Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.686
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 181(3): 487-491, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32234518

RESUMO

This year's Gairdner Foundation Award for Biomedical Research goes to Roel Nusse for his pioneering work on the Wnt signaling pathway and its many roles in development, cancer, and stem cells.


Assuntos
Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/metabolismo , Animais , Animais Geneticamente Modificados/metabolismo , Bibliografias como Assunto , Comunicação Celular , Drosophila , Proteínas de Drosophila/metabolismo , Feminino , Humanos , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Camundongos , Proteína Wnt1/metabolismo
2.
Cell ; 179(5): 1191-1206.e21, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730857

RESUMO

This study identifies mechanisms mediating responses to immune checkpoint inhibitors using mouse models of triple-negative breast cancer. By creating new mammary tumor models, we find that tumor mutation burden and specific immune cells are associated with response. Further, we developed a rich resource of single-cell RNA-seq and bulk mRNA-seq data of immunotherapy-treated and non-treated tumors from sensitive and resistant murine models. Using this, we uncover that immune checkpoint therapy induces T follicular helper cell activation of B cells to facilitate the anti-tumor response in these models. We also show that B cell activation of T cells and the generation of antibody are key to immunotherapy response and propose a new biomarker for immune checkpoint therapy. In total, this work presents resources of new preclinical models of breast cancer with large mRNA-seq and single-cell RNA-seq datasets annotated for sensitivity to therapy and uncovers new components of response to immune checkpoint inhibitors.


Assuntos
Linfócitos B/imunologia , Imunoterapia , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/imunologia , Mutação/genética , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Antígeno CTLA-4/metabolismo , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Engenharia Genética , Genoma , Humanos , Imunoglobulina G/metabolismo , Ativação Linfocitária/imunologia , Neoplasias Mamárias Animais/terapia , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia
3.
Nat Immunol ; 21(10): 1160-1171, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32747819

RESUMO

Autophagy supports both cellular and organismal homeostasis. However, whether autophagy should be inhibited or activated for cancer therapy remains unclear. Deletion of essential autophagy genes increased the sensitivity of mouse mammary carcinoma cells to radiation therapy in vitro and in vivo (in immunocompetent syngeneic hosts). Autophagy-deficient cells secreted increased amounts of type I interferon (IFN), which could be limited by CGAS or STING knockdown, mitochondrial DNA depletion or mitochondrial outer membrane permeabilization blockage via BCL2 overexpression or BAX deletion. In vivo, irradiated autophagy-incompetent mammary tumors elicited robust immunity, leading to improved control of distant nonirradiated lesions via systemic type I IFN signaling. Finally, a genetic signature of autophagy had negative prognostic value in patients with breast cancer, inversely correlating with mitochondrial abundance, type I IFN signaling and effector immunity. As clinically useful autophagy inhibitors are elusive, our findings suggest that mitochondrial outer membrane permeabilization may represent a valid target for boosting radiation therapy immunogenicity in patients with breast cancer.


Assuntos
Proteína 5 Relacionada à Autofagia/genética , Proteína 7 Relacionada à Autofagia/genética , Autofagia/genética , Neoplasias da Mama/radioterapia , DNA Mitocondrial/genética , Neoplasias Mamárias Animais/radioterapia , Mitocôndrias/metabolismo , Adulto , Idoso , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/mortalidade , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Feminino , Humanos , Interferon Tipo I/metabolismo , Neoplasias Mamárias Animais/genética , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Prognóstico , Tolerância a Radiação , Transdução de Sinais , Análise de Sobrevida
4.
Nature ; 617(7959): 139-146, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37076617

RESUMO

Loss of the PTEN tumour suppressor is one of the most common oncogenic drivers across all cancer types1. PTEN is the major negative regulator of PI3K signalling. The PI3Kß isoform has been shown to play an important role in PTEN-deficient tumours, but the mechanisms underlying the importance of PI3Kß activity remain elusive. Here, using a syngeneic genetically engineered mouse model of invasive breast cancer driven by ablation of both Pten and Trp53 (which encodes p53), we show that genetic inactivation of PI3Kß led to a robust anti-tumour immune response that abrogated tumour growth in syngeneic immunocompetent mice, but not in immunodeficient mice. Mechanistically, PI3Kß inactivation in the PTEN-null setting led to reduced STAT3 signalling and increased the expression of immune stimulatory molecules, thereby promoting anti-tumour immune responses. Pharmacological PI3Kß inhibition also elicited anti-tumour immunity and synergized with immunotherapy to inhibit tumour growth. Mice with complete responses to the combined treatment displayed immune memory and rejected tumours upon re-challenge. Our findings demonstrate a molecular mechanism linking PTEN loss and STAT3 activation in cancer and suggest that PI3Kß controls immune escape in PTEN-null tumours, providing a rationale for combining PI3Kß inhibitors with immunotherapy for the treatment of PTEN-deficient breast cancer.


Assuntos
Evasão da Resposta Imune , Neoplasias Mamárias Animais , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinase , Animais , Camundongos , Imunoterapia , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Transdução de Sinais , Neoplasias Mamárias Animais/enzimologia , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/imunologia , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/imunologia
5.
Mol Cell ; 81(22): 4692-4708.e9, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34555355

RESUMO

Inhibitors of poly(ADP-ribose) (PAR) polymerase (PARPi) have entered the clinic for the treatment of homologous recombination (HR)-deficient cancers. Despite the success of this approach, preclinical and clinical research with PARPi has revealed multiple resistance mechanisms, highlighting the need for identification of novel functional biomarkers and combination treatment strategies. Functional genetic screens performed in cells and organoids that acquired resistance to PARPi by loss of 53BP1 identified loss of LIG3 as an enhancer of PARPi toxicity in BRCA1-deficient cells. Enhancement of PARPi toxicity by LIG3 depletion is dependent on BRCA1 deficiency but independent of the loss of 53BP1 pathway. Mechanistically, we show that LIG3 loss promotes formation of MRE11-mediated post-replicative ssDNA gaps in BRCA1-deficient and BRCA1/53BP1 double-deficient cells exposed to PARPi, leading to an accumulation of chromosomal abnormalities. LIG3 depletion also enhances efficacy of PARPi against BRCA1-deficient mammary tumors in mice, suggesting LIG3 as a potential therapeutic target.


Assuntos
Proteína BRCA1/genética , DNA Ligase Dependente de ATP/genética , DNA de Cadeia Simples , Proteína Homóloga a MRE11/genética , Neoplasias Ovarianas/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Animais , Biópsia , Sistemas CRISPR-Cas , Linhagem Celular , Núcleo Celular/metabolismo , Proliferação de Células , Aberrações Cromossômicas , Dano ao DNA , DNA Ligase Dependente de ATP/metabolismo , Feminino , Humanos , Lentivirus/genética , Neoplasias Mamárias Animais , Camundongos , Mutação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Interferente Pequeno/metabolismo , Transgenes
6.
Mol Cell ; 80(1): 87-101.e5, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32931746

RESUMO

Studies in three mouse models of breast cancer identified profound discrepancies between cell-autonomous and systemic Akt1- or Akt2-inducible deletion on breast cancer tumorigenesis and metastasis. Although systemic Akt1 deletion inhibits metastasis, cell-autonomous Akt1 deletion does not. Single-cell mRNA sequencing revealed that systemic Akt1 deletion maintains the pro-metastatic cluster within primary tumors but ablates pro-metastatic neutrophils. Systemic Akt1 deletion inhibits metastasis by impairing survival and mobilization of tumor-associated neutrophils. Importantly, either systemic or neutrophil-specific Akt1 deletion is sufficient to inhibit metastasis of Akt-proficient tumors. Thus, Akt1-specific inhibition could be therapeutic for breast cancer metastasis regardless of primary tumor origin. Systemic Akt2 deletion does not inhibit and exacerbates mammary tumorigenesis and metastasis, but cell-autonomous Akt2 deletion prevents breast cancer tumorigenesis by ErbB2. Elevated circulating insulin level induced by Akt2 systemic deletion hyperactivates tumor Akt, exacerbating ErbB2-mediated tumorigenesis, curbed by pharmacological reduction of the elevated insulin.


Assuntos
Neoplasias Mamárias Animais/enzimologia , Neoplasias Mamárias Animais/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Carcinogênese/patologia , Feminino , Deleção de Genes , Humanos , Insulina/metabolismo , Isoenzimas/metabolismo , Metástase Neoplásica , Neutrófilos/metabolismo , Receptor ErbB-2/metabolismo
7.
Mol Cell ; 80(2): 279-295.e8, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33065020

RESUMO

The PTEN tumor suppressor controls cell death and survival by regulating functions of various molecular targets. While the role of PTEN lipid-phosphatase activity on PtdIns(3,4,5)P3 and inhibition of PI3K pathway is well characterized, the biological relevance of PTEN protein-phosphatase activity remains undefined. Here, using knockin (KI) mice harboring cancer-associated and functionally relevant missense mutations, we show that although loss of PTEN lipid-phosphatase function cooperates with oncogenic PI3K to promote rapid mammary tumorigenesis, the additional loss of PTEN protein-phosphatase activity triggered an extensive cell death response evident in early and advanced mammary tumors. Omics and drug-targeting studies revealed that PI3Ks act to reduce glucocorticoid receptor (GR) levels, which are rescued by loss of PTEN protein-phosphatase activity to restrain cell survival. Thus, we find that the dual regulation of GR by PI3K and PTEN functions as a rheostat that can be exploited for the treatment of PTEN loss-driven cancers.


Assuntos
Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , PTEN Fosfo-Hidrolase/metabolismo , Receptores de Glucocorticoides/metabolismo , Animais , Carcinogênese , Morte Celular , Linhagem Celular Tumoral , Proliferação de Células , Dexametasona/farmacologia , Feminino , Humanos , Isoenzimas/metabolismo , Camundongos , Modelos Biológicos , Mutação/genética , Organoides/patologia , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Estabilidade Proteica , Proteoma/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(5): e2318265121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261618

RESUMO

Surgical resections of solid tumors guided by visual inspection of tumor margins have been performed for over a century to treat cancer. Near-infrared (NIR) fluorescence labeling/imaging of tumor in the NIR-I (800 to 900 nm) range with systemically administrated fluorophore/tumor-targeting antibody conjugates have been introduced to improve tumor margin delineation, tumor removal accuracy, and patient survival. Here, we show Au25 molecular clusters functionalized with phosphorylcholine ligands (AuPC, ~2 nm in size) as a preclinical intratumorally injectable agent for NIR-II/SWIR (1,000 to 3,000 nm) fluorescence imaging-guided tumor resection. The AuPC clusters were found to be uniformly distributed in the 4T1 murine breast cancer tumor upon intratumor (i.t.) injection. The phosphocholine coating afforded highly stealth clusters, allowing a high percentage of AuPC to fill the tumor interstitial fluid space homogeneously. Intra-operative surgical navigation guided by imaging of the NIR-II fluorescence of AuPC allowed for complete and non-excessive tumor resection. The AuPC in tumors were also employed as a photothermal therapy (PTT) agent to uniformly heat up and eradicate tumors. Further, we performed in vivo NIR-IIb (1,500 to 1,700 nm) molecular imaging of the treated tumor using a quantum dot-Annexin V (QD-P3-Anx V) conjugate, revealing cancer cell apoptosis following PTT. The therapeutic functionalities of AuPC clusters combined with rapid renal excretion, high biocompatibility, and safety make them promising for clinical translation.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Humanos , Animais , Camundongos , Feminino , Imagem Óptica , Anexina A5 , Apoptose , Ouro
9.
PLoS Biol ; 21(11): e3002353, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37943878

RESUMO

Wnt signaling pathways are transmitted via 10 homologous frizzled receptors (FZD1-10) in humans. Reagents broadly inhibiting Wnt signaling pathways reduce growth and metastasis of many tumors, but their therapeutic development has been hampered by the side effect. Inhibitors targeting specific Wnt-FZD pair(s) enriched in cancer cells may reduce side effect, but the therapeutic effect of narrow-spectrum Wnt-FZD inhibitors remains to be established in vivo. Here, we developed a fragment of C. difficile toxin B (TcdBFBD), which recognizes and inhibits a subclass of FZDs, FZD1/2/7, and examined whether targeting this FZD subgroup may offer therapeutic benefits for treating breast cancer models in mice. Utilizing 2 basal-like and 1 luminal-like breast cancer models, we found that TcdBFBD reduces tumor-initiating cells and attenuates growth of basal-like mammary tumor organoids and xenografted tumors, without damaging Wnt-sensitive tissues such as bones in vivo. Furthermore, FZD1/2/7-positive cells are enriched in chemotherapy-resistant cells in both basal-like and luminal mammary tumors treated with cisplatin, and TcdBFBD synergizes strongly with cisplatin in inhibiting both tumor types. These data demonstrate the therapeutic value of narrow-spectrum Wnt signaling inhibitor in treating breast cancers.


Assuntos
Toxinas Bacterianas , Neoplasias da Mama , Clostridioides difficile , Neoplasias Mamárias Animais , Humanos , Animais , Camundongos , Feminino , Via de Sinalização Wnt , Neoplasias da Mama/metabolismo , Toxinas Bacterianas/metabolismo , Clostridioides difficile/metabolismo , Cisplatino
10.
Proc Natl Acad Sci U S A ; 120(10): e2214888120, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36853945

RESUMO

Necrosis in the tumor interior is a common feature of aggressive cancers that is associated with poor clinical prognosis and the development of metastasis. How the necrotic core promotes metastasis remains unclear. Here, we report that emergence of necrosis inside the tumor is correlated temporally with increased tumor dissemination in a rat breast cancer model and in human breast cancer patients. By performing spatially focused transcriptional profiling, we identified angiopoietin-like 7 (Angptl7) as a tumor-specific factor localized to the perinecrotic zone. Functional studies showed that Angptl7 loss normalizes central necrosis, perinecrotic dilated vessels, metastasis, and reduces circulating tumor cell counts to nearly zero. Mechanistically, Angptl7 promotes vascular permeability and supports vascular remodeling in the perinecrotic zone. Taken together, these findings show that breast tumors actively produce factors controlling central necrosis formation and metastatic dissemination from the tumor core.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Células Neoplásicas Circulantes , Animais , Feminino , Humanos , Ratos , Proteína 7 Semelhante a Angiopoietina , Proteínas Semelhantes a Angiopoietina , Angiopoietinas/genética , Neoplasias da Mama/genética , Necrose
11.
Proc Natl Acad Sci U S A ; 120(23): e2221707120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37253006

RESUMO

Steroid receptor coactivator 3 (SRC-3) is most strongly expressed in regulatory T cells (Tregs) and B cells, suggesting that it plays an important role in the regulation of Treg function. Using an aggressive E0771 mouse breast cell line syngeneic immune-intact murine model, we observed that breast tumors were "permanently eradicated" in a genetically engineered tamoxifen-inducible Treg-cell-specific SRC-3 knockout (KO) female mouse that does not possess a systemic autoimmune pathological phenotype. A similar eradication of tumor was noted in a syngeneic model of prostate cancer. A subsequent injection of additional E0771 cancer cells into these mice showed continued resistance to tumor development without the need for tamoxifen induction to produce additional SRC-3 KO Tregs. SRC-3 KO Tregs were highly proliferative and preferentially infiltrated into breast tumors by activating the chemokine (C-C motif) ligand (Ccl) 19/Ccl21/chemokine (C-C motif) receptor (Ccr)7 signaling axis, generating antitumor immunity by enhancing the interferon-γ/C-X-C motif chemokine ligand (Cxcl) 9 signaling axis to facilitate the entrance and function of effector T cells and natural killer cells. SRC-3 KO Tregs also show a dominant effect by blocking the immune suppressive function of WT Tregs. Importantly, a single adoptive transfer of SRC-3 KO Tregs into wild-type E0771 tumor-bearing mice can completely abolish preestablished breast tumors by generating potent antitumor immunity with a durable effect that prevents tumor reoccurrence. Therefore, treatment with SRC-3-deleted Tregs represents an approach to completely block tumor growth and recurrence without the autoimmune side effects that typically accompany immune checkpoint modulators.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Coativador 3 de Receptor Nuclear , Animais , Feminino , Masculino , Camundongos , Ligantes , Camundongos Knockout , Coativador 3 de Receptor Nuclear/genética , Linfócitos T Reguladores , Tamoxifeno/farmacologia
12.
FASEB J ; 38(2): e23419, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38236370

RESUMO

Following diagnosis but before treatment, up to 30% of breast cancer patients report behavioral side effects (e.g., anxiety, depression, memory impairment). Our rodent mammary tumor model recapitulates aspects of these behavioral sequelae, as well as elevated circulating and brain inflammatory mediators. Neuroinflammation is a proposed mechanism underlying the etiology of mood disorders and cognitive deficits, and therefore may be contributing to tumor-associated behavioral side effects. The cellular mechanisms by which tumor-induced neuroinflammation occurs remain unknown, making targeted treatment approaches inaccessible. Here, we tested the hypotheses that microglia are the primary cells driving tumor-induced neuroinflammation and behavioral side effects. Young adult female BALB/c mice were induced with a 67NR mammary tumor; tumor-free controls underwent a sham surgery. Mammary tumors increased IBA1+ and GFAP+ staining in the amygdala and hippocampus relative to tumor-free controls. However, tumors did not alter gene expression of Percoll-enriched microglia isolated from the whole brain. While cognitive, social, and anhedonia-like behaviors were not altered in tumor-bearing mice, tumors increased central tendency in the open-field test; microglia depletion did not reverse this effect. Brain region RT-qPCR data indicated that microglia depletion attenuated tumor-induced elevations of neuroinflammatory gene expression in a region- and mediator-specific manner. These results indicate a causal role of microglia in tumor-induced neuroinflammation. This research advances our understanding of the cellular mechanisms underlying tumor-induced neuroinflammation in order to understand how brain responses (e.g., behavior) may be altered with subsequent cancer-related immune challenges.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Humanos , Adulto Jovem , Feminino , Animais , Camundongos , Doenças Neuroinflamatórias , Microglia , Encéfalo , Modelos Animais de Doenças
13.
J Immunol ; 211(12): 1844-1857, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37909827

RESUMO

Prior studies have defined multiple, but inconsistent, roles for the enigmatic pattern recognition receptor NLRX1 in regulating several cancer-associated biological functions. In this study, we explore the role of NLRX1 in the highly metastatic murine 4T1 mammary tumor model. We describe a functional dichotomy of NLRX1 between two different cellular contexts: expression in healthy host cells versus expression in the 4T1 tumor cells. Using Nlrx1-/- mice engrafted with 4T1 tumors, we demonstrate that NLRX1 functions as a tumor suppressor when expressed in the host cells. Specifically, NLRX1 in healthy host cells attenuates tumor growth and lung metastasis through suppressing characteristics of epithelial-mesenchymal transition and the lung metastatic niche. Conversely, we demonstrate that NLRX1 functions as a tumor promoter when expressed in 4T1 tumor cells using gain- and loss-of-function studies both in vitro and in vivo. Mechanistically, NLRX1 in the tumor cells augments 4T1 aggressiveness and metastasis through regulating epithelial-mesenchymal transition hallmarks, cell death, proliferation, migration, reactive oxygen species levels, and mitochondrial respiration. Collectively, we provide critical insight into NLRX1 function and establish a dichotomous role of NLRX1 in the 4T1 murine mammary carcinoma model that is dictated by cellular context.


Assuntos
Neoplasias Mamárias Animais , Animais , Camundongos , Linhagem Celular Tumoral , Mitocôndrias/metabolismo , Transição Epitelial-Mesenquimal , Metástase Neoplásica , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
14.
J Immunol ; 211(2): 295-305, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37256255

RESUMO

Spontaneous tumors that arise in genetically engineered mice recapitulate the natural tumor microenvironment and tumor-immune coevolution observed in human cancers, providing a more physiologically relevant preclinical model relative to implanted tumors. Similar to many cancer patients, oncogene-driven spontaneous tumors are often resistant to immunotherapy, and thus novel agents that can effectively promote antitumor immunity against these aggressive cancers show considerable promise for clinical translation, and their mechanistic assessment can broaden our understanding of tumor immunology. In this study, we performed extensive immune profiling experiments to investigate how tumor-targeted TLR9 stimulation remodels the microenvironment of spontaneously arising tumors during an effective antitumor immune response. To model the clinical scenario of multiple tumor sites, we used MMTV-PyMT transgenic mice, which spontaneously develop heterogeneous breast tumors throughout their 10 mammary glands. We found that i.v. administration of a tumor-targeting TLR9 agonist, referred to as PIP-CpG, induced a systemic T cell-mediated immune response that not only promoted regression of existing mammary tumors, but also elicited immune memory capable of delaying growth of independent newly arising tumors. Within the tumor microenvironment, PIP-CpG therapy initiated an inflammatory cascade that dramatically amplified chemokine and cytokine production, prompted robust infiltration and expansion of innate and adaptive immune cells, and led to diverse and unexpected changes in immune phenotypes. This study demonstrates that effective systemic treatment of an autochthonous multisite tumor model can be achieved using a tumor-targeted immunostimulant and provides immunological insights that will inform future therapeutic strategies.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Camundongos , Animais , Humanos , Feminino , Receptor Toll-Like 9 , Camundongos Transgênicos , Adjuvantes Imunológicos/farmacologia , Neoplasias Mamárias Animais/terapia , Neoplasias da Mama/terapia , Microambiente Tumoral , Linhagem Celular Tumoral
15.
J Immunol ; 211(10): 1589-1604, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37756529

RESUMO

GM-CSF has been employed as an adjuvant to cancer immunotherapy with mixed results based on dosage. We previously showed that GM-CSF regulated tumor angiogenesis by stimulating soluble vascular endothelial growth factor (VEGF) receptor-1 from monocytes/macrophages in a dose-dependent manner that neutralized free VEGF, and intratumoral injections of high-dose GM-CSF ablated blood vessels and worsened hypoxia in orthotopic polyoma middle T Ag (PyMT) triple-negative breast cancer (TNBC). In this study, we assessed both immunoregulatory and oxygen-regulatory components of low-dose versus high-dose GM-CSF to compare effects on tumor oxygen, vasculature, and antitumor immunity. We performed intratumoral injections of low-dose GM-CSF or saline controls for 3 wk in FVB/N PyMT TNBC. Low-dose GM-CSF uniquely reduced tumor hypoxia and normalized tumor vasculature by increasing NG2+ pericyte coverage on CD31+ endothelial cells. Priming of "cold," anti-PD1-resistant PyMT tumors with low-dose GM-CSF (hypoxia reduced) sensitized tumors to anti-PD1, whereas high-dose GM-CSF (hypoxia exacerbated) did not. Low-dose GM-CSF reduced hypoxic and inflammatory tumor-associated macrophage (TAM) transcriptional profiles; however, no phenotypic modulation of TAMs or tumor-infiltrating lymphocytes were observed by flow cytometry. In contrast, high-dose GM-CSF priming increased infiltration of TAMs lacking the MHC class IIhi phenotype or immunostimulatory marker expression, indicating an immunosuppressive phenotype under hypoxia. However, in anti-PD1 (programmed cell death 1)-susceptible BALB/c 4T1 tumors (considered hot versus PyMT), high-dose GM-CSF increased MHC class IIhi TAMs and immunostimulatory molecules, suggesting disparate effects of high-dose GM-CSF across PyMT versus 4T1 TNBC models. Our data demonstrate a (to our knowledge) novel role for low-dose GM-CSF in reducing tumor hypoxia for synergy with anti-PD1 and highlight why dosage and setting of GM-CSF in cancer immunotherapy regimens require careful consideration.


Assuntos
Neoplasias Mamárias Animais , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Macrófagos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Hipóxia/patologia , Oxigênio/metabolismo
16.
J Immunol ; 211(2): 219-228, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37204246

RESUMO

Previous work from our group and others has shown that patients with breast cancer can generate a T cell response against specific human epidermal growth factor 2 (HER2) epitopes. In addition, preclinical work has shown that this T cell response can be augmented by Ag-directed mAb therapy. This study evaluated the activity and safety of a combination of dendritic cell (DC) vaccination given with mAb and cytotoxic therapy. We performed a phase I/II study using autologous DCs pulsed with two different HER2 peptides given with trastuzumab and vinorelbine to a study cohort of patients with HER2-overexpressing and a second with HER2 nonoverexpressing metastatic breast cancer. Seventeen patients with HER2-overexpressing and seven with nonoverexpressing disease were treated. Treatment was well tolerated, with one patient removed from therapy because of toxicity and no deaths. Forty-six percent of patients had stable disease after therapy, with 4% achieving a partial response and no complete responses. Immune responses were generated in the majority of patients but did not correlate with clinical response. However, in one patient, who has survived >14 y since treatment in the trial, a robust immune response was demonstrated, with 25% of her T cells specific to one of the peptides in the vaccine at the peak of her response. These data suggest that autologous DC vaccination when given with anti-HER2-directed mAb therapy and vinorelbine is safe and can induce immune responses, including significant T cell clonal expansion, in a subset of patients.


Assuntos
Neoplasias da Mama , Neoplasias Mamárias Animais , Humanos , Feminino , Animais , Epitopos/metabolismo , Vinorelbina/metabolismo , Vinorelbina/uso terapêutico , Receptor ErbB-2 , Neoplasias da Mama/metabolismo , Imunoterapia , Peptídeos/metabolismo , Células Dendríticas , Trastuzumab/uso terapêutico , Trastuzumab/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35105806

RESUMO

The protumor roles of alternatively activated (M2) tumor-associated macrophages (TAMs) have been well established, and macrophage reprogramming is an important therapeutic goal. However, the mechanisms of TAM polarization remain incompletely understood, and effective strategies for macrophage targeting are lacking. Here, we show that miR-182 in macrophages mediates tumor-induced M2 polarization and can be targeted for therapeutic macrophage reprogramming. Constitutive miR-182 knockout in host mice and conditional knockout in macrophages impair M2-like TAMs and breast tumor development. Targeted depletion of macrophages in mice blocks the effect of miR-182 deficiency in tumor progression while reconstitution of miR-182-expressing macrophages promotes tumor growth. Mechanistically, cancer cells induce miR-182 expression in macrophages by TGFß signaling, and miR-182 directly suppresses TLR4, leading to NFκb inactivation and M2 polarization of TAMs. Importantly, therapeutic delivery of antagomiR-182 with cationized mannan-modified extracellular vesicles effectively targets macrophages, leading to miR-182 inhibition, macrophage reprogramming, and tumor suppression in multiple breast cancer models of mice. Overall, our findings reveal a crucial TGFß/miR-182/TLR4 axis for TAM polarization and provide rationale for RNA-based therapeutics of TAM targeting in cancer.


Assuntos
Reprogramação Celular , Neoplasias Mamárias Animais/metabolismo , MicroRNAs/metabolismo , RNA Neoplásico/metabolismo , Transdução de Sinais , Macrófagos Associados a Tumor/metabolismo , Animais , Feminino , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Neoplasias Mamárias Animais/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Neoplásico/genética , Receptor 4 Toll-Like/biossíntese , Receptor 4 Toll-Like/genética , Fator de Crescimento Transformador beta/biossíntese , Fator de Crescimento Transformador beta/genética
18.
BMC Biol ; 22(1): 85, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627785

RESUMO

BACKGROUND: Inadequate DNA damage repair promotes aberrant differentiation of mammary epithelial cells. Mammary luminal cell fate is mainly determined by a few transcription factors including GATA3. We previously reported that GATA3 functions downstream of BRCA1 to suppress aberrant differentiation in breast cancer. How GATA3 impacts DNA damage repair preventing aberrant cell differentiation in breast cancer remains elusive. We previously demonstrated that loss of p18, a cell cycle inhibitor, in mice induces luminal-type mammary tumors, whereas depletion of either Brca1 or Gata3 in p18 null mice leads to basal-like breast cancers (BLBCs) with activation of epithelial-mesenchymal transition (EMT). We took advantage of these mutant mice to examine the role of Gata3 as well as the interaction of Gata3 and Brca1 in DNA damage repair in mammary tumorigenesis. RESULTS: Depletion of Gata3, like that of Brca1, promoted DNA damage accumulation in breast cancer cells in vitro and in basal-like breast cancers in vivo. Reconstitution of Gata3 improved DNA damage repair in Brca1-deficient mammary tumorigenesis. Overexpression of GATA3 promoted homologous recombination (HR)-mediated DNA damage repair and restored HR efficiency of BRCA1-deficient cells. Depletion of Gata3 sensitized tumor cells to PARP inhibitor (PARPi), and reconstitution of Gata3 enhanced resistance of Brca1-deficient tumor cells to PARP inhibitor. CONCLUSIONS: These results demonstrate that Gata3 functions downstream of BRCA1 to promote DNA damage repair and suppress dedifferentiation in mammary tumorigenesis and progression. Our findings suggest that PARP inhibitors are effective for the treatment of GATA3-deficient BLBCs.


Assuntos
Neoplasias Mamárias Animais , Inibidores de Poli(ADP-Ribose) Polimerases , Animais , Camundongos , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Dano ao DNA , Reparo do DNA , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
19.
Genes Dev ; 31(23-24): 2361-2375, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29317486

RESUMO

Both the MRTF-SRF and the YAP-TEAD transcriptional regulatory networks respond to extracellular signals and mechanical stimuli. We show that the MRTF-SRF pathway is activated in cancer-associated fibroblasts (CAFs). The MRTFs are required in addition to the YAP pathway for CAF contractile and proinvasive properties. We compared MRTF-SRF and YAP-TEAD target gene sets and identified genes directly regulated by one pathway, the other, or both. Nevertheless, the two pathways exhibit mutual dependence. In CAFs, expression of direct MRTF-SRF genomic targets is also dependent on YAP-TEAD activity, and, conversely, YAP-TEAD target gene expression is also dependent on MRTF-SRF signaling. In normal fibroblasts, expression of activated MRTF derivatives activates YAP, while activated YAP derivatives activate MRTF. Cross-talk between the pathways requires recruitment of MRTF and YAP to DNA via their respective DNA-binding partners (SRF and TEAD) and is therefore indirect, arising as a consequence of activation of their target genes. In both CAFs and normal fibroblasts, we found that YAP-TEAD activity is sensitive to MRTF-SRF-induced contractility, while MRTF-SRF signaling responds to YAP-TEAD-dependent TGFß signaling. Thus, the MRF-SRF and YAP-TEAD pathways interact indirectly through their ability to control cytoskeletal dynamics.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fibroblastos Associados a Câncer/fisiologia , Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias Mamárias Animais/fisiopatologia , Fosfoproteínas/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Fosfoproteínas/genética , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Transativadores/genética , Ativação Transcricional/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Sinalização YAP
20.
J Mammary Gland Biol Neoplasia ; 29(1): 2, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289494

RESUMO

In preclinical studies, accurate monitoring of tumor dynamics is crucial for understanding cancer biology and evaluating therapeutic interventions. Traditional methods like caliper measurements and bioluminescence imaging (BLI) have limitations, prompting the need for improved imaging techniques. This study introduces a fast-scan high-frequency ultrasound (HFUS) protocol for the longitudinal assessment of syngeneic breast tumor grafts in mice, comparing its performance with caliper, BLI measurements and with histological analysis. The E0771 mammary gland tumor cell line, engineered to express luciferase, was orthotopically grafted into immunocompetent C57BL/6 mice. Tumor growth was monitored longitudinally at multiple timepoints using caliper measurement, HFUS, and BLI, with the latter two modalities assessed against histopathological standards post-euthanasia. The HFUS protocol was designed for rapid, anesthesia-free scanning, focusing on volume estimation, echogenicity, and necrosis visualization. All mice developed tumors, only 20.6% were palpable at day 4. HFUS detected tumors as small as 2.2 mm in average diameter from day 4 post-implantation, with an average scanning duration of 47 s per mouse. It provided a more accurate volume assessment than caliper, with a lower average bias relative to reference tumor volume. HFUS also revealed tumor necrosis, correlating strongly with BLI in terms of tumor volume and cellularity. Notable discrepancies between HFUS and BLI growth rates were attributed to immune cell infiltration. The fast HFUS protocol enables precise and efficient tumor assessment in preclinical studies, offering significant advantages over traditional methods in terms of speed, accuracy, and animal welfare, aligning with the 3R principle in animal research.


Assuntos
Neoplasias Mamárias Animais , Animais , Camundongos , Camundongos Endogâmicos C57BL , Análise Custo-Benefício , Ultrassonografia , Linhagem Celular Tumoral , Necrose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA