RESUMO
Endolysins produced by bacteriophages hydrolyze host cell wall peptidoglycan to release newly assembled virions. D29 mycobacteriophage specifically infects mycobacteria including the pathogenic Mycobacterium tuberculosis. D29 encodes LysA endolysin, which hydrolyzes mycobacterial cell wall peptidoglycan. We previously showed that LysA harbors two catalytic domains (N-terminal domain [NTD] and lysozyme-like domain [LD]) and a C-terminal cell wall binding domain (CTD). While the importance of LD and CTD in mycobacteriophage biology has been examined in great detail, NTD has largely remained unexplored. Here, to address NTD's significance in D29 physiology, we generated NTD-deficient D29 (D29∆NTD) by deleting the NTD-coding region from D29 genome using CRISPY-BRED. We show that D29∆NTD is viable, but has a longer latent period, and a remarkably reduced burst size and plaque size. A large number of phages were found to be trapped in the host during the D29∆NTD-mediated cell lysis event. Such poor release of progeny phages during host cell lysis strongly suggests that NTD-deficient LysA produced by D29∆NTD, despite having catalytically-active LD, is unable to efficiently lyse host bacteria. We thus conclude that LysA NTD is essential for optimal release of progeny virions, thereby playing an extremely vital role in phage physiology and phage propagation in the environment.
Assuntos
Parede Celular , Endopeptidases , Micobacteriófagos , Mycobacterium tuberculosis , Peptidoglicano , Micobacteriófagos/genética , Micobacteriófagos/metabolismo , Endopeptidases/metabolismo , Endopeptidases/genética , Parede Celular/metabolismo , Peptidoglicano/metabolismo , Mycobacterium tuberculosis/virologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais/genética , Domínios Proteicos , Vírion/metabolismo , Bacteriólise , Mycobacterium smegmatis/virologia , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismoRESUMO
Emergence of antibiotic resistance in pathogenic Mycobacterium tuberculosis (Mtb) has elevated tuberculosis to a serious global threat, necessitating alternate solutions for its eradication. D29 mycobacteriophage can infect and kill several mycobacterial species including Mtb. It encodes an endolysin LysA to hydrolyze host bacteria peptidoglycan for progeny release. We previously showed that out of the two catalytically active domains of LysA [N-terminal domain (NTD) and lysozyme-like domain], NTD, when ectopically expressed in Mycobacterium smegmatis (Msm), is able to kill the bacterium nearly as efficiently as full-length LysA. Here, we dissected the functioning of NTD to develop it as a phage-derived small molecule anti-mycobacterial therapeutic. We performed a large-scale site-directed mutagenesis of the conserved residues in NTD and examined its structure, stability, and function using molecular dynamic simulations coupled with biophysical and biochemical experiments. Our data show that NTD functions as a putative cysteine peptidase with a catalytic triad composed of Cys41, His112, and Glu137, acting as nucleophile, base, and acid, respectively, and showing characteristics similar to the NlpC/P60 family of cysteine peptidases. Additionally, our peptidoglycan hydrolysis assays suggested that NTD hydrolyzes only mycobacterial peptidoglycan and does not act on Gram-positive and Gram-negative bacterial peptidoglycans. More importantly, the combined activity of exogenously added NTD and sub-lethal doses of anti-mycobacterial drugs kills Msm in vitro and exhibits disruption of pre-formed mycobacterial biofilm. We additionally show that NTD treatment increases the permeability of antibiotics in Msm, which reduces the minimum inhibitory concentration of the antibiotics. Collectively, we present NTD as a promising phage-derived therapeutic against mycobacteria.IMPORTANCEMycobacteriophages are the viruses that use mycobacteria as host for their progeny production and, in the process, kill them. Mycobacteriophages are, therefore, considered as promising alternatives to antibiotics for killing pathogenic Mycobacterium tuberculosis. The endolysin LysA produced by mycobacteriophage D29 plays an important role in host cell lysis and virion release. Our work presented here highlights the functioning of LysA's N-terminal catalytic domain (NTD) in order to develop it as phage-derived small molecule therapeutics. We show that combined treatment of exogenously added NTD and sub-lethal doses of anti-mycobacterial drugs kills M. smegmatis, shows synergism by reducing the minimum inhibitory concentration of these antibiotics, and exhibits disruption of pre-formed mature biofilm. These outcomes and our detailed biochemical and biophysical dissection of the protein further pave the way toward engineering and development of NTD as a promising therapeutic against mycobacterial infections such as tuberculosis.
Assuntos
Endopeptidases , Micobacteriófagos , Mycobacterium smegmatis , Mycobacterium tuberculosis , Micobacteriófagos/genética , Endopeptidases/metabolismo , Endopeptidases/farmacologia , Endopeptidases/química , Endopeptidases/genética , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium smegmatis/virologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Simulação de Dinâmica Molecular , Peptidoglicano/metabolismo , Domínios Proteicos , Mutagênese Sítio-Dirigida , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Virais/química , Domínio Catalítico , Cisteína Endopeptidases/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/químicaRESUMO
Bacteriophages infecting Mycobacterium smegmatis mc2155 are numerous and, hence, are classified into clusters based on nucleotide sequence similarity. Analyzing phages belonging to clusters/subclusters can help gain deeper insights into their biological features and potential therapeutic applications. In this study, for genomic characterization of B1 subcluster mycobacteriophages, a framework of online tools was developed, which enabled functional annotation of about 55% of the previously deemed hypothetical proteins in B1 phages. We also studied the phenotype, lysogeny status, and antimycobacterial activity of 10 B1 phages against biofilm and an antibiotic-resistant M. smegmatis strain (4XR1). All 10 phages belonged to the Siphoviridae family, appeared temperate based on their spontaneous release from the putative lysogens and showed antibiofilm activity. The highest inhibitory and disruptive effects on biofilm were 64% and 46%, respectively. This systematic characterization using a combination of genomic and experimental tools is a promising approach to furthering our understanding of viral dark matter.
Assuntos
Biofilmes , Genoma Viral , Genômica , Lisogenia , Micobacteriófagos , Mycobacterium smegmatis , Micobacteriófagos/genética , Micobacteriófagos/fisiologia , Biofilmes/crescimento & desenvolvimento , Genoma Viral/genética , Mycobacterium smegmatis/virologia , Mycobacterium smegmatis/genética , FilogeniaRESUMO
Mycobacteriophages are viruses that specifically infect bacterial species within the genera Mycobacterium and Mycolicibacterium. Over 2400 mycobacteriophages have been isolated on the host Mycolicibacterium smegmatis and sequenced. This wealth of genomic data indicates that mycobacteriophage genomes are diverse, mosaic, and contain numerous (35-60%) genes for which there is no predicted function based on sequence similarity to characterized orthologs, many of which are essential to lytic growth. To fully understand the molecular aspects of mycobacteriophage-host interactions, it is paramount to investigate the function of these genes and gene products. Here we show that the temperate mycobacteriophage, Alexphander, makes stable lysogens with a frequency of 2.8%. Alexphander gene 94 is essential for lytic infection and encodes a protein predicted to contain a C-terminal MerR family helix-turn-helix DNA-binding motif (HTH) and an N-terminal DinB/YfiT motif, a putative metal-binding motif found in stress-inducible gene products. Full-length and C-terminal gp94 constructs form high-order nucleoprotein complexes on 100-500 base pair double-stranded DNA fragments and full-length phage genomic DNA with little sequence discrimination for the DNA fragments tested. Maximum gene 94 mRNA levels are observed late in the lytic growth cycle, and gene 94 is transcribed in a message with neighboring genes 92 through 96. We hypothesize that gp94 is an essential DNA-binding protein for Alexphander during lytic growth. We proposed that gp94 forms multiprotein complexes on DNA through cooperative interactions involving its HTH DNA-binding motif at sites throughout the phage chromosome, facilitating essential DNA transactions required for lytic propagation.
Assuntos
Proteínas de Ligação a DNA , Micobacteriófagos , Mycobacterium smegmatis , Proteínas Virais , Micobacteriófagos/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mycobacterium smegmatis/virologia , Mycobacterium smegmatis/genética , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/química , Lisogenia/genética , Genoma Viral , DNA Viral/genéticaRESUMO
Genetic switches are critical components of developmental circuits. Because temperate bacteriophages are vastly abundant and greatly diverse, they are rich resources for understanding the mechanisms and evolution of switches and the molecular control of genetic circuitry. Here, we describe a new class of small, compact, and simple switches that use site-specific recombination as the key decision point. The phage attachment site attP is located within the phage repressor gene such that chromosomal integration results in removal of a C-terminal tag that destabilizes the virally encoded form of the repressor. Integration thus not only confers prophage stability but also is a requirement for lysogenic establishment. The variety of these self-contained integration-dependent immunity systems in different genomic contexts suggests that these represent ancestral states in switch evolution from which more-complex switches have evolved. They also provide a powerful toolkit for building synthetic biological circuits.
Assuntos
Regulação Viral da Expressão Gênica , Micobacteriófagos/genética , Mycobacterium smegmatis/virologia , Prófagos/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Evolução Molecular , Integrases/genética , Integrases/metabolismo , Integrases/fisiologia , Lisogenia , Viabilidade Microbiana , Modelos Genéticos , Dados de Sequência Molecular , Micobacteriófagos/fisiologia , Mycobacterium smegmatis/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Prófagos/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/fisiologia , Análise de Sequência de DNA , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/fisiologiaRESUMO
BACKGROUND: Whole genome sequencing promises to revolutionize our ability to link genotypic and phenotypic variation in a wide range of model and non-model species. RESULTS: Here we describe the isolation and characterization of a novel mycobacteriophage named BGlluviae that grows on Mycobacterium smegmatis mc2155. BGlluviae normally produces turbid plaques but a spontaneous clear plaque was also recovered. The genomic DNA from pure populations of the BGlluviae phage and the clear plaque mutant were sequenced. A single substitution, at amino acid 54 (I to T), in the immunity repressor protein resulted in a clear plaque phenotype. CONCLUSIONS: This substitution is predicted to be located at the subunit interaction interface of the repressor protein, and thus prevents the establishment of lysogeny.
Assuntos
Substituição de Aminoácidos , Micobacteriófagos/genética , Mycobacterium smegmatis/virologia , Sequenciamento Completo do Genoma/métodos , Genoma Viral , Sequenciamento de Nucleotídeos em Larga Escala , Lisogenia , Modelos Moleculares , Micobacteriófagos/classificação , Micobacteriófagos/isolamento & purificação , Fenótipo , Filogenia , Conformação Proteica , Proteínas Virais/química , Proteínas Virais/genéticaRESUMO
Bacteriophages engage in complex dynamic interactions with their bacterial hosts and with each other. Bacteria have numerous mechanisms to resist phage infection, and phages must co-evolve by overcoming bacterial resistance or by choosing an alternative host. Phages also compete with each other, both during lysogeny by prophage-mediated defense against viral attack and by superinfection exclusion during lytic replication. Phages are enormously diverse genetically and are replete with small genes of unknown function, many of which are not required for lytic growth, but which may modulate these bacteria-phage and phage-phage dynamics. Using cellular toxicity of phage gene overexpression as an assay, we identified the 93-residue protein gp52 encoded by Cluster F mycobacteriophage Fruitloop. The toxicity of Fruitloop gp52 overexpression results from interaction with and inactivation of Wag31 (DivIVA), an essential Mycobacterium smegmatis protein organizing cell wall biosynthesis at the growing cellular poles. Fruitloop gene 52 is expressed early in lytic growth and is not required for normal Fruitloop lytic replication but interferes with Subcluster B2 phages such as Hedgerow and Rosebush. We conclude that Hedgerow and Rosebush are Wag31-dependent phages and that Fruitloop gp52 confers heterotypic superinfection exclusion by inactivating Wag31.
Assuntos
Proteínas de Bactérias/metabolismo , Micobacteriófagos/fisiologia , Mycobacterium smegmatis/virologia , Proteínas do Envelope Viral/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Parede Celular/metabolismo , Lisogenia , Mutação , Micobacteriófagos/genética , Mycobacterium smegmatis/genética , Plasmídeos , Proteômica , Alinhamento de Sequência , Análise de Sequência de RNA , Proteínas do Envelope Viral/genéticaRESUMO
Mycobacteriophages that are specific to mycobacteria are sources of various effector proteins that are capable of eliciting bactericidal responses. We describe a genomics approach in combination with bioinformatics to identify mycobacteriophage proteins that are toxic to mycobacteria upon expression. A genomic library comprising phage genome collections was screened for clones capable of killing Mycobacterium smegmatis strain mc2155. We identified four unique clones: clones 45 and 12N (from the mycobacteriophage D29) and clones 66 and 85 (from the mycobacteriophage Che12). The gene products from clones 66 and 45 were identified as Gp49 of the Che12 phage and Gp34 of the D29 phage, respectively. The gene products of the other two clones, 85 and 12N, utilized novel open reading frames (ORFs) coding for synthetic proteins. These four clones (clones 45, 66, 85 and 12N) caused growth defects in M. smegmatis and Mycobacterium bovis upon expression. Clones with Gp49 and Gp34 also induced growth defects in Escherichia coli, indicating that they target conserved host machineries. Their expression induced various morphological changes, indicating that they affected DNA replication and cell division steps. We predicted that Gp34 is a Xis protein that is required in phage DNA excision from the bacterial chromosome. Gp49 is predicted to have an HTH motif with DNA-bending/twisting properties. We suggest that this methodology is useful to identify new phage proteins with the desired properties without laboriously characterizing the individual phages. It is universal and could be applied to other bacteria-phage systems. We speculate that the existence of a virtually unlimited number of phages with unique gene products could offer a cheaper and less hazardous alternative to explore new antimicrobial molecules.
Assuntos
Micobacteriófagos/genética , Mycobacterium bovis/virologia , Mycobacterium smegmatis/virologia , Proteínas Virais/genética , Genoma Viral , Genômica , Micobacteriófagos/classificação , Micobacteriófagos/isolamento & purificação , Micobacteriófagos/fisiologia , Mycobacterium bovis/crescimento & desenvolvimento , Mycobacterium smegmatis/crescimento & desenvolvimento , Fases de Leitura Aberta , Filogenia , Proteínas Virais/química , Proteínas Virais/metabolismoRESUMO
Mycobacteriophages are viruses that infect and kill mycobacteria. The peptidoglycan hydrolase, lysin A (LysA), coded by one of the most potent mycobacteriophages, D29, carries two catalytic domains at its N-terminus and a cell wall-binding domain at its C-terminus. Here, we have explored the importance of the centrally located lysozyme-like catalytic domain (LD) of LysA in phage physiology. We had previously identified an R198A substitution that causes inactivation of the LD when it is present alone on a polypeptide. Here, we show that upon incorporation of the same mutation (i.e. R350A) in full-length LysA, the protein demonstrates substantially reduced activity in vitro, even in the presence of the N-terminal catalytic domain, and has less efficient mycobacterial cell lysis ability when it is expressed in Mycobacterium smegmatis. These data suggest that an active LD is required for the full-length protein to function optimally. Moreover, a mutant D29 phage harbouring this substitution (D29R350A) in its LysA protein shows significantly delayed host M. smegmatis lysis. However, the mutant phage demonstrates an increase in burst size and plaque diameter. Taken together, our data show the importance of an intact LD region in D29 LysA PG hydrolase, and indicate an evolutionary advantage over other phages that lack such a domain in their endolysins.
Assuntos
Endopeptidases/genética , Micobacteriófagos , Mycobacterium smegmatis/virologia , N-Acetil-Muramil-L-Alanina Amidase/genética , Domínio Catalítico/genética , Parede Celular/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Mutação , Micobacteriófagos/genética , Micobacteriófagos/crescimento & desenvolvimento , Micobacteriófagos/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/química , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
Mycobacterium smegmatis is intrinsically resistant to thiacetazone, an anti-tubercular thiourea; however we report here that it causes a mild inhibition in growth in liquid medium. Since mycolic acid biosynthesis was affected, we cloned and expressed Mycobacterium smegmatis mycolic acid methyltransferases, postulated as targets for thiacetazone in other mycobacterial species. During this analysis we identified MSMEG_1350 as the methyltransferase involved in epoxy mycolic acid synthesis since its deletion led to their total loss. Phenotypic characterization of the mutant strain showed colony morphology alterations at all temperatures, reduced growth and a slightly increased susceptibility to SDS, lipophilic and large hydrophilic drugs at 20 °C with little effect at 37 °C. No changes were detected between parental and mutant strains in biofilm formation, sliding motility or sedimentation rate. Intriguingly, we found that several mycobacteriophages severely decreased their ability to form plaques in the mutant strain. Taken together our results prove that, in spite of being a minor component of the mycolic acid pool, epoxy-mycolates are required for a proper assembly and functioning of the cell envelope. Further studies are warranted to decipher the role of epoxy-mycolates in the M. smegmatis cell envelope.
Assuntos
Proteínas de Bactérias/genética , Metiltransferases/genética , Micobacteriófagos/fisiologia , Mycobacterium smegmatis/enzimologia , Mycobacterium smegmatis/virologia , Ácidos Micólicos/metabolismo , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Temperatura Baixa , Metiltransferases/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/genética , Mycobacterium smegmatis/fisiologia , Deleção de SequênciaRESUMO
Mycobacteriophage archival stocks have been kept for ca. 20-50 years in Japan. In this study, we attempted to recover mycobacteriophages from 50 archival stocks and briefly analyzed the recovered phages. The phages were recovered from 72.2% (13/18) of the lyophilized stocks that had been stored for 47-56 years. Moreover, the analysis of 12 representative recovered phages led to their classification as belonging to the family Siphoviridae, and seven of them were typed by polymerase chain reaction (PCR) targeting the gene that encodes the tape measure protein. Considering these results, lyophilization seems to be suitable for phage archival storage.
Assuntos
Bancos de Espécimes Biológicos , Micobacteriófagos/classificação , Micobacteriófagos/isolamento & purificação , Técnicas Bacteriológicas , Liofilização , Genoma Viral , Japão , Micobacteriófagos/genética , Micobacteriófagos/ultraestrutura , Mycobacterium smegmatis/virologia , Reação em Cadeia da Polimerase , Siphoviridae/classificação , Siphoviridae/genética , Siphoviridae/isolamento & purificação , Siphoviridae/ultraestrutura , Manejo de Espécimes/métodos , Proteínas Virais/genéticaRESUMO
Bacteriophages are being considered as a promising natural resource for the development of alternative strategies against mycobacterial diseases, especially in the context of the wide-spread occurrence of drug resistance among the clinical isolates of Mycobacterium tuberculosis. However, there is not much information documented on mycobacteriophages from India. Here, we report the isolation of 17 mycobacteriophages using Mycobacterium smegmatis as the bacterial host, where 9 phages also lyse M. tuberculosis H37Rv. We present detailed analysis of one of these mycobacteriophages - PDRPv. Transmission electron microscopy and polymerase chain reaction analysis (of a conserved region within the TMP gene) show PDRPv to belong to the Siphoviridae family and B1 subcluster, respectively. The genome (69 110 bp) of PDRPv is circularly permuted double-stranded DNA with â¼66% GC content and has 106 open reading frames (ORFs). On the basis of sequence similarity and conserved domains, we have assigned function to 28 ORFs and have broadly categorized them into 6 groups that are related to replication and genome maintenance, DNA packaging, virion release, structural proteins, lysogeny-related genes and endolysins. The present study reports the occurrence of novel antimycobacterial phages in India and highlights their potential to contribute to our understanding of these phages and their gene products as potential antimicrobial agents.
Assuntos
Bacteriólise/fisiologia , Micobacteriófagos/isolamento & purificação , Micobacteriófagos/metabolismo , Mycobacterium tuberculosis/virologia , Composição de Bases , DNA Viral/genética , Genes Virais/genética , Genoma Viral , Índia , Micobacteriófagos/classificação , Micobacteriófagos/genética , Mycobacterium smegmatis/virologia , Fases de Leitura Aberta , Siphoviridae/classificação , Siphoviridae/genética , Siphoviridae/isolamento & purificaçãoRESUMO
BACKGROUND: Mycobacteriophages are viruses that infect Mycobacterium hosts. A large collection of phages known to infect the same bacterial host strain - Mycobacterium smegmatis mc2155 - exhibit substantial diversity and characteristically mosaic architectures. The well-studied lytic mycobacteriophage D29 appears to be a deletion derivative of a putative temperate parent, although its parent has yet to be identified. RESULTS: Here we describe three newly-isolated temperate phages - Kerberos, Pomar16 and StarStuff - that are related to D29, and are predicted to be very close relatives of its putative temperate parent, revealing the repressor and additional genes that are lost in D29. Transcriptional profiles show the patterns of both lysogenic and lytic gene expression and identify highly-expressed, abundant, stable, small non-coding transcripts made from the Pleft early lytic promoter, and which are toxic to M. smegmatis. CONCLUSIONS: Comparative genomics of phages D29, Kerberos, Pomar16 and StarStuff provide insights into bacteriophage evolution, and comparative transcriptomics identifies the pattern of lysogenic and lytic expression with unusual features including highly expressed, small, non-coding RNAs.
Assuntos
Evolução Molecular , Regulação Viral da Expressão Gênica , Genoma Viral/genética , Micobacteriófagos/genética , RNA não Traduzido/genética , Sequência de Bases , DNA Viral , Perfilação da Expressão Gênica , Lisogenia/genética , Mutação , Mycobacterium smegmatis/virologia , RNA Viral , Alinhamento de Sequência , Análise de Sequência de RNA , Interferência ViralRESUMO
In this study, we isolated a mycobacteriophage infecting Mycobacterium smegmatis mc2155 from a soil sample collected in Shandong Province in China. This phage was named Shandong1. It is a member of the family Siphoviridae with an isometric head and a long tail. Its genome was found to be 60,618 bp long with 67.46% G + C content and 96 putative protein-coding genes. No tRNA-encoding genes were identified. Comparative genomics analysis showed that the mycobacteriophage Shandong1 should be considered a member of a new species in mycobacteriophage cluster K.
Assuntos
Genoma Viral , Micobacteriófagos/genética , Micobacteriófagos/isolamento & purificação , Mycobacterium smegmatis/virologia , Análise de Sequência de DNA , Siphoviridae/genética , Siphoviridae/isolamento & purificação , Composição de Bases , China , Micobacteriófagos/classificação , Micobacteriófagos/ultraestrutura , Filogenia , Siphoviridae/classificação , Siphoviridae/ultraestrutura , Microbiologia do Solo , Vírion/ultraestruturaRESUMO
Mycobacteriophages infect mycobacteria, resulting in their death. Therefore, the possibility of using them as therapeutic agents against the deadly mycobacterial disease tuberculosis (TB) is of great interest. To obtain better insight into the dynamics of mycobacterial inactivation by mycobacteriophages, this study was initiated using mycobacteriophage D29 and Mycobacterium smegmatis as the phage-host system. Here, we implemented a goal-oriented iterative cycle of experiments on one hand and mathematical modeling combined with Monte Carlo simulations on the other. This integrative approach lends valuable insight into the detailed kinetics of bacterium-phage interactions. We measured time-dependent changes in host viability during the growth of phage D29 in M. smegmatis at different multiplicities of infection (MOI). The predictions emerging out of theoretical analyses were further examined using biochemical and cell biological assays. In a phage-host interaction system where multiple rounds of infection are allowed to take place, cell counts drop more rapidly than expected if cell lysis is considered the only mechanism for cell death. The phenomenon could be explained by considering a secondary factor for cell death in addition to lysis. Further investigations reveal that phage infection leads to the increased production of superoxide radicals, which appears to be the secondary factor. Therefore, mycobacteriophage D29 can function as an effective antimycobacterial agent, the killing potential of which may be amplified through secondary mechanisms.
Assuntos
Micobacteriófagos/fisiologia , Mycobacterium smegmatis/crescimento & desenvolvimento , Mycobacterium smegmatis/virologia , Radicais Livres/metabolismo , Cinética , Viabilidade Microbiana , Mycobacterium smegmatis/química , Mycobacterium smegmatis/metabolismoRESUMO
BACKGROUND: A large collection of sequenced mycobacteriophages capable of infecting a single host strain of Mycobacterium smegmatis shows considerable genomic diversity with dozens of distinctive types (clusters) and extensive variation within those sharing evident nucleotide sequence similarity. Here we profiled the mycobacterial components of a large composting system at the São Paulo zoo. RESULTS: We isolated and sequenced eight mycobacteriophages using Mycobacterium smegmatis mc(2)155 as a host. None of these eight phages infected any of mycobacterial strains isolated from the same materials. The phage isolates span considerable genomic diversity, including two phages (Barriga, Nhonho) related to Subcluster A1 phages, two Cluster B phages (Pops, Subcluster B1; Godines, Subcluster B2), three Subcluster F1 phages (Florinda, Girafales, and Quico), and Madruga, a relative of phage Patience with which it constitutes the new Cluster U. Interestingly, the two Subcluster A1 phages and the three Subcluster F1 phages have genomic relationships indicating relatively recent evolution within a geographically isolated niche in the composting system. CONCLUSIONS: We predict that composting systems such as those used to obtain these mycobacteriophages will be a rich source for the isolation of additional phages that will expand our view of bacteriophage diversity and evolution.
Assuntos
Micobacteriófagos/genética , Micobacteriófagos/isolamento & purificação , Mycobacterium/genética , Mycobacterium/virologia , Microbiologia do Solo , Solo , Bacteriófagos/genética , Sequência de Bases , Brasil , DNA Bacteriano/genética , DNA Viral/genética , Evolução Molecular , Genes Bacterianos , Variação Genética , Genoma Viral , Família Multigênica , Micobacteriófagos/classificação , Mycobacterium/classificação , Mycobacterium/isolamento & purificação , Mycobacterium smegmatis/classificação , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/isolamento & purificação , Mycobacterium smegmatis/virologia , FilogeniaRESUMO
UNLABELLED: Mycobacteriophages are viruses that infect mycobacterial hosts and are prevalent in the environment. Nearly 700 mycobacteriophage genomes have been completely sequenced, revealing considerable diversity and genetic novelty. Here, we have determined the protein complement of mycobacteriophage Giles by mass spectrometry and mapped its genome-wide protein interactome to help elucidate the roles of its 77 predicted proteins, 50% of which have no known function. About 22,000 individual yeast two-hybrid (Y2H) tests with four different Y2H vectors, followed by filtering and retest screens, resulted in 324 reproducible protein-protein interactions, including 171 (136 nonredundant) high-confidence interactions. The complete set of high-confidence interactions among Giles proteins reveals new mechanistic details and predicts functions for unknown proteins. The Giles interactome is the first for any mycobacteriophage and one of just five known phage interactomes so far. Our results will help in understanding mycobacteriophage biology and aid in development of new genetic and therapeutic tools to understand Mycobacterium tuberculosis. IMPORTANCE: Mycobacterium tuberculosis causes over 9 million new cases of tuberculosis each year. Mycobacteriophages, viruses of mycobacterial hosts, hold considerable potential to understand phage diversity, evolution, and mycobacterial biology, aiding in the development of therapeutic tools to control mycobacterial infections. The mycobacteriophage Giles protein-protein interaction network allows us to predict functions for unknown proteins and shed light on major biological processes in phage biology. For example, Giles gp76, a protein of unknown function, is found to associate with phage packaging and maturation. The functions of mycobacteriophage-derived proteins may suggest novel therapeutic approaches for tuberculosis. Our ORFeome clone set of Giles proteins and the interactome data will be useful resources for phage interactomics.
Assuntos
Regulação Viral da Expressão Gênica/fisiologia , Micobacteriófagos/metabolismo , Mycobacterium smegmatis/virologia , Domínios e Motivos de Interação entre Proteínas/fisiologia , Proteínas Virais/metabolismo , Biologia Computacional , Espectrometria de Massas , Micobacteriófagos/genética , Mycobacterium tuberculosis/virologia , Mapas de Interação de Proteínas , Técnicas do Sistema de Duplo-Híbrido , Proteínas Virais/genéticaRESUMO
Mycobacteriophages provide an abundance of systems for use in mycobacterial genetics, including manipulation of Mycobacterium tuberculosis. Because of the dearth of antibiotic resistance cassettes and biosafety concerns in constructing recombinant virulent M. tuberculosis strains, we developed the use of mycobacteriophage-encoded repressor genes that can be selected in the presence of lytic versions of their cognate phages. The phage Adephagia repressor gene (43) was identified through its ability to confer immunity to Adephagia superinfection, together with the mapping of mutations in gene 43 that confer a clear-phage phenotype. Plasmid transformants containing either Adephagia 43 or the previously identified BPs repressor 33 can be readily selected following electroporation using engineered lytic derivatives of Adephagia and BPs, respectively. Selection is as efficient as antibiotic selection, can be used with either single-copy integration vectors or with extrachromosomal vectors, and works similarly in both Mycobacterium smegmatis and M. tuberculosis.
Assuntos
Micobacteriófagos/genética , Mycobacterium smegmatis/imunologia , Mycobacterium smegmatis/virologia , Mycobacterium tuberculosis/imunologia , Mycobacterium tuberculosis/virologia , Proteínas Repressoras/genética , Proteínas Virais/genética , Marcadores Genéticos , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Micobacteriófagos/imunologia , Micobacteriófagos/fisiologia , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Plasmídeos/genética , Plasmídeos/metabolismo , Proteínas Repressoras/imunologia , Proteínas Virais/imunologiaRESUMO
UNLABELLED: Genomic analysis of a large set of phages infecting the common host Mycobacterium smegmatis mc(2)155 shows that they span considerable genetic diversity. There are more than 20 distinct types that lack nucleotide similarity with each other, and there is considerable diversity within most of the groups. Three newly isolated temperate mycobacteriophages, Bongo, PegLeg, and Rey, constitute a new group (cluster M), with the closely related phages Bongo and PegLeg forming subcluster M1 and the more distantly related Rey forming subcluster M2. The cluster M mycobacteriophages have siphoviral morphologies with unusually long tails, are homoimmune, and have larger than average genomes (80.2 to 83.7 kbp). They exhibit a variety of features not previously described in other mycobacteriophages, including noncanonical genome architectures and several unusual sets of conserved repeated sequences suggesting novel regulatory systems for both transcription and translation. In addition to containing transfer-messenger RNA and RtcB-like RNA ligase genes, their genomes encode 21 to 24 tRNA genes encompassing complete or nearly complete sets of isotypes. We predict that these tRNAs are used in late lytic growth, likely compensating for the degradation or inadequacy of host tRNAs. They may represent a complete set of tRNAs necessary for late lytic growth, especially when taken together with the apparent lack of codons in the same late genes that correspond to tRNAs that the genomes of the phages do not obviously encode. IMPORTANCE: The bacteriophage population is vast, dynamic, and old and plays a central role in bacterial pathogenicity. We know surprisingly little about the genetic diversity of the phage population, although metagenomic and phage genome sequencing indicates that it is great. Probing the depth of genetic diversity of phages of a common host, Mycobacterium smegmatis, provides a higher resolution of the phage population and how it has evolved. Three new phages constituting a new cluster M further expand the diversity of the mycobacteriophages and introduce novel features. As such, they provide insights into phage genome architecture, virion structure, and gene regulation at the transcriptional and translational levels.
Assuntos
Família Multigênica , Micobacteriófagos/classificação , Micobacteriófagos/genética , Mycobacterium smegmatis/virologia , RNA de Transferência/genética , RNA Viral , Composição de Bases , Sequência de Bases , Códon , Sequência Conservada , Ordem dos Genes , Tamanho do Genoma , Genoma Viral , Sequências Repetidas Invertidas , Lisogenia/genética , Micobacteriófagos/ultraestrutura , Fases de Leitura Aberta , Filogenia , RNA de Transferência/química , Sequências Repetitivas de Ácido Nucleico , Alinhamento de Sequência , Vírion/genética , Vírion/ultraestrutura , Montagem de Vírus/genéticaRESUMO
The high incidence of Mycobacterium infection, notably multidrug-resistant M. tuberculosis infection, has become a significant public health concern worldwide. In this study, we isolate and analyze a mycobacteriophage, BTCU-1, and a foundational study was performed to evaluate the antimycobacterial activity of BTCU-1 and its cloned lytic endolysins. Using Mycobacterium smegmatis as host, a mycobacteriophage, BTCU-1, was isolated from soil in eastern Taiwan. The electron microscopy images revealed that BTCU-1 displayed morphology resembling the Siphoviridae family. In the genome of BTCU-1, two putative lytic genes, BTCU-1_ORF7 and BTCU-1_ORF8 (termed lysA and lysB, respectively), were identified, and further subcloned and expressed in Escherichia coli. When applied exogenously, both LysA and LysB were active against M. smegmatis tested. Scanning electron microscopy revealed that LysA and LysB caused a remarkable modification of the cell shape of M. smegmatis. Intracellular bactericidal activity assay showed that treatment of M. smegmatis-infected RAW 264.7 macrophages with LysA or LysB resulted in a significant reduction in the number of viable intracellular bacilli. These results indicate that the endolysins derived from BTCU-1 have antimycobacterial activity, and suggest that they are good candidates for therapeutic/disinfectant agents to control mycobacterial infections.