Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 347
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(16): 4268-4283.e20, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34233163

RESUMO

Ultraviolet (UV) light and incompletely understood genetic and epigenetic variations determine skin color. Here we describe an UV- and microphthalmia-associated transcription factor (MITF)-independent mechanism of skin pigmentation. Targeting the mitochondrial redox-regulating enzyme nicotinamide nucleotide transhydrogenase (NNT) resulted in cellular redox changes that affect tyrosinase degradation. These changes regulate melanosome maturation and, consequently, eumelanin levels and pigmentation. Topical application of small-molecule inhibitors yielded skin darkening in human skin, and mice with decreased NNT function displayed increased pigmentation. Additionally, genetic modification of NNT in zebrafish alters melanocytic pigmentation. Analysis of four diverse human cohorts revealed significant associations of skin color, tanning, and sun protection use with various single-nucleotide polymorphisms within NNT. NNT levels were independent of UVB irradiation and redox modulation. Individuals with postinflammatory hyperpigmentation or lentigines displayed decreased skin NNT levels, suggesting an NNT-driven, redox-dependent pigmentation mechanism that can be targeted with NNT-modifying topical drugs for medical and cosmetic purposes.


Assuntos
Fator de Transcrição Associado à Microftalmia/metabolismo , NADP Trans-Hidrogenases/metabolismo , Pigmentação da Pele/efeitos da radiação , Raios Ultravioleta , Animais , Linhagem Celular , Estudos de Coortes , AMP Cíclico/metabolismo , Dano ao DNA , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Predisposição Genética para Doença , Humanos , Melanócitos/efeitos dos fármacos , Melanócitos/metabolismo , Melanossomas/efeitos dos fármacos , Melanossomas/metabolismo , Melanossomas/efeitos da radiação , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Monofenol Mono-Oxigenase/genética , Monofenol Mono-Oxigenase/metabolismo , NADP Trans-Hidrogenases/antagonistas & inibidores , Oxirredução/efeitos dos fármacos , Oxirredução/efeitos da radiação , Polimorfismo de Nucleotídeo Único/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Proteólise/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Pigmentação da Pele/efeitos dos fármacos , Pigmentação da Pele/genética , Ubiquitina/metabolismo , Peixe-Zebra
2.
Mol Cell ; 83(11): 1887-1902.e8, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37244254

RESUMO

Interleukin-1ß (IL-1ß) is a key protein in inflammation and contributes to tumor progression. However, the role of IL-1ß in cancer is ambiguous or even contradictory. Here, we found that upon IL-1ß stimulation, nicotinamide nucleotide transhydrogenase (NNT) in cancer cells is acetylated at lysine (K) 1042 (NNT K1042ac) and thereby induces the mitochondrial translocation of p300/CBP-associated factor (PCAF). This acetylation enhances NNT activity by increasing the binding affinity of NNT for NADP+ and therefore boosts NADPH production, which subsequently sustains sufficient iron-sulfur cluster maintenance and protects tumor cells from ferroptosis. Abrogating NNT K1042ac dramatically attenuates IL-1ß-promoted tumor immune evasion and synergizes with PD-1 blockade. In addition, NNT K1042ac is associated with IL-1ß expression and the prognosis of human gastric cancer. Our findings demonstrate a mechanism of IL-1ß-promoted tumor immune evasion, implicating the therapeutic potential of disrupting the link between IL-1ß and tumor cells by inhibiting NNT acetylation.


Assuntos
NADP Trans-Hidrogenases , Neoplasias , Humanos , NADP Trans-Hidrogenases/genética , NADP Trans-Hidrogenases/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Acetilação , Processamento de Proteína Pós-Traducional , Imunoterapia , Neoplasias/tratamento farmacológico , Neoplasias/genética
3.
Nature ; 573(7773): 291-295, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31462775

RESUMO

Proton-translocating transhydrogenase (also known as nicotinamide nucleotide transhydrogenase (NNT)) is found in the plasma membranes of bacteria and the inner mitochondrial membranes of eukaryotes. NNT catalyses the transfer of a hydride between NADH and NADP+, coupled to the translocation of one proton across the membrane. Its main physiological function is the generation of NADPH, which is a substrate in anabolic reactions and a regulator of oxidative status; however, NNT may also fine-tune the Krebs cycle1,2. NNT deficiency causes familial glucocorticoid deficiency in humans and metabolic abnormalities in mice, similar to those observed in type II diabetes3,4. The catalytic mechanism of NNT has been proposed to involve a rotation of around 180° of the entire NADP(H)-binding domain that alternately participates in hydride transfer and proton-channel gating. However, owing to the lack of high-resolution structures of intact NNT, the details of this process remain unclear5,6. Here we present the cryo-electron microscopy structure of intact mammalian NNT in different conformational states. We show how the NADP(H)-binding domain opens the proton channel to the opposite sides of the membrane, and we provide structures of these two states. We also describe the catalytically important interfaces and linkers between the membrane and the soluble domains and their roles in nucleotide exchange. These structures enable us to propose a revised mechanism for a coupling process in NNT that is consistent with a large body of previous biochemical work. Our results are relevant to the development of currently unavailable NNT inhibitors, which may have therapeutic potential in ischaemia reperfusion injury, metabolic syndrome and some cancers7-9.


Assuntos
Mitocôndrias/enzimologia , Modelos Moleculares , NADP Trans-Hidrogenases/química , NADP Trans-Hidrogenases/metabolismo , Animais , Microscopia Crioeletrônica , Cristalização , Camundongos , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína
4.
Toxicol Appl Pharmacol ; 480: 116734, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37924851

RESUMO

Human skin is daily exposed to oxidative stresses in the environment such as physical stimulation, chemical pollutants and pathogenic microorganisms, which are likely to cause skin diseases. As important post-translational modifications, protein ubiquitination and deubiquitination play crucial roles in maintaining cellular homeostasis by the proteolytic removal of oxidized proteins. We have previously reported that the expression of ubiquitin-specific protease 47 (USP47), a kind of deubiquitinating enzymes (DUBs), was significantly elevated in response to oxidative stress. However, the role of USP47 in cutaneous oxidative injury remains unclear. Usp47 wild-type (Usp47+/+) mice and Usp47 knockout (Usp47-/-) mice were used to establish two animal models of oxidative skin damage: (1) radiation- and (2) imiquimod (IMQ)-induced skin injury. Loss of Usp47 consistently aggravated mouse skin damage in vivo. Subsequently, we screened 63 upregulated and 170 downregulated proteins between the skin tissues of wild-type and Usp47-/- mice after 35 Gy electron beam radiation using proteomic analysis. Among the dysregulated proteins, nicotinamide nucleotide transhydrogenase (NNT), which has been reported as a significant regulator of oxidative stress and redox homeostasis, was further investigated in detail. Results showed that NNT was regulated by USP47 through direct ubiquitination mediated degradation and involved in the pathogenesis of cutaneous oxidative injury. Knockdown of NNT expression dramatically limited the energy production ability, with elevated mitochondrial reactive oxygen species (ROS) accumulation and increased mitochondrial membrane potential in irradiated HaCaT cells. Taken together, our present findings illustrate the critical role of USP47 in oxidative skin damage by modulating NNT degradation and mitochondrial homeostasis.


Assuntos
NADP Trans-Hidrogenases , Animais , Humanos , Camundongos , Mitocôndrias/metabolismo , NADP Trans-Hidrogenases/metabolismo , Estresse Oxidativo/fisiologia , Proteômica , Proteases Específicas de Ubiquitina/metabolismo
5.
Arch Toxicol ; 97(2): 441-456, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36336710

RESUMO

Cisplatin is recommended as a first-line chemotherapeutic agent against advanced non-small cell lung cancer (NSCLC), but acquired resistance substantially limits its clinical efficacy. Recently, DNA methylation has been identified as an essential contributor to chemoresistance. However, the precise DNA methylation regulatory mechanism of cisplatin resistance remains unclear. Here, we found that nicotinamide nucleotide transhydrogenase (NNT) was silenced by DNA hypermethylation in cisplatin resistance A549 (A549/DDP) cells. Also, the DNA hypermethylation of NNT was positively correlated to poor prognosis in NSCLC patients. Overexpression of NNT in A549/DDP cells could reduce their cisplatin resistance, and also suppressed their tumor malignancy such as cell proliferation and clone formation. However, NNT enhanced sensitivity of A549/DDP cells to cisplatin had little to do with its function in mediating NADPH and ROS level, but was mainly because NNT could inhibit protective autophagy in A549/DDP cells. Further investigation revealed that NNT could decrease NAD+ level, thereby inactivate SIRT1 and block the autophagy pathway, while re-activation of SIRT1 through NAD+ precursor supplementation could antagonize this effect. In addition, targeted demethylation of NNT CpG island via CRISPR/dCas9-Tet1 system significantly reduced its DNA methylation level and inhibited the autophagy and cisplatin resistance in A549/DDP cells. Thus, our study found a novel chemoresistance target gene NNT, which played important roles in cisplatin resistance of lung cancer cells. Our findings also suggested that CRISPR-based DNA methylation editing of NNT could be a potential therapeutics method in cisplatin resistance of lung cancer.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , NADP Trans-Hidrogenases , Humanos , Células A549 , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Autofagia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Cisplatino/farmacologia , DNA , Metilação de DNA , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , NAD/metabolismo , NADP Trans-Hidrogenases/genética , NADP Trans-Hidrogenases/metabolismo , Sirtuína 1/metabolismo
6.
Am J Physiol Cell Physiol ; 322(4): C666-C673, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35138175

RESUMO

Redox homeostasis is elemental for the normal physiology of all cell types. Cells use multiple mechanisms to tightly regulate the redox balance. The onset and progression of many metabolic and aging-associated diseases occur due to the dysregulation of redox homeostasis. Thus, it is critical to identify and therapeutically target mechanisms that precipitate abnormalities in redox balance. Reactive oxygen species (ROS) produced within the immune cells regulate homeostasis, hyperimmune and hypoimmune cell responsiveness, apoptosis, immune response to pathogens, and tumor immunity. Immune cells have both cytosolic and organelle-specific redox regulatory systems to maintain appropriate levels of ROS. Nicotinamide nucleotide transhydrogenase (NNT) is an essential mitochondrial redox regulatory protein. Dysregulation of NNT function prevents immune cells from mounting an adequate immune response to pathogens, promotes a chronic inflammatory state associated with aging and metabolic diseases, and initiates conditions related to a dysregulated immune system such as autoimmunity. Although many studies have reported on NNT in different cell types, including cancer cells, relatively few studies have explored NNT in immune cells. This review provides an overview of NNT and focuses on the current knowledge of NNT in the immune cells.


Assuntos
NADP Trans-Hidrogenases , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , NADP Trans-Hidrogenases/genética , NADP Trans-Hidrogenases/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
7.
Chembiochem ; 23(3): e202100251, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34351671

RESUMO

Protein engineering has been used to enhance the activities, selectivities, and stabilities of enzymes. Frequently tradeoffs are observed, where improvements in some features can come at the expense of others. Nature uses modular assembly of active sites for complex, multi-step reactions, and natural "swing arm" mechanisms have evolved to transfer intermediates between active sites. Biomimetic polyethylene glycol (PEG) swing arms modified with NAD(H) have been explored to introduce synthetic swing arms into fused oxidoreductases. Here we report that increasing NAD(H)-PEG swing arms can improve the activity of synthetic formate:malate oxidoreductases as well as the thermal and operational stabilities of the biocatalysts. The modular assembly approach enables the KM values of new enzymes to be predictable, based on the parental enzymes. We describe four unique synthetic transhydrogenases that have no native homologs, and this platform could be easily extended for the predictive design of additional synthetic cofactor-independent transhydrogenases.


Assuntos
NADP Trans-Hidrogenases/metabolismo , NAD/metabolismo , Polietilenoglicóis/metabolismo , Estabilidade Enzimática , Modelos Moleculares , NAD/química , NADP Trans-Hidrogenases/química , Polietilenoglicóis/química , Engenharia de Proteínas
8.
Am J Med Genet A ; 188(1): 89-98, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34545694

RESUMO

Thyroid dysgenesis (TD) accounts for 80% cases of congenital hypothyroidism, which is the most common neonatal disorder. Until now, the gene mutations have been reported associated with TD can only account for 5% cases, suggesting the genetic heterogeneity of the pathology. Nicotinamide nucleotide transhydrogenase (NNT) plays a crucial role in regulating redox homeostasis, patients carrying NNT mutations have been described with a clinical phenotype of hypothyroidism. As TD risk is increased in the context of several syndromes and redox homeostasis is vital for thyroid development and function, NNT might be a candidate gene involved in syndromic TD. Therefore, we performed target sequencing (TS) in 289 TD patients for causative mutations in NNT and conducted functional analysis of the gene mutations. TS and Sanger sequence were used to screen the novel mutations. For functional analysis, we performed western blot, measurement of NADPH/NADPtotal and H2 O2 generation, cell proliferation, and wounding healing assay. As a result, three presumably pathogenic mutations (c.811G > A, p.Ala271Ser; c.2078G > A, p.Arg693His; and c.2581G > A, p.Val861Met) in NNT had been identified. Our results showed the damaging effect of NNT mutations on stability and catalytic activity of proteins and redox balance of cells. In conclusion, our findings provided novel insights into the role of the NNT isotype in thyroid physiopathology and broaden the spectrum of pathogenic genes associated with TD. However, the pathogenic mechanism of NNT in TD is still need to be investigated in further study.


Assuntos
Hipotireoidismo Congênito , NADP Trans-Hidrogenases , Disgenesia da Tireoide , China , Hipotireoidismo Congênito/genética , Humanos , Proteínas Mitocondriais , Mutação , NADP Trans-Hidrogenase Específica para A ou B , NADP Trans-Hidrogenases/genética , NADP Trans-Hidrogenases/metabolismo , Disgenesia da Tireoide/genética
9.
Molecules ; 27(15)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-35956878

RESUMO

Nicotinamide nucleotide transhydrogenase (NNT) is involved in decreasing melanogenesis through tyrosinase degradation induced by cellular redox changes. Nicotinamide is a component of coenzymes, such as NAD+, NADH, NADP+, and NADPH, and its levels are modulated by NNT. Vitamin C and polydeoxyribonucleotide (PDRN) are also known to decrease skin pigmentation. We evaluated whether a mixture of nicotinamide, vitamin C, and PDRN (NVP-mix) decreased melanogenesis by modulating mitochondrial oxidative stress and NNT expression in UV-B-irradiated animals and in an in vitro model of melanocytes treated with conditioned media (CM) from UV-B-irradiated keratinocytes. The expression of NNT, GSH/GSSG, and NADPH/NADP+ in UV-B-irradiated animal skin was significantly decreased by UV-B radiation but increased by NVP-mix treatment. The expression of NNT, GSH/GSSG, and NADPH/NADP+ ratios decreased in melanocytes after CM treatment, although they increased after NVP-mix administration. In NNT-silenced melanocytes, the GSH/GSSG and NADPH/NADP+ ratios were further decreased by CM compared with normal melanocytes. NVP-mix decreased melanogenesis signals, such as MC1R, MITF, TYRP1, and TYRP2, and decreased melanosome transfer-related signals, such as RAB32 and RAB27A, in UV-B-irradiated animal skin. NVP-mix also decreased MC1R, MITF, TYRP1, TYRP2, RAB32, and RAB27A in melanocytes treated with CM from UV-irradiated keratinocytes. The expression of MC1R and MITF in melanocytes after CM treatment was unchanged by NNT silencing. However, the expression of TYRP1, TYRP2, RAB32, and RAB27A increased in NNT-silenced melanocytes after CM treatment. NVP-mix also decreased tyrosinase activity and melanin content in UV-B-irradiated animal skin and CM-treated melanocytes. In conclusion, NVP-mix decreased mitochondrial oxidative stress by increasing NNT expression and decreased melanogenesis by decreasing MC1R/MITF, tyrosinase, TYRP1, and TYRP2.


Assuntos
NADP Trans-Hidrogenases , Animais , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacologia , Dissulfeto de Glutationa/metabolismo , Melaninas , Melanócitos/metabolismo , Monofenol Mono-Oxigenase/metabolismo , NADP/metabolismo , NADP Trans-Hidrogenases/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacologia , Polidesoxirribonucleotídeos/metabolismo , Vitaminas/metabolismo
10.
J Biol Chem ; 295(48): 16217-16218, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33246940

RESUMO

Under conditions of high nutrient availability and low ATP synthesis, mitochondria generate reactive oxygen species (ROS) that must be removed to avoid cell injury. Among the enzymes involved in this scavenging process, peroxidases play a crucial role, using NADPH provided mostly by nicotinamide nucleotide transhydrogenase (NNT). However, scarce information is available on how and to what extent ROS formation is linked to mitochondrial oxygen consumption. A new study by Smith et al. shows that NNT activity maintains low ROS levels by means of a fine modulation of mitochondrial oxygen utilization.


Assuntos
NADP Trans-Hidrogenases , Metabolismo Energético , Mitocôndrias/metabolismo , NADP Trans-Hidrogenases/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
11.
Arch Biochem Biophys ; 707: 108934, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34043997

RESUMO

H2O2 is endogenously generated and its removal in the matrix of skeletal muscle mitochondria (SMM) is dependent on NADPH likely provided by NAD(P)+ transhydrogenase (NNT) and isocitrate dehydrogenase (IDH2). Importantly, NNT activity is linked to mitochondrial protonmotive force. Here, we demonstrate the presence of NNT function in detergent-solubilized and intact functional SMM isolated from rats and wild type (Nnt+/+) mice, but not in SMM from congenic mice carrying a mutated NNT gene (Nnt-/-). Further comparisons between SMM from both Nnt mouse genotypes revealed that the NADPH supplied by NNT supports up to 600 pmol/mg/min of H2O2 removal under selected conditions. Surprisingly, SMM from Nnt-/- mice removed exogenous H2O2 at wild-type levels and exhibited a maintained or even decreased net emission of endogenous H2O2 when substrates that support Krebs cycle reactions were present (e.g., pyruvate plus malate or palmitoylcarnitine plus malate). These results may be explained by a compensation for the lack of NNT, since the total activities of concurrent NADP+-reducing enzymes (IDH2, malic enzymes and glutamate dehydrogenase) were ~70% elevated in Nnt-/- mice. Importantly, respiratory rates were similar between SMM from both Nnt genotypes despite differing NNT contributions to H2O2 removal and their implications for an evolving concept in the literature are discussed. We concluded that NNT is capable of meaningfully sustaining NADPH-dependent H2O2 removal in intact SMM. Nonetheless, if the available substrates favor non-NNT sources of NADPH, the H2O2 removal by SMM is maintained in Nnt-/- mice SMM.


Assuntos
Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/citologia , NADP Trans-Hidrogenases/metabolismo , NADP/metabolismo , Animais , Camundongos , Mutação , NADP Trans-Hidrogenases/genética
12.
Endocr J ; 68(5): 583-597, 2021 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-33612561

RESUMO

The increasing incidence of papillary thyroid cancer (PTC) has attracted many researchers to investigate the mechanism underlying PTC progression. This study explored the growth and apoptosis of PTC cells based on an lncRNA regulatory mechanism. The expression of nicotinamide nucleotide transhydrogenase antisense RNA 1 (NNT-AS1) in PTC cell lines and PTC tissues was analyzed by qRT-PCR. The mutual binding site between NNT-AS1 and miR-199a-5p was predicted by starBase and confirmed by dual-luciferase reporter assay. The correlation between NNT-AS1 and miR-199a-5p was shown by Pearson correlation test. The viability, clone formation, migration, invasion and apoptosis of TPC-1 and IHH-4 cells were examined by CCK-8, colony formation, wound-healing, transwell, and flow cytometry assays, respectively. The expressions of Bax, cleaved Caspase-3, Bcl-2, E-Cadherin, N-Cadherin and SNAIL in TPC-1 and IHH-4 cells were determined by Western blot or qRT-PCR. NNT-AS1 expression was upregulated in PTC cells and tissues. In TPC-1 cells, silencing NNT-AS1 inhibited viability, clone formation, migration, and invasion as well as the expressions of N-Cadherin, SNAIL and Bcl-2, but promoted the expressions of E-Cadherin, Bax, and cleaved caspase-3. The effects of NNT-AS1 overexpression on IHH-4 cells were opposite to those of silencing NNT-AS1. In PTC tissues, miR-199a-5p was low-expressed and targeted by NNT-AS1, and it was negatively correlated with NNT-AS1. MiR-199a-5p inhibitor promoted TPC-1 cell progression, but miR-199a-5p mimic inhibited IHH-4 cell progression. NNT-AS1 and miR-199a-5p exerted opposite effects on PTC cells. Silencing NNT-AS1 inhibited PTC cell proliferation, migration and invasion, but promoted apoptosis via upregulation of miR-199a-5p.


Assuntos
Apoptose/genética , Movimento Celular/genética , Proliferação de Células/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/genética , Adulto , Idoso , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , MicroRNAs/metabolismo , Pessoa de Meia-Idade , NADP Trans-Hidrogenases/genética , NADP Trans-Hidrogenases/metabolismo , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , RNA Longo não Codificante/metabolismo , Câncer Papilífero da Tireoide/metabolismo , Câncer Papilífero da Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia
13.
Curr Microbiol ; 79(1): 32, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34931264

RESUMO

Soluble pyridine nucleotide transhydrogenase (STH) transfers hydride between NADH and NADPH to maintain redox balance. In the present study, the sth gene from Gram-positive bacterium Streptomyces avermitilis (SaSTH) was expressed in Escherichia coli, and the recombinant STH protein was purified to homogeneity. Activity assays indicated that SaSTH was able to catalyze transhydrogenase reactions by using NADH or NADPH as reductants and thio-NAD+ as an oxidant. The apparent Km value for NADPH (74.5 µM) was lower than that for NADH (104.0 µM) and the apparent kcat/Km for NADPH (2704.7 mM-1 s-1) was higher than that for NADH (1129.8 mM-1 s-1). SaSTH showed optimal activity at 25 °C and at a pH of 6.2. Heat-inactivation studies revealed that SaSTH remained stable below 55 °C and that approximately 50% activity was preserved at 57 °C for 20 min. Analyses also showed that SaSTH activity was inhibited by divalent ions, particularly Co2+, Ni2+, and Zn2+. In addition, the transhydrogenase activity of SaSTH was inhibited by ATP and strongly stimulated by ADP and AMP. In summary, we characterized a recombinant enzyme exhibiting STH activity from Gram-positive bacteria for the first time. Our findings provide new options for cofactor engineering and industrial biocatalytic processes.


Assuntos
NADP Trans-Hidrogenases , Streptomyces , Cinética , NADP/metabolismo , NADP Trans-Hidrogenases/genética , NADP Trans-Hidrogenases/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
14.
Proc Natl Acad Sci U S A ; 115(1): 222-227, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29255023

RESUMO

Unraveling the mechanisms of microbial adaptive evolution following genetic or environmental challenges is of fundamental interest in biological science and engineering. When the challenge is the loss of a metabolic enzyme, adaptive responses can also shed significant insight into metabolic robustness, regulation, and areas of kinetic limitation. In this study, whole-genome sequencing and high-resolution 13C-metabolic flux analysis were performed on 10 adaptively evolved pgi knockouts of Escherichia coliPgi catalyzes the first reaction in glycolysis, and its loss results in major physiological and carbon catabolism pathway changes, including an 80% reduction in growth rate. Following adaptive laboratory evolution (ALE), the knockouts increase their growth rate by up to 3.6-fold. Through combined genomic-fluxomic analysis, we characterized the mutations and resulting metabolic fluxes that enabled this fitness recovery. Large increases in pyridine cofactor transhydrogenase flux, correcting imbalanced production of NADPH and NADH, were enabled by direct mutations to the transhydrogenase genes sthA and pntAB The phosphotransferase system component crr was also found to be frequently mutated, which corresponded to elevated flux from pyruvate to phosphoenolpyruvate. The overall energy metabolism was found to be strikingly robust, and what have been previously described as latently activated Entner-Doudoroff and glyoxylate shunt pathways are shown here to represent no real increases in absolute flux relative to the wild type. These results indicate that the dominant mechanism of adaptation was to relieve the rate-limiting steps in cofactor metabolism and substrate uptake and to modulate global transcriptional regulation from stress response to catabolism.


Assuntos
Adaptação Fisiológica , Evolução Molecular Direcionada , Metabolismo Energético , Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Técnicas de Silenciamento de Genes , Glucose-6-Fosfato Isomerase/genética , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , NADP Trans-Hidrogenase Específica para B/genética , NADP Trans-Hidrogenase Específica para B/metabolismo , NADP Trans-Hidrogenases/genética , NADP Trans-Hidrogenases/metabolismo
15.
Int J Mol Sci ; 22(2)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478087

RESUMO

The redox states of NAD and NADP are linked to each other in the mitochondria thanks to the enzyme nicotinamide nucleotide transhydrogenase (NNT) which, by utilizing the mitochondrial membrane potential (mΔΨ), catalyzes the transfer of redox potential between these two coenzymes, reducing one at the expense of the oxidation of the other. In order to define NNT reaction direction in CF cells, NNT activity under different redox states of cell has been investigated. Using spectrophotometric and western blotting techniques, the presence, abundance and activity level of NNT were determined. In parallel, the levels of NADPH and NADH as well as of mitochondrial and cellular ROS were also quantified. CF cells showed a 70% increase in protein expression compared to the Wt sample; however, regarding NNT activity, it was surprisingly lower in CF cells than healthy cells (about 30%). The cellular redox state, together with the low mΔΨ, pushes to drive NNT reverse reaction, at the expense of its antioxidant potential, thus consuming NADPH to support NADH production. At the same time, the reduced NNT activity prevents the NADH, produced by the reaction, from causing an explosion of ROS by the damaged respiratory chain, in accordance with the reduced level of mitochondrial ROS in NNT-loss cells. This new information on cellular bioenergetics represents an important building block for further understanding the molecular mechanisms responsible for cellular dysfunction in cystic fibrosis.


Assuntos
Fibrose Cística/metabolismo , NADP Trans-Hidrogenases/metabolismo , Catálise , Células Cultivadas , Fibrose Cística/genética , Fibrose Cística/patologia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Metabolismo Energético/genética , Humanos , Potencial da Membrana Mitocondrial/fisiologia , Redes e Vias Metabólicas/genética , Mitocôndrias/metabolismo , NAD/metabolismo , NADP/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
16.
Basic Res Cardiol ; 115(5): 53, 2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32748289

RESUMO

In heart failure, a functional block of complex I of the respiratory chain provokes superoxide generation, which is transformed to H2O2 by dismutation. The Krebs cycle produces NADH, which delivers electrons to complex I, and NADPH for H2O2 elimination via isocitrate dehydrogenase and nicotinamide nucleotide transhydrogenase (NNT). At high NADH levels, α-ketoglutarate dehydrogenase (α-KGDH) is a major source of superoxide in skeletal muscle mitochondria with low NNT activity. Here, we analyzed how α-KGDH and NNT control H2O2 emission in cardiac mitochondria. In cardiac mitochondria from NNT-competent BL/6N mice, H2O2 emission is equally low with pyruvate/malate (P/M) or α-ketoglutarate (α-KG) as substrates. Complex I inhibition with rotenone increases H2O2 emission from P/M, but not α-KG respiring mitochondria, which is potentiated by depleting H2O2-eliminating capacity. Conversely, in NNT-deficient BL/6J mitochondria, H2O2 emission is higher with α-KG than with P/M as substrate, and further potentiated by complex I blockade. Prior depletion of H2O2-eliminating capacity increases H2O2 emission from P/M, but not α-KG respiring mitochondria. In cardiac myocytes, downregulation of α-KGDH activity impaired dynamic mitochondrial redox adaptation during workload transitions, without increasing H2O2 emission. In conclusion, NADH from α-KGDH selectively shuttles to NNT for NADPH formation rather than to complex I of the respiratory chain for ATP production. Therefore, α-KGDH plays a key role for H2O2 elimination, but is not a relevant source of superoxide in heart. In heart failure, α-KGDH/NNT-dependent NADPH formation ameliorates oxidative stress imposed by complex I blockade. Downregulation of α-KGDH may, therefore, predispose to oxidative stress in heart failure.


Assuntos
Complexo Cetoglutarato Desidrogenase/metabolismo , Mitocôndrias Cardíacas/metabolismo , NADP Trans-Hidrogenases/metabolismo , NAD/metabolismo , Animais , Respiração Celular , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Análise de Célula Única
17.
J Ind Microbiol Biotechnol ; 46(11): 1547-1556, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31289974

RESUMO

Lactobacillus buchneri and Oenococcus oeni are two unique ethanol-tolerant Gram-positive bacteria species. Genome comparison analyses revealed that L. buchneri and O. oeni possess a pntAB locus that was absent in almost all other lactic acid bacteria (LAB) genomes. Our hypothesis is that the pntAB locus contributes to the ethanol tolerance trait of these two distinct ethanol-tolerant organisms. The pntAB locus, consisting of the pntA and pntB genes, codes for NADP(H) transhydrogenase subunits. This membrane-bound transhydrogenase catalyzes the reduction of NADP+ and is known as an important enzyme in maintaining cellular redox balance. In this study, the transhydrogenase operon from L. buchneri NRRL B-30929 and O. oeni PSU-1 were cloned and analyzed. The LbpntB shared 71.0% identity with the O. oeni (OopntB). The entire pntAB locus was expressed in Lactococcus lactis ssp. lactis IL1403 resulting in an increased tolerance to ethanol (6%), butanol (1.8%) and isopropanol (1.8%) when compared to the control strain. However, the recombinant E. coli cells carrying the entire pntAB locus did not show any improved ethanol tolerance. Independent expression of OopntB and LbpntB in recombinant E. coli BL21(DE3)pLysS host demonstrated higher tolerance to ethanol when compared with a control E. coli BL21(DE3)pLysS strain carrying pET28b vector. Ethanol tolerance comparison of E. coli strains carrying LbpntB and OopntB showed that LbpntB conferred higher ethanol tolerance (4.5%) and resulted in greater biomass, while the OopntB conferred lower ethanol tolerance (4.0%) resulted lower biomass. Therefore, the pntB gene from L. buchneri is a better choice in generating higher ethanol tolerance. This is the first study to uncover the role of pntAB locus on ethanol tolerance.


Assuntos
Etanol/metabolismo , Lactobacillus/metabolismo , NADP Trans-Hidrogenases/metabolismo , Oenococcus/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Loci Gênicos , Lactobacillus/genética , NADP Trans-Hidrogenases/genética , Oenococcus/genética
18.
J Ind Microbiol Biotechnol ; 46(2): 159-169, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30554290

RESUMO

The non-conventional D-xylose metabolism called the Dahms pathway which only requires the expression of at least three enzymes to produce pyruvate and glycolaldehyde has been previously engineered in Escherichia coli. Strains that rely on this pathway exhibit lower growth rates which were initially attributed to the perturbed redox homeostasis as evidenced by the lower intracellular NADPH concentrations during exponential growth phase. NADPH-regenerating systems were then tested to restore the redox homeostasis. The membrane-bound pyridine nucleotide transhydrogenase, PntAB, was overexpressed and resulted to a significant increase in biomass and glycolic acid titer and yield. Furthermore, expression of PntAB in an optimized glycolic acid-producing strain improved the growth and product titer significantly. This work demonstrated that compensating for the NADPH demand can be achieved by overexpression of PntAB in E. coli strains assimilating D-xylose through the Dahms pathway. Consequently, increase in biomass accumulation and product concentration was also observed.


Assuntos
Escherichia coli/metabolismo , Glicolatos/metabolismo , NADP Trans-Hidrogenases/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , NADP/genética , NADP/metabolismo , NADP Trans-Hidrogenases/genética , Xilose/metabolismo
19.
J Ind Microbiol Biotechnol ; 46(1): 45-54, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30446890

RESUMO

Corynebacterium glutamicum SNK 118 was metabolically engineered with improved L-arginine titer. Considering the crucial role of NADPH level in L-arginine production, pntAB (membrane-bound transhydrogenase) and ppnK (NAD+ kinase) were co-expressed to increase the intracellular NADPH pool. Expression of pntAB exhibited significant effects on NADPH supply and L-arginine synthesis. Furthermore, argR and farR, encoding arginine repressor ArgR and transcriptional regulator FarR, respectively, were removed from the genome of C. glutamicum. The competitive branch pathway gene ldh was also deleted. Eventually, an engineered C. glutamicum JML07 was obtained for L-arginine production. Fed-batch fermentation in 5-L bioreactor employing strain JML07 allowed production of 67.01 g L-1L-arginine with productivity of 0.89 g L-1 h-1 and yield of 0.35 g g-1 glucose. This study provides a productive L-arginine fermentation strain and an effective cofactor manipulating strategy for promoting the biosynthesis of NADPH-dependent metabolites.


Assuntos
Arginina/biossíntese , Corynebacterium glutamicum/genética , Engenharia Metabólica , NADP/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Corynebacterium glutamicum/metabolismo , Fermentação , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Microbiologia Industrial , NADP/metabolismo , NADP Trans-Hidrogenases/genética , NADP Trans-Hidrogenases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
20.
Biotechnol Bioeng ; 115(2): 444-452, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28976546

RESUMO

Microbial conversion of renewable carbon sources to free fatty acids has attracted significant attention in recent years. Accumulation of free fatty acids in Escherichia coli by overexpression of an acyl-ACP thioesterase which can break the fatty acid elongation has been well established. Various efforts have been made to increase fatty acid production in E. coli by enhancing the enzymes involved in the fatty acid synthesis cycle or host strain manipulations. The current study focused on the effect of NADPH availability on free fatty acids (FFAs) productivity. There are two reduction steps in the fatty acid elongation cycle which are catalyzed by beta keto-ACP reductase (FabG) and enoyl-ACP reductase (FabI), respectively. It is reported that FabI can use either NADH or NADPH as cofactor, while FabG only uses NADPH in E. coli. Fatty acid production dropped dramatically in the glucose-6-phosphate dehydrogenase (encoded by the zwf gene) deficient strain. Similarly, the pntB (which encodes one of the subunit of proton-translocating membrane bounded transhydrogenase PntAB) and udhA (which encodes the energy dependent cytoplasmic transhydrogenase UdhA) double mutant strain also showed an 88.8% decrease in free fatty acid production. Overexpression of PntAB and NadK restored the fatty acid production capability of these two mutant strains. These results indicated that the availability of NADPH played a very important role in fatty acid production.


Assuntos
Escherichia coli/metabolismo , Ácidos Graxos não Esterificados/metabolismo , NADP/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Ácidos Graxos não Esterificados/análise , NADP Trans-Hidrogenases/genética , NADP Trans-Hidrogenases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ricinus/enzimologia , Ricinus/genética , Tioléster Hidrolases/genética , Tioléster Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA