/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclodextrinas/química , Ácido Fólico/metabolismo , Masculino , Mesalamina/metabolismo , Mesalamina/farmacocinética , Mesalamina/farmacologia , Camundongos , Camundongos Nus , Pró-Fármacos/química , Pró-Fármacos/farmacocinética , Pró-Fármacos/farmacologia
4.
Biochem Biophys Res Commun ; 524(3): 561-566, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32014250

RESUMO

5-Aminosalicylic acid (5-ASA) is conventionally used as a first line drug for inflammatory bowel disease (IBD). Because 5-ASA is well absorbed in the small intestine, very high dose of 5-ASA is required to deliver it to the large intestine which is a target site. Interestingly, 5-ASA is reported to be transported into the large intestine as well as the small intestine via unknown transport system. In a heterologous expression system using Xenopus oocytes, sodium-coupled monocarboxylate transporter 1 (SMCT1) has been reported to accept 5-ASA as a substrate. Although SMCT1 is found to be expressed in the large intestine, it is unknown whether SMCT1 is responsible for 5-ASA absorption from the large intestine or not. Here we determined the transport characteristics of 5-ASA in the isolated everted sac prepared from mouse large intestine. Na+-dependent uptake of [3H]nicotinate, a substrate for SMCT1, in mouse colon was competitively inhibited by 5-ASA with IC50 value of 2.8 mM. In addition to nicotinate, 5-ASA uptake in mouse colonic mucosa was Na+-dependent and saturable with Michaelis constant (Km) of 2.4 mM. Na+-activation kinetics revealed that the Na+-to-5-ASA stoichiometry was 2:1 and concentration of Na+ necessary for half-maximal transport (K0.5Na) was 36.1 mM. Na+-dependent 5-ASA uptake was competitively inhibited by nicotinate with an inhibitory constant (Ki) of 2.1 mM was comparable to the Km value of Na+-dependent nicotinate uptake (0.99 mM). Furthermore, ibuprofen, a selective SMCT1 inhibitor, was found to have a significantly inhibitory effect on the Na+-dependent 5-ASA uptake in mouse colon (IC50 = 0.19 mM). Taken collectively, these results indicated that SMCT1 in the mouse colonic mucosa is responsible for Na+-dependent 5-ASA uptake.


Assuntos
Mucosa Intestinal/metabolismo , Mesalamina/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Animais , Transporte Biológico , Ibuprofeno/metabolismo , Ácido Láctico/metabolismo , Masculino , Mesalamina/química , Camundongos Endogâmicos ICR , Niacina/metabolismo , Sódio/metabolismo , Especificidade por Substrato , Trítio/metabolismo
5.
J Gastroenterol Hepatol ; 35(11): 1878-1885, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32250471

RESUMO

BACKGROUND AND AIM: 5-Aminosalicylic acid (5-ASA) is a fundamental treatment for mild-to-moderate ulcerative colitis (UC). 5-ASA is taken up into the colonic mucosa and metabolized to N-acetyl-5-ASA (Ac-5-ASA). Few studies have assessed whether mucosal 5-ASA and Ac-5-ASA concentrations are associated with endoscopic remission. This study aimed to investigate differences in 5-ASA and Ac-5-ASA concentrations according to endoscopic activity. METHODS: This single-center, prospective, cross-sectional study was conducted between March 2018 and February 2019. UC patients who were administered with 5-ASA medication for at least 8 weeks before sigmoidoscopy were enrolled. Mucosal 5-ASA and Ac-5-ASA concentrations were measured using liquid chromatography with tandem mass spectrometry. The primary endpoint was defined as the difference in mucosal concentrations of 5-ASA and Ac-5-ASA, according to the Mayo endoscopic subscore (MES). RESULTS: Mucosal concentrations were analyzed in 50 patients. In the sigmoid colon, the median 5-ASA concentration in patients with MES of 0 (17.3 ng/mg) was significantly higher than MES ≥ 1 (6.4 ng/mg) (P = 0.019). The median 5-ASA concentrations in patients with Ulcerative Colitis Endoscopic Index of Severity ≤ 1 (16.4 ng/mg) were also significantly higher than in patients with Ulcerative Colitis Endoscopic Index of Severity ≥ 2 (4.63 ng/mg) (P = 0.047). In the sigmoid colon, the concentration of Ac-5-ASA was higher in patients with MES of 0 (21.2 ng/mg) than in patients with MES ≥ 1 (5.81 ng/mg) (P = 0.022). CONCLUSIONS: The present study showed that mucosal Ac-5-ASA concentrations, as well as 5-ASA concentrations, are higher in UC patients with endoscopic remission. Ac-5-ASA may be useful for a biomarker of 5-ASA efficacy.


Assuntos
Ácidos Aminossalicílicos/metabolismo , Colite Ulcerativa/tratamento farmacológico , Mucosa Intestinal/metabolismo , Mesalamina/uso terapêutico , Sigmoidoscopia , Adulto , Biomarcadores/metabolismo , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/metabolismo , Colo Sigmoide/metabolismo , Estudos Transversais , Feminino , Humanos , Masculino , Mesalamina/metabolismo , Pessoa de Meia-Idade , Estudos Prospectivos , Indução de Remissão , Resultado do Tratamento
6.
Biol Pharm Bull ; 42(1): 81-86, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30369547

RESUMO

The efficacy of 5-aminosalicylic acid (5-ASA) as the first-line therapy for ulcerative colitis (UC) is determined by the extent of drug delivery to the inflamed region. Moreover, differences among the various formulations influence delivery of the drug. In this study, we examined the clinical significance of colonic mucosal concentrations of 5-ASA and N-acetylmesalamine (Ac-5-ASA) in UC patients receiving a pH-dependent or time-dependent release formulation of 5-ASA. The subjects were 67 patients with UC who were treated with a pH-dependent or time-dependent formulation of 5-ASA between December 2011 and April 2014. A retrospective observational analysis of clinical outcomes was performed using the clinical activity index (CAI) obtained on the day of biopsy. Colonic mucosal concentrations of 5-ASA and Ac-5-ASA in biopsy samples were measured by LC-tandem mass spectrometry/mass spectrometry. Patients who were treated with the pH-dependent formulation had higher colon mucosal concentrations of 5-ASA than those who were treated with the time-dependent formulation. Additionally, 5-ASA concentration was significantly higher in patients with CAI scores ≤3. A higher concentration of Ac-5-ASA was achieved with the time-dependent formulation than with the pH-dependent formulation. Furthermore, patients with CAI scores ≤3 had higher concentrations of 5-ASA than those with CAI scores ≥4. The colonic mucosal concentration of 5-ASA in patients with UC is influenced by the pharmaceutical formulation and the remission status of UC.


Assuntos
Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/uso terapêutico , Colite Ulcerativa/tratamento farmacológico , Mucosa Intestinal/efeitos dos fármacos , Mesalamina/química , Mesalamina/uso terapêutico , Adolescente , Adulto , Idoso , Anti-Inflamatórios não Esteroides/metabolismo , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/epidemiologia , Composição de Medicamentos , Feminino , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Japão/epidemiologia , Masculino , Mesalamina/metabolismo , Pessoa de Meia-Idade , Adulto Jovem
7.
J Bacteriol ; 200(1)2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29038259

RESUMO

The 1,125-bp mabB gene encoding 5-aminosalicylate (5ASA) 1,2-dioxygenase, a nonheme iron dioxygenase in the bicupin family that catalyzes the cleavage of the 5ASA aromatic ring to form cis-4-amino-6-carboxy-2-oxohexa-3,5-dienoate in the biodegradation of 3-aminobenzoate, was cloned from Comamonas sp. strain QT12 and characterized. The deduced amino acid sequence of the enzyme has low sequence identity with that of other reported ring-cleaving dioxygenases. MabB was heterologously expressed in Escherichia coli cells and purified as a His-tagged enzyme. The optimum pH and temperature for MabB are 8.0 and 10°C, respectively. FeII is required for the catalytic activity of the purified enzyme. The apparent Km and Vmax values of MabB for 5ASA are 52.0 ± 5.6 µM and 850 ± 33.2 U/mg, respectively. The two oxygen atoms incorporated into the product of the MabB-catalyzed reaction are both from the dioxygen molecule. Both 5ASA and gentisate could be converted by MabB; however, the catalytic efficiency of MabB for 5ASA was much higher (∼70-fold) than that for gentisate. The mabB-disrupted mutant lost the ability to grow on 3-aminobenzoate, and mabB expression was higher when strain QT12 was cultivated in the presence of 3-aminobenzoate. Thus, 5ASA is the physiological substrate of MabB.IMPORTANCE For several decades, 5-aminosalicylate (5ASA) has been advocated as the drug mesalazine to treat human inflammatory bowel disease and considered the key intermediate in the xenobiotic degradation of many aromatic organic pollutants. 5ASA biotransformation research will help us elucidate the microbial degradation of these pollutants. Most studies have reported that gentisate 1,2-dioxygenases (GDOs) can convert 5ASA with significantly high activity; however, the catalytic efficiency of these enzymes for gentisate is much higher than that for 5ASA. This study showed that MabB can convert 5ASA to cis-4-amino-6-carboxy-2-oxohexa-3,5-dienoate, incorporating two oxygen atoms from the dioxygen molecule into the product. Unlike GDOs, MabB uses 5ASA instead of gentisate as the primary substrate. mabB is the first reported 5-aminosalicylate 1,2-dioxygenase gene.


Assuntos
Comamonas/enzimologia , Dioxigenases/genética , Dioxigenases/metabolismo , Biocatálise , Biodegradação Ambiental , Clonagem Molecular , Comamonas/efeitos dos fármacos , Comamonas/genética , Comamonas/crescimento & desenvolvimento , Dioxigenases/química , Dioxigenases/isolamento & purificação , Escherichia coli/genética , Gentisatos/metabolismo , Cinética , Mesalamina/metabolismo , Mutação , Oxigênio/metabolismo , Especificidade por Substrato , meta-Aminobenzoatos/metabolismo , meta-Aminobenzoatos/farmacologia
8.
Mol Pharm ; 14(2): 345-358, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28009518

RESUMO

As an orally administered, locally acting gastrointestinal drug, mesalamine products are designed to achieve high local drug concentration in the gastrointestinal (GI) tract for the treatment of ulcerative colitis. The aim of this study was to directly measure and compare drug dissolution of three mesalamine formulations in human GI tract and to correlate their GI concentration with drug concentration in plasma. Healthy human subjects were orally administered Pentasa, Apriso, or Lialda. GI fluids were aspirated from stomach, duodenum, proximal jejunum, mid jejunum, and distal jejunum regions. Mesalamine (5-ASA) and its primary metabolite acetyl-5-mesalamine (Ac-5-ASA) were measured using LC-MS/MS. GI tract pH was measured from each GI fluid sample, which averaged 1.82, 4.97, 5.67, 6.17, and 6.62 in the stomach, duodenum, proximal jejunum, middle jejunum, and distal jejunum, respectively. For Pentasa, high levels of 5-ASA in solution were observed in the stomach, duodenum, proximal jejunum, mid jejunum, and distal jejunum from 1 to 7 h. Apriso had minimal 5-ASA levels in stomach, low to medium levels of 5-ASA in duodenum and proximal jejunum from 4 to 7 h, and high levels of 5-ASA in distal jejunum from 3 to 7 h. In contrast, Lialda had minimal 5-ASA levels from stomach and early small intestine. A composite appearance rate (CAR) was calculated from the deconvolution of individual plasma concentration to reflect drug release, dissolution, transit, and absorption in the GI tract. Individuals dosed with Pentasa had high levels of CAR from 1 to 10 h; individuals dosed with Apriso had low levels of CAR from 1 to 4 h and high levels of CAR from 5 to 10 h; Lialda showed minimal levels of CAR from 0 to 5 h, then increased to medium levels from 5 to 12 h, and then decreased to further lower levels after 12 h. In the colon region, Pentasa and Apriso showed similar levels of accumulated 5-ASA excreted in the feces, while Lialda showed slightly higher 5-ASA accumulation in feces. However, all three formulations showed similar levels of metabolite Ac-5-ASA in the feces. These results provide direct measurement of drug dissolution in the GI tract, which can serve as a basis for investigation of bioequivalence for locally acting drug products.


Assuntos
Liberação Controlada de Fármacos/fisiologia , Trato Gastrointestinal/metabolismo , Mesalamina/metabolismo , Administração Oral , Adolescente , Adulto , Química Farmacêutica/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Solubilidade , Adulto Jovem
9.
Am J Physiol Gastrointest Liver Physiol ; 306(11): G1002-10, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24742986

RESUMO

Pharmacotherapy based on 5-aminosalicylic acid (5-ASA) is a preferred treatment for ulcerative colitis, but variable patient response to this therapy is observed. Inflammation can affect therapeutic outcomes by regulating the expression and activity of drug-metabolizing enzymes; its effect on 5-ASA metabolism by the colonic arylamine N-acetyltransferase (NAT) enzyme isoforms is not firmly established. We examined if inflammation affects the capacity for colonic 5-ASA metabolism and NAT enzyme expression. 5-ASA metabolism by colonic mucosal homogenates was directly measured with a novel fluorimetric rate assay. 5-ASA metabolism reported by the assay was dependent on Ac-CoA, inhibited by alternative NAT substrates (isoniazid, p-aminobenzoylglutamate), and saturable with Km (5-ASA) = 5.8 µM. A mouse model of acute dextran sulfate sodium (DSS) colitis caused pronounced inflammation in central and distal colon, and modest inflammation of proximal colon, defined by myeloperoxidase activity and histology. DSS colitis reduced capacity for 5-ASA metabolism in central and distal colon segments by 52 and 51%, respectively. Use of selective substrates of NAT isoforms to inhibit 5-ASA metabolism suggested that mNAT2 mediated 5-ASA metabolism in normal and colitis conditions. Western blot and real-time RT-PCR identified that proximal and distal mucosa had a decreased mNAT2 protein-to-mRNA ratio after DSS. In conclusion, an acute colonic inflammation impairs the expression and function of mNAT2 enzyme, thereby diminishing the capacity for 5-ASA metabolism by colonic mucosa.


Assuntos
Arilamina N-Acetiltransferase/metabolismo , Colite/patologia , Colo/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Mesalamina/metabolismo , Animais , Anti-Inflamatórios não Esteroides/metabolismo , Arilamina N-Acetiltransferase/genética , Colite/induzido quimicamente , Sulfato de Dextrana/toxicidade , Humanos , Mucosa Intestinal/enzimologia , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Eur J Med Res ; 29(1): 102, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321559

RESUMO

OBJECTIVE: To explore the mechanism of huankuile (HKL) in colon injury repair in rats with ulcerative colitis (UC). METHODS: Fifty SPF Wistar male rats were divided randomly into a normal group, a negative control group, an HKL intervention group ('HKL group') and a 5-aminosalicylic acid intervention group ('5-ASA group'). After 14 days of intervention with corresponding drugs, pathological scores were obtained using the results of immunohistochemical staining; morphological changes were observed by hematoxylin-eosin staining, and the mRNA expression levels of tumour necrosis factor-α (TNF-α), matrix metalloproteinase 9 (MMP9) and interleukin-13 (IL-13) were detected by real-time quantitative PCR. RESULTS: After the successful construction of the rat model, it was compared with the rats in the normal group. In the negative group, it was found that the expression of TNF-α and MMP9 was significantly increased in the colonic mucosal epithelia of the rats, the pathological score was significantly increased (P < 0.05), and the mRNA expression levels of TNF-α, MMP9 and IL-13 were increased (P < 0.05). After treatment with HKL, the colonic morphology of the rats returned to normal, the expression of TNF-α and MMP9 in the colonic mucosal epithelium of the rats returned to normal, the pathological score grade was significantly reduced (P < 0.05), and the mRNA expression levels of TNF-α, MMP9 and IL-13 were reduced; these results were largely consistent with those of the normal group, with no statistically significant difference. CONCLUSION: HKL effectively improved the general symptoms and tissue injury in UC rats, and the therapeutic effect was better than that of 5-ASA group. Ulcerative colitis in rats increased the expression of TNF-α, MMP9 and IL-13. HKL repaired UC-induced colonic injury in rats by decreasing the expression of TNF-α, MMP9 and IL-13.


Assuntos
Colite Ulcerativa , Traumatismos Torácicos , Animais , Masculino , Ratos , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/genética , Colite Ulcerativa/metabolismo , Colo/metabolismo , Interleucina-13/metabolismo , Interleucina-13/uso terapêutico , Metaloproteinase 9 da Matriz/metabolismo , Mesalamina/metabolismo , Mesalamina/uso terapêutico , Ratos Wistar , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/genética
11.
Mol Pharm ; 10(2): 488-99, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23301519

RESUMO

Doxorubicin (Dox) is a hydrophilic anticancer drug that has short retention time due to the efficient efflux in some cancer cells (e.g., ovarian adenocarcinoma SK-OV-3). Cyclic [W(RW)(4)] and the corresponding linear peptide (RW)(4) were conjugated with Dox through an appropriate linker to afford cyclic [W(RW)(4)]-Dox and linear (RW)(4)-Dox conjugates to enhance the cellular uptake and cellular retention of the parent drug for sustained anticancer activity. Comparative antiproliferative assays between covalent (cyclic [W(RW)(4)]-Dox and linear (RW)(4)-Dox) and the corresponding noncovalent physical mixtures of the peptides and Dox were performed. Cyclic [W(RW)(4)]-Dox inhibited the cell proliferation of human leukemia (CCRF-CEM) (62-73%), ovarian adenocarcinoma (SK-OV-3) (51-74%), colorectal carcinoma (HCT-116) (50-67%), and breast carcinoma (MDA-MB-468) (60-79%) cells at a concentration of 1 µM after 72-120 h of incubation. Cyclic [W(RW)(4)]-Dox exhibited higher antiproliferative activity than linear (RW)(4)-Dox in all cancer cells with the highest activity observed after 72 h. Flow cytometry analysis showed 3.6-fold higher cellular uptake of cyclic [W(RW)(4)]-Dox than Dox alone in SK-OV-3 cells after 24 h incubation. The cellular hydrolysis study showed that 99% of cyclic [W(RW)(4)]-Dox was hydrolyzed intracellularly within 72 h and released Dox. These data suggest that cyclic [W(RW)(4)]-Dox can be used as a potential prodrug for improving the cellular delivery and retention of Dox.


Assuntos
Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Doxorrubicina/química , Doxorrubicina/metabolismo , Pró-Fármacos/química , Pró-Fármacos/metabolismo , Desenho de Fármacos , Mesalamina/química , Mesalamina/metabolismo , Estrutura Molecular
13.
Gen Physiol Biophys ; 32(3): 361-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23846255

RESUMO

The aim of the study was 1) to estimate permeability of 5-aminosalicylic acid (5-ASA), 2) to categorize 5-ASA according to BCS (Biopharmaceutics Classification System), and 3) to contribute to determination of 5-ASA transintestinal transport and biotransformation mechanisms. The in situ rat intestine perfusion was used as an initial method to study 5-ASA transport. The amount of 5-ASA (released from tablet) transferred into portal circulation reached 5.79 ± 0.24%. During this transport, the intestinal formation of 5-ASA main metabolite (N-ac-5-ASA) occurred. N-ac-5-ASA was found in perfusate both from intestinal lumen and from v. portae. In in vitro Caco-2 monolayers, transport of 5-ASA (10-1000 µmol/l) was studied in apical-basolateral and basolateral-apical direction (iso-pH 7.4 conditions). The transport of total 5-ASA (parent drug plus intracellularly formed N-ac-5-ASA) was linear with time, concentration- and direction-dependent. Higher basolateral-apical (secretory) transport was mainly caused by higher transport of the metabolite (suggesting metabolite efflux transport). Transport of 5-ASA (only parent drug) was saturable (transepithelial carrier-mediated) at low doses, dominated by passive, paracellular process in higher doses which was confirmed by increased 5-ASA transport using Ca2+-free transport medium. The estimated low 5-ASA permeability and its low solubility enable to classify 5-ASA as BCS class IV.


Assuntos
Absorção Intestinal , Mucosa Intestinal/metabolismo , Mesalamina/classificação , Mesalamina/metabolismo , Animais , Biotransformação , Células CACO-2 , Sobrevivência Celular , Humanos , Intestinos/citologia , Espaço Intracelular/metabolismo , Masculino , Perfusão , Permeabilidade , Ratos , Ratos Wistar
14.
Gen Physiol Biophys ; 32(3): 371-80, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23846256

RESUMO

The object of this study was to investigate the effect of probiotic Escherichia coli strain Nissle 1917 (EcN) (i) EcN lipopolysaccharide (EcN LPS) and (ii) bacteria-free supernatant of EcN suspension (EcN supernatant) on in vitro transepithelial transport of mesalazine (5-aminosalicylic acid, 5-ASA), the most commonly prescribed anti-inflammatory drug in inflammatory bowel disease (IBD). Effect of co-administered EcN LPS (100 µg/ml) or EcN supernatant (50 µg/ml) on the 5-ASA transport (300 µmol/l) was studied using the Caco-2 monolayer (a human colon carcinoma cell line) as a model of human intestinal absorption. Permeability characteristics for absorptive and secretory transport of parent drug and its intracellularly-formed metabolite were determined. The quantification of 5-ASA and its main metabolite N-acetyl-5-amino-salicylic acid (N-Ac-5-ASA) was performed by high performance liquid chromatography. Obtained results suggest that neither EcN LPS nor EcN supernatant had effect on the total 5-ASA transport (secretory flux greater than absorptive flux) and on the transport of intracellularly formed N-Ac-5-ASA (preferentially transported in the secretory direction). The percent cumulative transport of the total 5-ASA alone or in combination with EcN LPS or EcN supernatant did not exceed 1%.


Assuntos
Anti-Inflamatórios não Esteroides/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Escherichia coli/química , Lipopolissacarídeos/farmacologia , Mesalamina/metabolismo , Probióticos/química , Transporte Biológico/efeitos dos fármacos , Células CACO-2 , Meios de Cultivo Condicionados/química , Células Epiteliais/citologia , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Permeabilidade/efeitos dos fármacos
15.
Int J Pharm ; 648: 123597, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37952559

RESUMO

Eudragit S100-coated bile salt-containing liposomes were prepared and optimized by experimenting with different variables, including bile salt type and concentration, and the method of incorporation into liposomes using a model hydrophilic compound, 5-aminosalicylic acid (5-ASA). After optimizing the formulation, cellular uptake, and animal pharmacokinetic experiments were performed. The inclusion of sodium glycocholate (SG) into liposomes decreased liposome particle size and entrapment efficiency significantly but had no effect on zeta potential. The method of incorporating SG into the lipid or aqueous phase of the liposome did not notably impact the characteristics of the liposomes but the hydration media had a substantial effect on the entrapment efficiency of 5-ASA. In vitro drug release in different fluids simulating distinct gastrointestinal tract sections, indicated pH-dependent disintegration of the coating layer of coated SG-containing liposomes. The majority of the drug was retained when subjected to simulated gastric fluid (SGF) and fed-state simulated intestinal fluid (FeSSIF) (≈ 37% release after 2 h in SGF pH 1.2, followed by 3 h in FeSSIF pH 5). The remaining drug was subsequently released in phosphate-buffered saline pH 7.4 (≈ 85% release within 24 h). Increasing SG concentration in the liposomes decreased the amount of drug released in FeSSIF. Similar results were observed when SG was replaced with sodium taurocholate. Cellular uptake studies in Caco-2 cells demonstrated that all liposomal formulations (conventional liposomes, bile salt-containing liposomes, and coated bile salt-containing liposomes) have shown to be equally effective at increasing the cellular uptake compared to free fluorescein solution. In the pharmacokinetic study, coated bile salt-containing liposomes showed a lower Cmax and prolonged residence in the gastrointestinal tract in comparison to conventional liposomes. Taken together, these findings suggest that the polymer-coated bile salt-containing liposomes have the potential to serve as a drug delivery system targeted at the colon.


Assuntos
Lipossomos , Mesalamina , Humanos , Animais , Lipossomos/química , Mesalamina/metabolismo , Ácidos e Sais Biliares , Células CACO-2 , Ácido Glicocólico/química , Colo/metabolismo
16.
Curr Med Chem ; 30(12): 1351-1367, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35796458

RESUMO

The anti-inflammatory 5-aminosalicylic acid (5-ASA) is the main therapeutic option used to prevent and treat inflammatory bowel diseases. The upper intestinal tract performs rapid and almost complete absorption of this drug when administered orally, making local therapeutic levels of the molecule in the inflamed colonic mucosa difficult to achieve. Micro and nanoparticle systems are promising for 5-ASA incorporation because the reduced dimensions of these structures can improve the drug's pharmacodynamics and contribute to more efficient and localized therapy. Together, the association of these systems with polymers will allow the release of 5-ASA through specific targeting mechanisms to the colon, as demonstrated in the mesalazine modified-release dosage form. This review will summarize and discuss the challenges for the oral administration of 5-ASA and the different colon-specific delivery strategies using polymers.


Assuntos
Anti-Inflamatórios não Esteroides , Mesalamina , Humanos , Mesalamina/uso terapêutico , Mesalamina/metabolismo , Anti-Inflamatórios não Esteroides/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Colo/metabolismo , Polímeros , Administração Oral
17.
J Med Chem ; 66(20): 14061-14079, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37831489

RESUMO

The aggressiveness and recurrence of cancer is linked to cancer stem cells (CSCs), but drugs targeting CSCs may not succeed in the clinic due to the lack of a distinct CSC subpopulation. Clinical Pt(II) drugs can increase stemness. We screened 15 RuII or IrIII complexes with mesalazine or 3-aminobenzoate Schiff bases of the general formulas [Ru(p-cym)L]+, [Ru(p-cym)L], and [Ir(Cp*)L]+ (L = L1-L9) and found three complexes (2, 12, and 13) that are active against oral squamous cell carcinoma (OSCC) CSCs. There is a putative oncogenic role of transcription factors (viz. NOTCH1, SOX2, c-MYC) to enhance the stemness. Our work shows that imidazolyl-mesalazine ester-based RuII complexes inhibit growth of CSC-enriched OSCC 3D spheroids at low micromolar doses (2 µM). Complexes 2, 12, and 13 reduce stemness gene expression and induce differentiation markers (Involucrin, CK10) in OSCC 3D cultures. The imidazolyl-mesalazine ester-based RuII complex 13 shows the strongest effect. Downregulating c-MYC suggests that RuII complexes may target c-MYC-driven cancers.


Assuntos
Antineoplásicos , Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Mesalamina/metabolismo , Mesalamina/farmacologia , Linhagem Celular Tumoral , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/metabolismo , Diferenciação Celular , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Células-Tronco Neoplásicas
18.
Int Immunopharmacol ; 115: 109621, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36574744

RESUMO

Ulcerative colitis (UC) is a global inflammatory bowel disease. This study aimed to assess the effects of icosapent ethyl on acetic acid-induced colitis in rats as well as the underlying mechanisms involved. 36 male Wister rats were equally divided into six groups: control, UC, mesalamine 100 mg/kg, icosapent 150mg/kg, icosapent 300 mg/kg, and EX527-icosapent 300 mg/kg groups. Except for control group, UC was induced by acetic acid instillation into colon. Drugs were administered once daily for one week then under thiopental anaesthesia, colons were excised. Colitis macroscopic and microscopic scores were assessed. A part of colon was homogenized for detection of malondialdehyde (MDA), inerleukin1 (IL-1ß), tumor necrosis factor (TNF-α), superoxide dismutase (SOD), phosphorylated Akt (pAkt) and caspase 3 levels. Silent information regulator 1 (SIRT1), heme oxygenase 1 (HO-1), and nuclear factor erythroid 2 (Nrf2) mRNA expressions were detected. Mallory-stained colonic sections were examined for collagen fibres detection. Immunohistochemistry of NF-κB and p53 expressionsin colonic sections were assessed. Acetic acid induced colitis with increments in MDA, IL-1ß, TNF-α, and caspase 3 levels while decreased SOD, pAkt, SIRT1, HO-1, and Nrf2 with increased collagen fibres as well as NF-κB and p53. Icosapent decreased macro& microscopic colitis scores, MDA, IL-1ß, TNF-α, and caspase 3 levels while increased SOD, pAkt, SIRT1, HO-1, and Nrf2 with decreased collagen fibres as well as NF-κB and p53. The effects of icosapent 300 mg/kg were similar to mesalamine. Icosapent effects were antagonized by EX527. Icosapent alleviated acetic acid-induced colitis via its anti-inflammatory, antioxidant, and anti-apoptotic effects mediated in part by SIRT1 pathway activation.


Assuntos
Colite Ulcerativa , Colite , Ratos , Masculino , Animais , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/metabolismo , Ácido Eicosapentaenoico/efeitos adversos , Ácido Eicosapentaenoico/metabolismo , Sirtuína 1/metabolismo , Caspase 3/metabolismo , NF-kappa B/metabolismo , Mesalamina/efeitos adversos , Mesalamina/metabolismo , Ácido Acético/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Ratos Wistar , Colite/induzido quimicamente , Transdução de Sinais , Colo/patologia , Superóxido Dismutase/metabolismo , Colágeno/metabolismo
19.
Angew Chem Int Ed Engl ; 51(50): 12486-9, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23129230

RESUMO

I want to break free: Mesoporous silica nanoparticles are functionalized with sulfasalazine (SZ; see scheme), a prodrug of 5-aminosalicylic acid (5-ASA) and sulfapyridine, to generate enzyme-responsive nanocarriers. In the presence of the colon-specific enzyme azo-reductase (orange), 5-ASA and sulfapyridine are efficiently released.


Assuntos
Nanosferas/química , Oxirredutases/metabolismo , Pró-Fármacos/metabolismo , Dióxido de Silício/química , Portadores de Fármacos/química , Concentração de Íons de Hidrogênio , Mesalamina/química , Mesalamina/metabolismo , Porosidade , Pró-Fármacos/química , Sulfapiridina/química , Sulfapiridina/metabolismo , Sulfassalazina/química , Sulfassalazina/metabolismo
20.
J Control Release ; 346: 275-288, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35461968

RESUMO

Although in-vivo bioequivalence (BE) study serves as a golden standard for establishing interchangeability of oral dosage forms, it remains challenging for products with high inter-subject variability such as mesalazine enteric-coated tablet to fulfil the BE criteria set by regulatory authorities. Mesalazine, as a BCS class IV drug, targets to be delivered to distal ileum or colon with a pH-sensitive polymer coating for the remission of ulcerative colitis. Through population pharmacokinetic (PK) analysis and in-vitro in-vivo correlation (IVIVC) modeling on the dissolution and BE data of a generic enteric-coated product (EM) and its reference Salofalk® 250 mg tablet (SM), we for the first time revealed the underlying mechanism of the high inter-subject variability for such delayed-release formulation. It was also noted that the in-vivo start time of absorption (Ts) for EM and SM was positively correlated with their in-vitro lag time (Tlag) under the USP three-stage dissolution condition and reversely correlated with their in-vivo bioavailability. The varied oral bioavailability of mesalazine enteric-coated tablet was mainly due to the varied N-acetyltransferase activities along GI tract. Although such extensive intestinal first-pass metabolism with large individual differences led to a significant variation of mesalazine Cmax (coefficient of variation: 60-63.5%) and AUC0-t (coefficient of variation: 37.5-46.9%), the corresponding variations in the total absorbed mesalazine (mesalazine and its metabolite N-acetyl mesalazine) were significantly reduced by 12 to 45%. Since the BE purpose for mesalazine enteric-coated tablet focused on their comparable safety profiles, total absorbed mesalazine was recommended to be adopted for the development of the IVIVC model and BE evaluation for EM. All in all, our model-based approach has not only successfully identified the key factors that affect the BE of EM to guide its further formulation optimization, but also demonstrated the indispensable role of modeling in the development of generic pharmaceutical product at its early stages.


Assuntos
Colite Ulcerativa , Mesalamina , Disponibilidade Biológica , Humanos , Intestino Delgado/metabolismo , Mesalamina/metabolismo , Solubilidade , Comprimidos , Comprimidos com Revestimento Entérico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA