Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 527(7577): 186-91, 2015 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-26466563

RESUMO

Solid cancer cells commonly enter the blood and disseminate systemically, but are highly inefficient at forming distant metastases for poorly understood reasons. Here we studied human melanomas that differed in their metastasis histories in patients and in their capacity to metastasize in NOD-SCID-Il2rg(-/-) (NSG) mice. We show that melanomas had high frequencies of cells that formed subcutaneous tumours, but much lower percentages of cells that formed tumours after intravenous or intrasplenic transplantation, particularly among inefficiently metastasizing melanomas. Melanoma cells in the blood and visceral organs experienced oxidative stress not observed in established subcutaneous tumours. Successfully metastasizing melanomas underwent reversible metabolic changes during metastasis that increased their capacity to withstand oxidative stress, including increased dependence on NADPH-generating enzymes in the folate pathway. Antioxidants promoted distant metastasis in NSG mice. Folate pathway inhibition using low-dose methotrexate, ALDH1L2 knockdown, or MTHFD1 knockdown inhibited distant metastasis without significantly affecting the growth of subcutaneous tumours in the same mice. Oxidative stress thus limits distant metastasis by melanoma cells in vivo.


Assuntos
Melanoma/metabolismo , Melanoma/patologia , Metástase Neoplásica/prevenção & controle , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Feminino , Ácido Fólico/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Masculino , Melanoma/sangue , Metotrexato/farmacologia , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Antígenos de Histocompatibilidade Menor , NADP/metabolismo , Transplante de Neoplasias , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/deficiência , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo
2.
Curr Opin Clin Nutr Metab Care ; 23(4): 241-246, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32412981

RESUMO

PURPOSE OF REVIEW: Immune dysfunction, including severe combined immunodeficiency, has been described in genetic disorders affecting the metabolism of the vitamins cobalamin (vitamin B12) and folate. We have reviewed reports of clinical findings in patients with a number of inborn errors of cobalamin or folate metabolism, specifically looking for immune problems. RECENT FINDINGS: There is little evidence that immune function is affected in most of the disorders. Exceptions are Imerslund-Gräsbeck syndrome and hereditary folate malabsorption (affecting intestinal absorption of cobalamin and folate, respectively), transcobalamin deficiency (affecting transport of cobalamin in blood and cellular cobalamin uptake), and methylenetetrahydrofolate dehydrogenase 1 deficiency (catalyzing cytoplasmic interconversion of reduced folate coenzyme derivatives). SUMMARY: Although some inborn errors of cobalamin or folate can be associated with immune dysfunction, the degree and type of immune dysfunction vary with no obvious pattern.


Assuntos
Deficiência de Ácido Fólico/imunologia , Síndromes de Malabsorção/imunologia , Fenômenos Fisiológicos da Nutrição/imunologia , Doenças da Imunodeficiência Primária/imunologia , Deficiência de Vitamina B 12/imunologia , Anemia Megaloblástica/congênito , Anemia Megaloblástica/imunologia , Ácido Fólico/genética , Ácido Fólico/imunologia , Deficiência de Ácido Fólico/congênito , Humanos , Síndromes de Malabsorção/congênito , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Metilenotetra-Hidrofolato Desidrogenase (NADP)/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Proteinúria/congênito , Proteinúria/imunologia , Transcobalaminas/deficiência , Transcobalaminas/imunologia , Vitamina B 12/genética , Vitamina B 12/imunologia , Deficiência de Vitamina B 12/congênito
3.
Nature ; 510(7504): 298-302, 2014 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-24805240

RESUMO

ATP is the dominant energy source in animals for mechanical and electrical work (for example, muscle contraction or neuronal firing). For chemical work, there is an equally important role for NADPH, which powers redox defence and reductive biosynthesis. The most direct route to produce NADPH from glucose is the oxidative pentose phosphate pathway, with malic enzyme sometimes also important. Although the relative contribution of glycolysis and oxidative phosphorylation to ATP production has been extensively analysed, similar analysis of NADPH metabolism has been lacking. Here we demonstrate the ability to directly track, by liquid chromatography-mass spectrometry, the passage of deuterium from labelled substrates into NADPH, and combine this approach with carbon labelling and mathematical modelling to measure NADPH fluxes. In proliferating cells, the largest contributor to cytosolic NADPH is the oxidative pentose phosphate pathway. Surprisingly, a nearly comparable contribution comes from serine-driven one-carbon metabolism, in which oxidation of methylene tetrahydrofolate to 10-formyl-tetrahydrofolate is coupled to reduction of NADP(+) to NADPH. Moreover, tracing of mitochondrial one-carbon metabolism revealed complete oxidation of 10-formyl-tetrahydrofolate to make NADPH. As folate metabolism has not previously been considered an NADPH producer, confirmation of its functional significance was undertaken through knockdown of methylenetetrahydrofolate dehydrogenase (MTHFD) genes. Depletion of either the cytosolic or mitochondrial MTHFD isozyme resulted in decreased cellular NADPH/NADP(+) and reduced/oxidized glutathione ratios (GSH/GSSG) and increased cell sensitivity to oxidative stress. Thus, although the importance of folate metabolism for proliferating cells has been long recognized and attributed to its function of producing one-carbon units for nucleic acid synthesis, another crucial function of this pathway is generating reducing power.


Assuntos
Ácido Fólico/metabolismo , NADP/biossíntese , Animais , Carbono/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Citosol/enzimologia , Citosol/metabolismo , Glutationa/metabolismo , Glicina/metabolismo , Células HEK293 , Humanos , Isoenzimas/deficiência , Isoenzimas/genética , Isoenzimas/metabolismo , Leucovorina/análogos & derivados , Leucovorina/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , NADP/metabolismo , Oxirredução , Estresse Oxidativo , Via de Pentose Fosfato , Serina/metabolismo , Tetra-Hidrofolatos/metabolismo
4.
J Nutr ; 148(4): 501-509, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29659962

RESUMO

Background: Suboptimal folate intake, a risk factor for birth defects, is common even in areas with folate fortification. A polymorphism in methylenetetrahydrofolate dehydrogenase 1 (MTHFD1), R653Q (MTHFD1 c.1958 G > A), has also been associated with increased birth defect risk, likely through reduced purine synthesis. Objective: We aimed to determine if the interaction of MTHFD1 synthetase deficiency and low folate intake increases developmental abnormalities in a mouse model for MTHFD1 R653Q. Methods: Female Mthfd1S+/+ and Mthfd1S+/- mice were fed control or low-folate diets (2 and 0.3 mg folic acid/kg diet, respectively) before mating and during pregnancy. Embryos and placentas were examined for anomalies at embryonic day 10.5. Maternal 1-carbon metabolites were measured in plasma and liver. Results: Delays and defects doubled in litters of Mthfd1S+/- females fed low-folate diets compared to wild-type females fed either diet, or Mthfd1S+/- females fed control diets [P values (defects): diet 0.003, maternal genotype 0.012, diet × maternal genotype 0.014]. These adverse outcomes were associated with placental dysmorphology. Intrauterine growth restriction was increased by embryonic Mthfd1S+/- genotype, folate deficiency, and interaction of maternal Mthfd1S+/- genotype with folate deficiency (P values: embryonic genotype 0.045, diet 0.0081, diet × maternal genotype 0.0019). Despite a 50% increase in methylenetetrahydrofolate reductase expression in low-folate maternal liver (P diet = 0.0007), methyltetrahydrofolate concentration decreased 70% (P diet <0.0001) and homocysteine concentration doubled in plasma (P diet = 0.0001); S-adenosylmethionine decreased 40% and S-adenosylhomocysteine increased 20% in low-folate maternal liver (P diet = 0.002 and 0.0002, respectively). Conclusions: MTHFD1 synthetase-deficient mice are more sensitive to low folate intake than wild-type mice during pregnancy. Reduced purine synthesis due to synthetase deficiency and altered methylation potential due to low folate may increase pregnancy complications. Further studies and individualized intake recommendations may be required for women homozygous for the MTHFD1 R653Q variant.


Assuntos
Anormalidades Congênitas/etiologia , Deficiência de Ácido Fólico/complicações , Ácido Fólico/administração & dosagem , Formiato-Tetra-Hidrofolato Ligase/deficiência , Genótipo , Meteniltetra-Hidrofolato Cicloidrolase/deficiência , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Enzimas Multifuncionais/deficiência , Polimorfismo Genético , Complicações na Gravidez/etiologia , Animais , Metilação de DNA , Dieta , Modelos Animais de Doenças , Feminino , Desenvolvimento Fetal , Retardo do Crescimento Fetal/etiologia , Ácido Fólico/sangue , Deficiência de Ácido Fólico/sangue , Deficiência de Ácido Fólico/genética , Deficiência de Ácido Fólico/metabolismo , Formiato-Tetra-Hidrofolato Ligase/genética , Formiato-Tetra-Hidrofolato Ligase/metabolismo , Ligases , Fígado/metabolismo , Meteniltetra-Hidrofolato Cicloidrolase/genética , Meteniltetra-Hidrofolato Cicloidrolase/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Camundongos , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Placenta , Gravidez , Complicações na Gravidez/sangue , Complicações na Gravidez/genética , Complicações na Gravidez/metabolismo , Prenhez , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Tetra-Hidrofolatos/sangue
5.
Proc Natl Acad Sci U S A ; 112(2): 400-5, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548164

RESUMO

An inborn error of metabolism associated with mutations in the human methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) gene has been identified. The proband presented with SCID, megaloblastic anemia, and neurologic abnormalities, but the causal metabolic impairment is unknown. SCID has been associated with impaired purine nucleotide metabolism, whereas megaloblastic anemia has been associated with impaired de novo thymidylate (dTMP) biosynthesis. MTHFD1 functions to condense formate with tetrahydrofolate and serves as the primary entry point of single carbons into folate-dependent one-carbon metabolism in the cytosol. In this study, we examined the impact of MTHFD1 loss of function on folate-dependent purine, dTMP, and methionine biosynthesis in fibroblasts from the proband with MTHFD1 deficiency. The flux of formate incorporation into methionine and dTMP was decreased by 90% and 50%, respectively, whereas formate flux through de novo purine biosynthesis was unaffected. Patient fibroblasts exhibited enriched MTHFD1 in the nucleus, elevated uracil in DNA, lower rates of de novo dTMP synthesis, and increased salvage pathway dTMP biosynthesis relative to control fibroblasts. These results provide evidence that impaired nuclear de novo dTMP biosynthesis can lead to both megaloblastic anemia and SCID in MTHFD1 deficiency.


Assuntos
Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Timidina Monofosfato/biossíntese , Substituição de Aminoácidos , Anemia Megaloblástica/genética , Anemia Megaloblástica/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Códon sem Sentido , Dano ao DNA , Fibroblastos/metabolismo , Humanos , Redes e Vias Metabólicas , Metilenotetra-Hidrofolato Desidrogenase (NADP)/química , Antígenos de Histocompatibilidade Menor , Proteínas Mutantes/química , Fenótipo , Mutação Puntual , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/metabolismo
6.
Mol Carcinog ; 56(3): 1030-1040, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27597531

RESUMO

The common R653Q variant (∼20% homozygosity in Caucasians) in the synthetase domain of the folate-metabolizing enzyme MTHFD1 reduces purine synthesis. Although this variant does not appear to affect risk for colorectal cancer, we questioned whether it would affect growth of colorectal tumors. We induced tumor formation in a mouse model for MTHFD1-synthetase deficiency (Mthfd1S+/- ) using combined administration of azoxymethane (AOM) and dextran sodium sulfate (DSS) in male and female wild-type and Mthfd1S+/- mice. Tumor size was significantly smaller in MthfdS+/- mice, particularly in males. A reduction in the proliferation of MthfdS+/- mouse embryonic fibroblast cell lines, compared with wild-type lines, was also observed. Tumor number was not influenced by genotype. The amount of inflammation observed within tumors from male Mthfd1S+/- mice was lower than that in wild-type mice. Gene expression analysis in tumor adjacent normal (pre-neoplastic) tissue identified several genes involved in proliferation (Fosb, Fos, Ptk6, Esr2, Atf3) and inflammation (Atf3, Saa1, TNF-α) that were downregulated in MthfdS+/- males. In females, MthfdS+/- genotype was not associated with these gene expression changes, or with differences in tumor inflammation. These findings suggest that the mechanisms directing tumor growth differ significantly between males and females. We suggest that restriction of purine synthesis, reduced expression of genes involved in proliferation, and/or reduced inflammation lead to slower tumor growth in MTHFD1-synthetase deficiency. These findings may have implications for CRC tumor growth and prognosis in individuals with the R653Q variant. © 2016 Wiley Periodicals, Inc.


Assuntos
Aminoidrolases/deficiência , Neoplasias Colorretais/patologia , Formiato-Tetra-Hidrofolato Ligase/deficiência , Meteniltetra-Hidrofolato Cicloidrolase/deficiência , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Antígenos de Histocompatibilidade Menor/genética , Complexos Multienzimáticos/deficiência , Enzimas Multifuncionais/deficiência , Polimorfismo de Nucleotídeo Único , Animais , Azoximetano/efeitos adversos , Proliferação de Células , Células Cultivadas , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/genética , Sulfato de Dextrana/efeitos adversos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos
7.
J Proteome Res ; 15(8): 2618-25, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27315223

RESUMO

Methylenetetrahydrofolate dehydrogenase (NAD(P)+ dependent) 2, methenyltetrahydrofolate cyclohydrolase (MTHFD2) is a mitochondrial enzyme involved in folate metabolism. A number of recent studies have highlighted this enzyme as being highly expressed in many solid tumors, including breast cancer, and to be correlated with poor survival. However, the metabolic functions of MTHFD2 in cancer cells have not been well-defined. To investigate the function of MTHFD2 in breast cancer cells, we generated and characterized MCF-7 cells with stable suppression of MTHFD2 expression using a combination of cellular assays and metabolic profiling. Loss of MTHFD2 caused MCF7 cells to become glycine auxotrophs, that is, reliant on exogenous glycine, and more sensitive to exogenous folate depletion. Another prominent metabolic alteration observed as a consequence of MTHFD2 suppression was a more glycolytic phenotype, consistent with widespread modifications of cellular metabolism. Collectively, these data suggest that targeting MTHFD2 activity is likely to influence multiple metabolic pathways in breast cancer and could be combined with a range of antimetabolite therapies.


Assuntos
Aminoidrolases/deficiência , Glicólise , Metaboloma , Meteniltetra-Hidrofolato Cicloidrolase/deficiência , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Enzimas Multifuncionais/deficiência , Ácido Fólico/metabolismo , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicina/metabolismo , Humanos , Células MCF-7 , Redes e Vias Metabólicas , Proteínas de Neoplasias
8.
Proc Natl Acad Sci U S A ; 110(2): 549-54, 2013 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-23267094

RESUMO

Maternal supplementation with folic acid is known to reduce the incidence of neural tube defects (NTDs) by as much as 70%. Despite the strong clinical link between folate and NTDs, the biochemical mechanisms through which folic acid acts during neural tube development remain undefined. The Mthfd1l gene encodes a mitochondrial monofunctional 10-formyl-tetrahydrofolate synthetase, termed MTHFD1L. This gene is expressed in adults and at all stages of mammalian embryogenesis with localized regions of higher expression along the neural tube, developing brain, craniofacial structures, limb buds, and tail bud. In both embryos and adults, MTHFD1L catalyzes the last step in the flow of one-carbon units from mitochondria to cytoplasm, producing formate from 10-formyl-THF. To investigate the role of mitochondrial formate production during embryonic development, we have analyzed Mthfd1l knockout mice. All embryos lacking Mthfd1l exhibit aberrant neural tube closure including craniorachischisis and exencephaly and/or a wavy neural tube. This fully penetrant folate-pathway mouse model does not require feeding a folate-deficient diet to cause this phenotype. Maternal supplementation with sodium formate decreases the incidence of NTDs and partially rescues the growth defect in embryos lacking Mthfd1l. These results reveal the critical role of mitochondrially derived formate in mammalian development, providing a mechanistic link between folic acid and NTDs. In light of previous studies linking a common splice variant in the human MTHFD1L gene with increased risk for NTDs, this mouse model provides a powerful system to help elucidate the specific metabolic mechanisms that underlie folate-associated birth defects, including NTDs.


Assuntos
Anormalidades Múltiplas/genética , Aminoidrolases/genética , Anormalidades Craniofaciais/genética , Desenvolvimento Embrionário/genética , Formiato-Tetra-Hidrofolato Ligase/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Complexos Multienzimáticos/genética , Defeitos do Tubo Neural/genética , Aminoidrolases/deficiência , Animais , Primers do DNA/genética , Desenvolvimento Embrionário/efeitos dos fármacos , Formiato-Tetra-Hidrofolato Ligase/deficiência , Formiatos/administração & dosagem , Formiatos/farmacologia , Deleção de Genes , Genótipo , Immunoblotting , Redes e Vias Metabólicas/fisiologia , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Camundongos , Camundongos Knockout , Complexos Multienzimáticos/deficiência , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Hum Mol Genet ; 22(18): 3705-19, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23704330

RESUMO

Genetic variants in one-carbon folate metabolism have been identified as risk factors for disease because they may impair the production or use of one-carbon folates required for nucleotide synthesis and methylation. p.R653Q (1958G>A) is a single-nucleotide polymorphism (SNP) in the 10-formyltetrahydrofolate (formylTHF) synthetase domain of the trifunctional enzyme MTHFD1; this domain produces the formylTHF which is required for the de novo synthesis of purines. Approximately 20% of Caucasians are homozygous for the Q allele. MTHFD1 p.R653Q has been proposed as a risk factor for neural tube defects (NTDs), congenital heart defects (CHDs) and pregnancy losses. We have generated a novel mouse model in which the MTHFD1 synthetase activity is inactivated without affecting protein expression or the other activities of this enzyme. Complete loss of synthetase activity (Mthfd1S(-/-)) is incompatible with life; embryos die shortly after 10.5 days gestation, and are developmentally delayed or abnormal. The proportion of 10-formylTHF in the plasma and liver of Mthfd1S(+/-) mice is reduced (P < 0.05), and de novo purine synthesis is impaired in Mthfd1S(+/-) mouse embryonic fibroblasts (MEFs, P < 0.005). Female Mthfd1S(+/-) mice had decreased neutrophil counts (P < 0.05) during pregnancy and increased incidence of developmental defects in embryos (P = 0.052). These findings suggest that synthetase deficiency may lead to pregnancy complications through decreased purine synthesis and reduced cellular proliferation. Additional investigation of the impact of synthetase polymorphisms on human pregnancy is warranted.


Assuntos
Aminoidrolases/genética , Aminoidrolases/metabolismo , Desenvolvimento Embrionário/genética , Formiato-Tetra-Hidrofolato Ligase/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Complicações na Gravidez/genética , Purinas/biossíntese , Aminoidrolases/deficiência , Animais , Proliferação de Células , Células Cultivadas , Colina/metabolismo , Anormalidades Congênitas/genética , Perda do Embrião , Feminino , Ácido Fólico/metabolismo , Formiato-Tetra-Hidrofolato Ligase/deficiência , Formiato-Tetra-Hidrofolato Ligase/metabolismo , Técnicas de Introdução de Genes , Variação Genética , Humanos , Leucovorina/análogos & derivados , Leucovorina/química , Contagem de Leucócitos , Masculino , Metionina/metabolismo , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Complexos Multienzimáticos/deficiência , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Mutagênese Sítio-Dirigida , Polimorfismo de Nucleotídeo Único , Gravidez , Complicações na Gravidez/metabolismo
10.
J Inherit Metab Dis ; 38(5): 863-72, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25633902

RESUMO

In the folate cycle MTHFD1, encoded by MTHFD1, is a trifunctional enzyme containing 5,10-methylenetetrahydrofolate dehydrogenase, 5,10-methenyltetrahydrofolate cyclohydrolase and 10-formyltetrahydrofolate synthetase activity. To date, only one patient with MTHFD1 deficiency, presenting with hyperhomocysteinemia, megaloblastic anaemia, hemolytic uremic syndrome (HUS) and severe combined immunodeficiency, has been identified (Watkins et al J Med Genet 48:590-2, 2011). We now describe four additional patients from two different families. The second patient presented with hyperhomocysteinemia, megaloblastic anaemia, HUS, microangiopathy and retinopathy; all except the retinopathy resolved after treatment with hydroxocobalamin, betaine and folinic acid. The third patient developed megaloblastic anaemia, infection, autoimmune disease and moderate liver fibrosis but not hyperhomocysteinemia, and was successfully treated with a regime that included and was eventually reduced to folic acid. The other two, elder siblings of the third patient, died at 9 weeks of age with megaloblastic anaemia, infection and severe acidosis and had MTFHD1 deficiency diagnosed retrospectively. We identified a missense mutation (c.806C > T, p.Thr296Ile) and a splice site mutation (c.1674G > A) leading to exon skipping in the second patient, while the other three harboured a missense mutation (c.146C > T, p.Ser49Phe) and a premature stop mutation (c.673G > T, p.Glu225*), all of which were novel. Patient fibroblast studies revealed severely reduced methionine formation from [(14)C]-formate, which did not increase in cobalamin supplemented culture medium but was responsive to folic and folinic acid. These additional cases increase the clinical spectrum of this intriguing defect, provide in vitro evidence of disturbed methionine synthesis and substantiate the effectiveness of folic or folinic acid treatment.


Assuntos
Ácido Fólico/uso terapêutico , Leucovorina/uso terapêutico , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Anemia Megaloblástica/tratamento farmacológico , Anemia Megaloblástica/genética , Anemia Megaloblástica/patologia , Células Cultivadas , Evolução Fatal , Feminino , Deficiência de Ácido Fólico/tratamento farmacológico , Deficiência de Ácido Fólico/genética , Deficiência de Ácido Fólico/patologia , Humanos , Hiper-Homocisteinemia/tratamento farmacológico , Hiper-Homocisteinemia/genética , Hiper-Homocisteinemia/patologia , Lactente , Recém-Nascido , Masculino , Antígenos de Histocompatibilidade Menor , Imunodeficiência Combinada Severa/tratamento farmacológico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/patologia , Adulto Jovem
11.
Nutrients ; 14(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35011003

RESUMO

Folate and choline are interconnected metabolically. The MTHFD1 R653Q SNP is a risk factor for birth defects and there are concerns that choline deficiency may interact with this SNP and exacerbate health risks. 80-90% of women do not meet the Adequate Intake (AI) for choline. The objective of this study was to assess the effects of choline deficiency on maternal one-carbon metabolism and reproductive outcomes in the MTHFD1-synthetase deficient mouse (Mthfd1S), a model for MTHFD1 R653Q. Mthfd1S+/+ and Mthfd1S+/- females were fed control (CD) or choline-deficient diets (ChDD; 1/3 the amount of choline) before mating and during pregnancy. Embryos were evaluated for delays and defects at 10.5 days gestation. Choline metabolites were measured in the maternal liver, and total folate measured in maternal plasma and liver. ChDD significantly decreased choline, betaine, phosphocholine, and dimethylglycine in maternal liver (p < 0.05, ANOVA), and altered phosphatidylcholine metabolism. Maternal and embryonic genotype, and diet-genotype interactions had significant effects on defect incidence. Mild choline deficiency and Mthfd1S+/- genotype alter maternal one-carbon metabolism and increase incidence of developmental defects. Further study is required to determine if low choline intakes contribute to developmental defects in humans, particularly in 653QQ women.


Assuntos
Aminoidrolases/genética , Deficiência de Colina/genética , Deficiências do Desenvolvimento/genética , Formiato-Tetra-Hidrofolato Ligase/deficiência , Formiato-Tetra-Hidrofolato Ligase/genética , Fenômenos Fisiológicos da Nutrição Materna/genética , Meteniltetra-Hidrofolato Cicloidrolase/deficiência , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Complexos Multienzimáticos/genética , Enzimas Multifuncionais/deficiência , Animais , Colina/análise , Deficiências do Desenvolvimento/epidemiologia , Modelos Animais de Doenças , Desenvolvimento Embrionário/genética , Feminino , Ácido Fólico/metabolismo , Genótipo , Incidência , Fígado/metabolismo , Camundongos , Polimorfismo de Nucleotídeo Único , Gravidez
12.
Vaccine ; 36(50): 7715-7727, 2018 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-30385055

RESUMO

Live attenuated vaccines are superior to the killed or subunit vaccines. We designed a Salmonella Typhimurium strain by deleting folD gene (encoding methylenetetrahydrofolate dehydrogenase-cyclohydrolase) in the presence of a heterologous fhs gene (encoding formyltetrahydrofolate synthetase) and tested its vaccine potential under stringent conditions of lethal and sub-lethal challenges with virulent Salmonella in the murine model. The efficacy of the vaccine in conferring protection against Salmonella infection was determined in a wide range of host conditions of systemic infection, corresponding to human young adults, neonates, geriatric age and, importantly, to the immune compromised state of pregnancy. The standardized vaccination regime comprised a primary dose of 104 CFU/animal followed by a booster dose of 102 CFU/animal on day 7. Challenge with the virulent pathogen was done at day 7 post-administration of the booster. Subsequently, the mortality, morbidity, systemic colonization, antibody response and cytokine profiling were determined. The vaccinated cohort showed a strong protection against virulent pathogen in all models tested. The serum anti-Salmonella antibody titers and cytokine levels were significantly higher in the vaccinated cohort compared to the mock vaccinated cohort. Thus, we report the development and validation of a live attenuated vaccine candidate conferring excellent protection against Salmonellosis and typhoid fever.


Assuntos
Bacteriemia/prevenção & controle , Redes e Vias Metabólicas/genética , Infecções por Salmonella/prevenção & controle , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Animais , Anticorpos Antibacterianos/sangue , Bacteriemia/patologia , Carga Bacteriana , Carbono/metabolismo , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Formiato-Tetra-Hidrofolato Ligase/genética , Formiato-Tetra-Hidrofolato Ligase/metabolismo , Deleção de Genes , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Camundongos Endogâmicos C57BL , Gravidez , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Infecções por Salmonella/patologia , Vacinas contra Salmonella/administração & dosagem , Vacinas contra Salmonella/genética , Salmonella typhimurium/imunologia , Análise de Sobrevida , Resultado do Tratamento , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
13.
J Clin Invest ; 63(5): 1019-25, 1979 May.
Artigo em Inglês | MEDLINE | ID: mdl-447824

RESUMO

We have studied the distribution of folate coenzyme forms in cultured human fibroblasts from control lines and from lines derived from nine patients representing all of the published reports of 5,10-CH(2)-H(4)PteGlu reductase deficiency. Based on mobility on DEAE-Sephadex and differential microbiological assay the major folate fractions in extracts of human fibroblasts were 5-CH(3)-H(4)PteGlu, 10-CHO-H(4)PteGlu, and 5-CHO-H(4)PteGlu with smaller fractions, which included 5-CH(3)-H(2)PteGlu, 10-CHO-PteGlu, and H(4)PteGlu. Evidence that the 5-CHO-H(4)PteGlu may have been derived from 5,10-CH=H(4)PteGlu during extraction is presented. In most of the mutant fibroblasts the absolute concentration of 5-CH(3)-H(4)PteGlu was lower than in control cells but the proportion of intracellular folate which was 5-CH(3)-H(4)PteGlu was strikingly lower in mutant cells when determined by chromatography or differential microbiological assay. In both control and mutant cells most of the 5-CH(3)-H(4)-PteGlu was polyglutamate. The proportion of intracellular folate which was polyglutamate was similar in control and mutant cells. A direct relationship was observed between the proportion of cellular folate which was 5-CH(3)-H(4)PteGlu, and both the clinical severity of this disorder and the residual enzyme activity indicating that the distribution of different folates may be an important control of intracellular folate metabolism. These studies indicate that 5,10-CH(2)-H(4)PteGlu reductase is the only significant intracellular pathway for the generation of 5-CH(3)-H(4)PteGlu, that the activity of this enzyme regulates the level of this folate in control and mutant cells under conditions of culture used here, that the majority of intracellular folate is in the polyglutamate form, and that the relative distribution of folates may control folate metabolism by interaction in the various folate reactions.


Assuntos
Ácido Fólico/análogos & derivados , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Oxirredutases/deficiência , Ácidos Pteroilpoliglutâmicos/metabolismo , Células Cultivadas , Coenzimas/metabolismo , Fibroblastos/enzimologia , Fibroblastos/metabolismo , Humanos
14.
J Clin Invest ; 67(6): 1659-64, 1981 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-6113252

RESUMO

Methionine synthesis from homocysteine was measured in intact human fibroblasts and lymphoblasts using a [14C]formate label. Seven fibroblast lines and two lymphoblast lines derived from patients with 5,10-methylene tetrahydrofolate reductase deficiency had rates of methionine synthesis that were from 4 to 43% of normal. When the patients were divided by clinical status into mildly (two patients), moderately (two patients), and severely (three patients) affected, methionine biosynthesis expressed as a percent of control values was 43 and 33%, 11 and 10%, and 7, 6, and 4%, respectively, in fibroblasts. Similar data for the two lymphoblast lines were 36 and 26% for a mildly and moderately affected patient, respectively. These data are to be contrasted with the measurement of residual enzyme activity in cell extracts which agrees less precisely with the clinical status of the patients. In the presence of normal methionine synthetase activity, the rate of synthesis of methionine from homocysteine is a function of the activity of the enzyme 5,10-methylene tetrahydrofolate reductase, and measurement of the methionine biosynthetic capacity of cells deficient in this enzyme accurately reflects the clinical status of the patient from whom the cells were derived.


Assuntos
Fibroblastos/enzimologia , Linfócitos/enzimologia , Metionina/biossíntese , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Oxirredutases/deficiência , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Feminino , Homocisteína/metabolismo , Humanos , Lactente , Masculino , Metilenotetra-Hidrofolato Desidrogenase (NADP)/análise , Neurotransmissores/biossíntese , Transtornos Psicomotores/enzimologia , Pele/enzimologia
15.
Behav Brain Res ; 332: 71-74, 2017 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-28559181

RESUMO

The MTHFD1 gene encodes for methylenetetrahydrofolate dehydrogenase 1, an enzyme that has an important role in folate-mediated one-carbon metabolism. In people, a single nucleotide polymorphism of this gene (1958G>A; rs2236225) is associated with increased risk for bipolar disorder and schizophrenia, neural tube and other birth defects. Mice homozygous for a loss of Mthfd1 via a gene-trap mutation are not viable, and heterozygotes, though they appear healthy, have metabolic imbalances in the folate- and choline-mediated 1-carbon metabolic pathways. In this study, we evaluated cognitive function in Mthfd1gt/+ male and female mice using a behavioral battery composed of eight different tests. We found that these mice display impaired cue-conditioned learning, while other behaviors remain intact.


Assuntos
Formiato-Tetra-Hidrofolato Ligase/deficiência , Deficiências da Aprendizagem/enzimologia , Meteniltetra-Hidrofolato Cicloidrolase/deficiência , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Enzimas Multifuncionais/deficiência , Animais , Peso Corporal , Cognição/fisiologia , Feminino , Formiato-Tetra-Hidrofolato Ligase/genética , Masculino , Meteniltetra-Hidrofolato Cicloidrolase/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Camundongos Transgênicos , Enzimas Multifuncionais/genética , Testes Neuropsicológicos , Fenótipo
16.
J Allergy Clin Immunol Pract ; 4(6): 1160-1166.e10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27707659

RESUMO

BACKGROUND: Methylenetetrahydrofolate dehydrogenase (MTHFD1) deficiency has recently been reported to cause a folate-responsive syndrome displaying a phenotype that includes megaloblastic anemia and severe combined immunodeficiency. OBJECTIVE: To describe our investigative approach to the molecular diagnosis and evaluation of immune dysfunction in a family with MTHFD1 deficiency. METHODS: The methods used were exome sequencing and analysis of variants in genes involved in the folate metabolic pathway in a family with 2 affected siblings. Routine laboratory and research data were analyzed to gain an in-depth understanding of innate, humoral, and cell-mediated immune function before and after folinic acid supplementation. RESULTS: Interrogation of exome data for concordant variants between the siblings in the genes involved in folate metabolic pathway identified a heterozygous mutation in exon 3 of the MTHFD1 gene that was shared with their mother. In view of highly suggestive phenotype, we extended our bioinformatics interrogation for structural variants in the MTHFD1 gene by manual evaluation of the exome data for sequence depth coverage of all the exons. A deletion involving exon 13 that was shared with their father was identified. Routine laboratory data showed lymphopenia involving all subsets and poor response to vaccines. In vitro analysis of dendritic cell and lymphocyte function was comparable to that in healthy volunteers. Treatment with folinic acid led to immune reconstitution, enabling discontinuation of all prophylactic therapies. CONCLUSIONS: Exome sequencing demonstrated MTHFD1 deficiency as a novel cause of a combined immunodeficiency. Folinic acid was established as precision therapy to reverse the clinical and laboratory phenotype of this primary immunodeficiency.


Assuntos
Anemia Megaloblástica/diagnóstico , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Antígenos de Histocompatibilidade Menor/genética , Imunodeficiência Combinada Severa/diagnóstico , Anemia Megaloblástica/tratamento farmacológico , Anemia Megaloblástica/genética , Anemia Megaloblástica/imunologia , Criança , Pré-Escolar , Exoma , Humanos , Lactente , Recém-Nascido , Leucovorina/uso terapêutico , Masculino , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Mutação , Imunodeficiência Combinada Severa/tratamento farmacológico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/imunologia
17.
Am J Clin Nutr ; 104(5): 1459-1469, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27707701

RESUMO

BACKGROUND: Moderately high folic acid intake in pregnant women has led to concerns about deleterious effects on the mother and fetus. Common polymorphisms in folate genes, such as methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase (MTHFD1) R653Q, may modulate the effects of elevated folic acid intake. OBJECTIVES: We investigated the effects of moderate folic acid supplementation on reproductive outcomes and assessed the potential interaction of the supplemented diet with MTHFD1-synthetase (Mthfd1S) deficiency in mice, which is a model for the R653Q variant. DESIGN: Female Mthfd1S+/+ and Mthfd1S+/- mice were fed a folic acid-supplemented diet (FASD) (5-fold higher than recommended) or control diets before mating and during pregnancy. Embryos and placentas were assessed for developmental defects at embryonic day 10.5 (E10.5). Maternal folate and choline metabolites and gene expression in folate-related pathways were examined. RESULTS: The combination of FASD and maternal MTHFD1-synthetase deficiency led to a greater incidence of defects in E10.5 embryos (diet × maternal genotype, P = 0.0016; diet × embryonic genotype, P = 0.054). The methylenetetrahydrofolate reductase (MTHFR) protein and methylation potential [ratio of S-adenosylmethionine (major methyl donor):S-adenosylhomocysteine) were reduced in maternal liver. Although 5-methyltetrahydrofolate (methylTHF) was higher in maternal circulation, the methylation potential was lower in embryos. The presence of developmental delays and defects in Mthfd1S+/- embryos was associated with placental defects (P = 0.003). The labyrinth layer failed to form properly in the majority of abnormal placentas, which compromised the integration of the maternal and fetal circulation and presumably the transfer of methylTHF and other nutrients. CONCLUSIONS: Moderately higher folate intake and MTHFD1-synthetase deficiency in pregnant mice result in a lower methylation potential in maternal liver and embryos and a greater incidence of defects in embryos. Although maternal circulating methylTHF was higher, it may not have reached the embryos because of abnormal placental development; abnormal placentas were observed predominantly in abnormally developed embryos. These findings have implications for women with high folate intakes, particularly if they are polymorphic for MTHFD1 R653Q.


Assuntos
Aminoidrolases/deficiência , Aminoidrolases/genética , Ácido Fólico/farmacologia , Formiato-Tetra-Hidrofolato Ligase/deficiência , Formiato-Tetra-Hidrofolato Ligase/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Complexos Multienzimáticos/deficiência , Complexos Multienzimáticos/genética , Placenta/anormalidades , Placenta/enzimologia , Polimorfismo de Nucleotídeo Único , Aminoidrolases/metabolismo , Animais , Colina/farmacologia , Suplementos Nutricionais , Embrião de Mamíferos/enzimologia , Desenvolvimento Embrionário/efeitos dos fármacos , Feminino , Formiato-Tetra-Hidrofolato Ligase/metabolismo , Modelos Logísticos , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Camundongos , Camundongos Transgênicos , Complexos Multienzimáticos/metabolismo , Gravidez , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo
18.
Cell Metab ; 23(6): 1140-1153, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27211901

RESUMO

One-carbon (1C) units for purine and thymidine synthesis can be generated from serine by cytosolic or mitochondrial folate metabolism. The mitochondrial 1C pathway is consistently overexpressed in cancer. Here, we show that most but not all proliferating mammalian cell lines use the mitochondrial pathway as the default for making 1C units. Clustered regularly interspaced short palindromic repeats (CRISPR)-mediated mitochondrial pathway knockout activates cytosolic 1C-unit production. This reversal in cytosolic flux is triggered by depletion of a single metabolite, 10-formyl-tetrahydrofolate (10-formyl-THF), and enables rapid cell growth in nutrient-replete conditions. Loss of the mitochondrial pathway, however, renders cells dependent on extracellular serine to make 1C units and on extracellular glycine to make glutathione. HCT-116 colon cancer xenografts lacking mitochondrial 1C pathway activity generate the 1C units required for growth by cytosolic serine catabolism. Loss of both pathways precludes xenograft formation. Thus, either mitochondrial or cytosolic 1C metabolism can support tumorigenesis, with the mitochondrial pathway required in nutrient-poor conditions.


Assuntos
Carbono/metabolismo , Citosol/metabolismo , Ácido Fólico/metabolismo , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Sistemas CRISPR-Cas/genética , Compartimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Citosol/efeitos dos fármacos , Formiatos/metabolismo , Técnicas de Inativação de Genes , Biblioteca Gênica , Glicina/farmacologia , Glicina Hidroximetiltransferase/metabolismo , Células HCT116 , Células HEK293 , Humanos , Leucovorina/análogos & derivados , Leucovorina/metabolismo , Redes e Vias Metabólicas/efeitos dos fármacos , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Mitocôndrias/efeitos dos fármacos , Mutação/genética , NADP/metabolismo , Ribonucleotídeos/metabolismo , Serina/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Pediatrics ; 59(5): 749-56, 1977 May.
Artigo em Inglês | MEDLINE | ID: mdl-854378

RESUMO

Four siblings from a family with 11 children of Irish ancestry were observed to suffer from an essentially identical clinical illness, consisting of delayed psychomotor development in infancy and childhood, severe mental retardation, and upper motor neuron dysfunction. Death occurred at an early age in three siblings. In cases in which detailed physical examinations were performed, ectopia lentis, marfanoid features, and severe bony deformities were absent. Homocystinuria, homocystinemia, relatively normal concentrations of methionine and cystine in tissue fluids, and absence of methylmalonic aciduria were found. A deficiency of methylenetetrahydrofolate reductase was demonstrated in cultured skin fibroblasts from two siblings. Postmortem examination of two of the three patients who died showed extensive vascular thrombosis. No biochemical improvement was observed in the surviving child following treatment with large doses of folic acid.


Assuntos
Homocistinúria/enzimologia , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Oxirredutases/deficiência , Adolescente , Criança , Deficiências Nutricionais/complicações , Deficiências Nutricionais/tratamento farmacológico , Deficiências Nutricionais/genética , Diagnóstico Diferencial , Feminino , Ácido Fólico/uso terapêutico , Homocistinúria/tratamento farmacológico , Homocistinúria/etiologia , Homocistinúria/genética , Humanos
20.
Brain Dev ; 21(5): 345-9, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10413024

RESUMO

The cases of three infants, two Saudi and one Bahraini, with methylenetetrahydrofolate reductase (MTHFR) deficiency are reported. They presented in the neonatal period with lethargy, poor feeding, hypotonia, and frequent apneas. Tandem mass spectrometry (MS/MS) of a blood spot indicated very low methionine level and of urine revealed high homocysteine. The diagnosis was confirmed by demonstrating severe deficiency of MTHFR in the cultured skin fibroblast. All patients were treated with folinic acid, vitamin B12, betaine, and methionine, with good initial response to the therapy. In two patients, the diagnosis was late and their disease was severe, resulting in neurological crippling. However, in the third patient, who was diagnosed and treated early, the current neurological status is normal. In her case, at 1 month of age, the brain FDG PET scan documented very faint cerebral and cerebellar cortical activities. After 5 months of intensive therapy, that included 200-600 mg/kg per day methionine, she had a dramatic clinical and biochemical recovery as well as a parallel improvement in FDG PET. Brain MR spectroscopy indicated normal neuronal glial and myelin markers for her age. We conclude that the functional changes confirmed by the FDG PET study were better correlated with the clinical course of the patient and adequately monitored the response to therapy. This disease warrants early detection through neonatal screening program, since the beneficial effect of early administration of adequate therapy with combined use of betaine and a high dose of methionine is rewarding and may be the treatment of choice for MTHFR deficiency.


Assuntos
Encéfalo/diagnóstico por imagem , Fluordesoxiglucose F18 , Metilenotetra-Hidrofolato Desidrogenase (NADP)/deficiência , Compostos Radiofarmacêuticos , Encéfalo/patologia , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Espectrometria de Massas , Metionina/sangue , Metionina/urina , Cintilografia , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA