Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.075
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Mol Cell ; 81(15): 3187-3204.e7, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34157307

RESUMO

OTULIN coordinates with LUBAC to edit linear polyubiquitin chains in embryonic development, autoimmunity, and inflammatory diseases. However, the mechanism by which angiogenesis, especially that of endothelial cells (ECs), is regulated by linear ubiquitination remains unclear. Here, we reveal that constitutive or EC-specific deletion of Otulin resulted in arteriovenous malformations and embryonic lethality. LUBAC conjugates linear ubiquitin chains onto Activin receptor-like kinase 1 (ALK1), which is responsible for angiogenesis defects, inhibiting ALK1 enzyme activity and Smad1/5 activation. Conversely, OTULIN deubiquitinates ALK1 to promote Smad1/5 activation. Consistently, embryonic survival of Otulin-deficient mice was prolonged by BMP9 pretreatment or EC-specific ALK1Q200D (constitutively active) knockin. Moreover, mutant ALK1 from type 2 hereditary hemorrhagic telangiectasia (HHT2) patients exhibited excessive linear ubiquitination and increased HOIP binding. As such, a HOIP inhibitor restricted the excessive angiogenesis of ECs derived from ALK1G309S-expressing HHT2 patients. These results show that OTULIN and LUBAC govern ALK1 activity to balance EC angiogenesis.


Assuntos
Receptores de Activinas Tipo II/genética , Receptores de Activinas Tipo II/metabolismo , Endopeptidases/genética , Complexos Multiproteicos/metabolismo , Neovascularização Patológica/genética , Poliubiquitina/metabolismo , Adulto , Animais , Endopeptidases/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Feminino , Fator 2 de Diferenciação de Crescimento/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos Mutantes , Mutação , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica/genética , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Telangiectasia Hemorrágica Hereditária , Ubiquitina-Proteína Ligases/metabolismo
2.
Cell ; 151(5): 1068-82, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23142051

RESUMO

Through in vivo selection of human cancer cell populations, we uncover a convergent and cooperative miRNA network that drives melanoma metastasis. We identify miR-1908, miR-199a-5p, and miR-199a-3p as endogenous promoters of metastatic invasion, angiogenesis, and colonization in melanoma. These miRNAs convergently target apolipoprotein E (ApoE) and the heat shock factor DNAJA4. Cancer-secreted ApoE suppresses invasion and metastatic endothelial recruitment (MER) by engaging melanoma cell LRP1 and endothelial cell LRP8 receptors, respectively, while DNAJA4 promotes ApoE expression. Expression levels of these miRNAs and ApoE correlate with human metastatic progression outcomes. Treatment of cells with locked nucleic acids (LNAs) targeting these miRNAs inhibits metastasis to multiple organs, and therapeutic delivery of these LNAs strongly suppresses melanoma metastasis. We thus identify miRNAs with dual cell-intrinsic/cell-extrinsic roles in cancer, reveal convergent cooperativity in a metastatic miRNA network, identify ApoE as an anti-angiogenic and metastasis-suppressive factor, and uncover multiple prognostic miRNAs with synergistic combinatorial therapeutic potential in melanoma.


Assuntos
Apolipoproteínas E/metabolismo , Melanoma/genética , MicroRNAs/metabolismo , Metástase Neoplásica/genética , Neovascularização Patológica/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Proteínas Relacionadas a Receptor de LDL/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Melanoma/tratamento farmacológico , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , MicroRNAs/antagonistas & inibidores , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Oligonucleotídeos/farmacologia
3.
Cell ; 146(6): 873-87, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21925313

RESUMO

Blood vessels form extensive networks that nurture all tissues in the body. Abnormal vessel growth and function are hallmarks of cancer and ischemic and inflammatory diseases, and they contribute to disease progression. Therapeutic approaches to block vascular supply have reached the clinic, but limited efficacy and resistance pose unresolved challenges. Recent insights establish how endothelial cells communicate with each other and with their environment to form a branched vascular network. The emerging principles of vascular growth provide exciting new perspectives, the translation of which might overcome the current limitations of pro- and antiangiogenic medicine.


Assuntos
Neovascularização Patológica/tratamento farmacológico , Neovascularização Fisiológica , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Vasos Sanguíneos/citologia , Vasos Sanguíneos/embriologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Humanos , Inflamação/tratamento farmacológico
4.
J Cell Sci ; 136(2)2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36601864

RESUMO

AMG232 effectively inhibits cancers with wild-type p53 (also known as TP53) by reactivating p53, but whether it inhibits glioma angiogenesis remains unclear. This study confirms that AMG232 inhibits the proliferation of glioma endothelial cells (GECs) in a dose-dependent manner and inhibits the angiogenesis of GECs. p53 and RNA-binding motif protein 4 (RBM4) were expressed at low levels in GECs, while MDM2 and vascular endothelial growth factor receptor 2 (VEGFR2, also known as KDR) were highly expressed. In vitro and in vivo experiments confirmed that AMG232 upregulated p53 and RBM4, and downregulated MDM2 and VEGFR2 by blocking the MDM2-p53 interaction. Both p53 silencing and RBM4 silencing significantly upregulated the expression of VEGFR2, promoted the proliferation, migration and tube formation of GECs, and reversed the effects of AMG232 on downregulating VEGFR2 and inhibiting the angiogenesis of GECs. AMG232 increased RBM4 expression by upregulating p53, and p53 bound to RBM4 and promoted its transcription. RBM4 bound to and shortened the half-life of VEGFR2, promoting its degradation. Finally, AMG232 produced a significant decrease in new vessels and hemoglobin content in vivo. This study proves that AMG232 inhibits glioma angiogenesis by blocking the MDM2-p53 interaction, in which the p53-RBM4-VEGFR2 pathway plays an important role.


Assuntos
Células Endoteliais , Glioma , Humanos , Movimento Celular , Proliferação de Células/fisiologia , Células Endoteliais/metabolismo , Glioma/tratamento farmacológico , Glioma/genética , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
5.
Drug Resist Updat ; 76: 101116, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38968684

RESUMO

Drug resistance and tumor recurrence remain clinical challenges in the treatment of urothelial carcinoma (UC). However, the underlying mechanism is not fully understood. Here, we performed single-cell RNA sequencing and identified a subset of urothelial cells with epithelial-mesenchymal transition (EMT) features (EMT-UC), which is significantly correlated with chemotherapy resistance and cancer recurrence. To validate the clinical significance of EMT-UC, we constructed EMT-UC like cells by introducing overexpression of two markers, Zinc Finger E-Box Binding Homeobox 1 (ZEB1) and Desmin (DES), and examined their histological distribution characteristics and malignant phenotypes. EMT-UC like cells were mainly enriched in UC tissues from patients with adverse prognosis and exhibited significantly elevated EMT, migration and gemcitabine tolerance in vitro. However, EMT-UC was not specifically identified from tumorous tissues, certain proportion of them were also identified in adjacent normal tissues. Tumorous EMT-UC highly expressed genes involved in malignant behaviors and exhibited adverse prognosis. Additionally, tumorous EMT-UC was associated with remodeled tumor microenvironment (TME), which exhibited high angiogenic and immunosuppressive potentials compared with the normal counterparts. Furthermore, a specific interaction of COL4A1 and ITGB1 was identified to be highly enriched in tumorous EMT-UC, and in the endothelial component. Targeting the interaction of COL4A1 and ITGB1 with specific antibodies significantly suppressed tumorous angiogenesis and alleviated gemcitabine resistance of UC. Overall, our findings demonstrated that the driven force of chemotherapy resistance and recurrence of UC was EMT-UC mediated COL4A1-ITGB1 interaction, providing a potential target for future UC treatment.


Assuntos
Colágeno Tipo IV , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Integrina beta1 , Recidiva Local de Neoplasia , Neovascularização Patológica , Neoplasias da Bexiga Urinária , Humanos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Gencitabina/farmacologia , Gencitabina/uso terapêutico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Integrina beta1/metabolismo , Integrina beta1/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Neovascularização Patológica/genética , Prognóstico , Microambiente Tumoral/efeitos dos fármacos , Neoplasias da Bexiga Urinária/irrigação sanguínea , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Urotélio/irrigação sanguínea , Urotélio/efeitos dos fármacos , Urotélio/patologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
6.
Am J Physiol Cell Physiol ; 327(4): C1150-C1161, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39250819

RESUMO

In the era of immunotherapy, lenvatinib (LEN) still holds an important position in the sequential treatment of advanced hepatocellular carcinoma (HCC). However, the sustained therapeutic effect of LEN is not sufficient, and there is a need to address the development of resistance. Neuropilin-1 (NRP1) is known to act as a coreceptor for epidermal growth factor receptor (EGFR), Met, and vascular endothelial growth factor receptor 2 (VEGFR2), which have been reported to be involved in LEN resistance. In this study, we used cell culture and in vivo xenograft models to evaluate the contribution of NRP1 in the acquisition of LEN resistance in HCC as well as the potential of NRP1 as a therapeutic target. LEN resistance increased EGF/EGFR and hepatocyte growth factor (HGF)/Met signaling in liver cancer cells and VEGFA/VEGFR2 and HGF/Met signaling in vascular endothelial cells, thereby promoting cell proliferation, cell migration, and angiogenesis. We found that activation of NRP1 is essential for the enhancement of these signaling. In addition, NRP1 inhibition combined with LEN therapy synergistically improved the antitumor effects against LEN-resistant HCC, indicating that NRP1 is an attractive therapeutic target.NEW & NOTEWORTHY We demonstrated that neuropilin-1 (NRP1) was an essential coreceptor mediating the activation of multiple signaling pathways in the acquisition of resistance to lenvatinib (LEN) in HCC. The addition of NRP1 inhibition to LEN had a synergistic antitumor effect on LEN-resistant HCC in culture and in vivo xenograft models.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Resistencia a Medicamentos Antineoplásicos , Neoplasias Hepáticas , Neovascularização Patológica , Neuropilina-1 , Compostos de Fenilureia , Quinolinas , Ensaios Antitumorais Modelo de Xenoenxerto , Quinolinas/farmacologia , Neuropilina-1/metabolismo , Neuropilina-1/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Compostos de Fenilureia/farmacologia , Humanos , Animais , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Camundongos Nus , Camundongos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Movimento Celular/efeitos dos fármacos , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Fator de Crescimento de Hepatócito/metabolismo , Inibidores da Angiogênese/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Camundongos Endogâmicos BALB C , Células Hep G2 , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Angiogênese
7.
J Cell Mol Med ; 28(19): e70122, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39351642

RESUMO

Human papillomavirus (HPV) infection can cause condyloma acuminatum (CA), which is characterized by a high incidence and a propensity for recurrence after treatment. Angiogenesis plays an important role in the occurrence and development of CA. Seryl-tRNA synthetase (SerRS) is a newly identified, potent anti-angiogenic factor that directly binds to the vascular endothelial growth factor (VEGFA) promoter, thereby suppressing its transcription. Emodin is a natural anthraquinone derivative that can promote SerRS expression. This study aimed to investigate the effects of emodin on CA and explore combined treatment strategies. The HPV-infected cell line SiHa was treated with either DMSO, emodin, ALA-PDT or a combination of emodin and ALA-PDT. We observed the effects on cell proliferation, apoptosis and the SerRS-VEGFA pathway. Our findings demonstrated that emodin targets angiogenesis through the SerRS-VEGFA pathway, resulting in the inhibition of SiHa cell proliferation and promotion of apoptosis (p < 0.001). To verify the therapeutic effect of emodin combined with ALA-PDT on HPV-associated tumours in vivo, we established an animal xenograft model by subcutaneously inoculating mice with SiHa cells (n = 4). The results showed that the combination of emodin and ALA-PDT significantly inhibited the expression of VEGFA to inhibit angiogenesis (p < 0.001), thus showing an inhibitory effect on tumour (p < 0.001). Furthermore, we determined that the mechanism underlying the decrease in VEGFA expression after emodin combined with ALA-PDT in CA may be attributed to the promotion of SerRS expression (p < 0.001). The combination of emodin and ALA-PDT holds promise as a novel therapeutic target for CA by targeting neovascularization in condyloma tissues.


Assuntos
Ácido Aminolevulínico , Apoptose , Proliferação de Células , Condiloma Acuminado , Emodina , Neovascularização Patológica , Fotoquimioterapia , Fator A de Crescimento do Endotélio Vascular , Emodina/farmacologia , Emodina/uso terapêutico , Humanos , Animais , Condiloma Acuminado/tratamento farmacológico , Condiloma Acuminado/virologia , Condiloma Acuminado/patologia , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Fotoquimioterapia/métodos , Camundongos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Ácido Aminolevulínico/farmacologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Camundongos Endogâmicos BALB C , Feminino , Angiogênese
8.
Angiogenesis ; 27(1): 37-49, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37493987

RESUMO

Modern drug development increasingly requires comprehensive models that can be utilized in the earliest stages of compound and target discovery. Here we report a phenotypic screening exercise in a high-throughput Organ-on-a-Chip setup. We assessed the inhibitory effect of 1537 protein kinase inhibitors in an angiogenesis assay. Over 4000 micro-vessels were grown under perfusion flow in microfluidic chips, exposed to a cocktail of pro-angiogenic factors and subsequently exposed to the respective kinase inhibitors. Efficacy of compounds was evaluated by reduced angiogenic sprouting, whereas reduced integrity of the main micro-vessel was taken as a measure for toxicity. The screen yielded 53 hits with high anti-angiogenicity and low toxicity, of which 44 were previously unassociated with angiogenic pathways. This study demonstrates that Organ-on-a-Chip models can be screened in high numbers to identify novel compounds and targets. This will ultimately reduce bias in early-stage drug development and increases probability to identify first in class compounds and targets for today's intractable diseases.


Assuntos
Angiogênese , Antineoplásicos , Humanos , Sistemas Microfisiológicos , Antineoplásicos/uso terapêutico , Neovascularização Patológica/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia
9.
Angiogenesis ; 27(2): 245-272, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38403816

RESUMO

Angiogenesis is a crucial process in the progression of various pathologies, like solid tumors, wet age-related macular degeneration, and chronic inflammation. Current anti-angiogenic treatments still have major drawbacks like limited efficacy in diseases that also rely on inflammation. Therefore, new anti-angiogenic approaches are sorely needed, and simultaneous inhibition of angiogenesis and inflammation is desirable. Here, we show that 2-desaza-annomontine (C81), a derivative of the plant alkaloid annomontine previously shown to inhibit endothelial inflammation, impedes angiogenesis by inhibiting CDC2-like kinases (CLKs) and WNT/ß-catenin signaling. C81 reduced choroidal neovascularization in a laser-induced murine in vivo model, inhibited sprouting from vascular endothelial growth factor A (VEGF-A)-activated murine aortic rings ex vivo, and reduced angiogenesis-related activities of endothelial cells in multiple functional assays. This was largely phenocopied by CLK inhibitors and knockdowns, but not by inhibitors of the other known targets of C81. Mechanistically, CLK inhibition reduced VEGF receptor 2 (VEGFR2) mRNA and protein expression as well as downstream signaling. This was partly caused by a reduction of WNT/ß-catenin pathway activity, as activating the pathway induced, while ß-catenin knockdown impeded VEGFR2 expression. Surprisingly, alternative splicing of VEGFR2 was not detected. In summary, C81 and other CLK inhibitors could be promising compounds in the treatment of diseases that depend on angiogenesis and inflammation due to their impairment of both processes.


Assuntos
Carbolinas , Pirimidinas , Fator A de Crescimento do Endotélio Vascular , beta Catenina , Animais , Humanos , Camundongos , Angiogênese , Inibidores da Angiogênese/farmacologia , beta Catenina/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação , Neovascularização Patológica/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Via de Sinalização Wnt
10.
Br J Cancer ; 131(3): 457-467, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38902534

RESUMO

BACKGROUND/OBJECTIVES: Pseudo-vascular network formation in vitro is considered a key characteristic of vasculogenic mimicry. While many cancer cell lines form pseudo-vascular networks, little is known about the spatiotemporal dynamics of these formations. METHODS: Here, we present a framework for monitoring and characterising the dynamic formation and dissolution of pseudo-vascular networks in vitro. The framework combines time-resolved optical microscopy with open-source image analysis for network feature extraction and statistical modelling. The framework is demonstrated by comparing diverse cancer cell lines associated with vasculogenic mimicry, then in detecting response to drug compounds proposed to affect formation of vasculogenic mimics. Dynamic datasets collected were analysed morphometrically and a descriptive statistical analysis model was developed in order to measure stability and dissimilarity characteristics of the pseudo-vascular networks formed. RESULTS: Melanoma cells formed the most stable pseudo-vascular networks and were selected to evaluate the response of their pseudo-vascular networks to treatment with axitinib, brucine and tivantinib. Tivantinib has been found to inhibit the formation of the pseudo-vascular networks more effectively, even in dose an order of magnitude less than the two other agents. CONCLUSIONS: Our framework is shown to enable quantitative analysis of both the capacity for network formation, linked vasculogenic mimicry, as well as dynamic responses to treatment.


Assuntos
Neovascularização Patológica , Humanos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Linhagem Celular Tumoral , Melanoma/patologia , Melanoma/irrigação sanguínea , Melanoma/tratamento farmacológico , Axitinibe/farmacologia
11.
Mol Med ; 30(1): 57, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698308

RESUMO

BACKGROUND: Ossification of the posterior longitudinal ligament (OPLL), an emerging heterotopic ossification disease, causes spinal cord compression, resulting in motor and sensory dysfunction. The etiology of OPLL remains unclear but may involve integrin αVß3 regulating the process of osteogenesis and angiogenesis. In this study, we focused on the role of integrin αVß3 in OPLL and explored the underlying mechanism by which the c(RGDyk) peptide acts as a potent and selective integrin αVß3 inhibitor to inhibit osteogenesis and angiogenesis in OPLL. METHODS: OPLL or control ligament samples were collected in surgery. For OPLL samples, RNA-sequencing results revealed activation of the integrin family, particularly integrin αVß3. Integrin αVß3 expression was detected by qPCR, Western blotting, and immunohistochemical analysis. Fluorescence microscopy was used to observe the targeted inhibition of integrin αVß3 by the c(RGDyk) peptide on ligaments fibroblasts (LFs) derived from patients with OPLL and endothelial cells (ECs). The effect of c(RGDyk) peptide on the ossification of pathogenic LFs was detected using qPCR, Western blotting. Alkaline phosphatase staining or alizarin red staining were used to test the osteogenic capability. The effect of the c(RGDyk) peptide on angiogenesis was determined by EC migration and tube formation assays. The effects of the c(RGDyk) peptide on heterotopic bone formation were evaluated by micro-CT, histological, immunohistochemical, and immunofluorescence analysis in vivo. RESULTS: The results indicated that after being treated with c(RGDyk), the osteogenic differentiation of LFs was significantly decreased. Moreover, the c(RGDyk) peptide inhibited the migration of ECs and thus prevented the nutritional support required for osteogenesis. Furthermore, the c(RGDyk) peptide inhibited ectopic bone formation in mice. Mechanistic analysis revealed that c(RGDyk) peptide could inhibit osteogenesis and angiogenesis in OPLL by targeting integrin αVß3 and regulating the FAK/ERK pathway. CONCLUSIONS: Therefore, the integrin αVß3 appears to be an emerging therapeutic target for OPLL, and the c(RGDyk) peptide has dual inhibitory effects that may be valuable for the new therapeutic strategy of OPLL.


Assuntos
Integrina alfaVbeta3 , Ossificação do Ligamento Longitudinal Posterior , Osteogênese , Integrina alfaVbeta3/metabolismo , Integrina alfaVbeta3/antagonistas & inibidores , Humanos , Osteogênese/efeitos dos fármacos , Animais , Camundongos , Ossificação do Ligamento Longitudinal Posterior/metabolismo , Ossificação do Ligamento Longitudinal Posterior/tratamento farmacológico , Masculino , Feminino , Pessoa de Meia-Idade , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Modelos Animais de Doenças , Oligopeptídeos/farmacologia , Oligopeptídeos/química , Angiogênese
12.
Clin Exp Immunol ; 218(2): 177-187, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-39028612

RESUMO

Recently, the incidence of malignant tumors is on the rise and searching for new treatments on it has become the research priority. Blocking the vascular endothelial growth factor (VEGF) and its receptor (VEGFR) is one of the treatment strategies that used in the development of specific anti-angiogenic drugs. The deficiencies in tissue penetration and affinity maturation become the weakness of these drugs in anti-tumors applications. The single heavy chain antibody found in Chiloscyllium plagiosum, which has a low molecular weight and superior tissue penetration of variable region (variable new antigen receptor, VNARs), was considered to have the high antigen-binding activity and stability. This type of antibody has a simple structure that can be prokaryoticaly expressed, which makes it easily to produce new antiangiogenic target drugs. Specific anti-IgNAR rabbit multiple antibodies have been used to assess the level of VNARs in sharks and have shown a significant enrichment of IgNAR after triple immunization. An anti-VEGFR2 phage library was used for the targeted VNARs screening, and five candidate VNARs sequences were subsequently obtained by phage screening, followed by combined screening with the transcriptome library, and analysis of conserved regions along with 3D modelling matched the VNAR profile. ELISA and cell-based assays showed that two of the VNARs, VNAR-A6, and VNAR-E3, had a superior antigen affinity and anti-angiogenic activity thereby being able to inhibit human Umbilical Vein Endothelial Cells proliferation and migration. The anti-VEGFR2 VNARs derived from the immunized C. plagiosum and screened by phage library, which provide the new research ideas and specific approaches for the development of new drugs. The anti-VEGFR2 VNARs are capable for blocking the VEGF-VEGFR pathway, which of these may contribute to expanding the use of anti-angiogenic drugs.


Assuntos
Inibidores da Angiogênese , Células Endoteliais da Veia Umbilical Humana , Tubarões , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/imunologia , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Humanos , Animais , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Tubarões/imunologia , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/farmacologia , Coelhos , Neovascularização Patológica/imunologia , Neovascularização Patológica/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Movimento Celular
13.
IUBMB Life ; 76(11): 972-986, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38873890

RESUMO

Parecoxib, a well-recognized nonsteroidal anti-inflammatory drug, has been reported to possess anticancer properties in various tumor types. In this work, we aimed to investigate the potential anticancer effects of parecoxib on hepatocellular carcinoma (HCC) cells. To assess the impact of parecoxib on HCC cell proliferation, we employed Cell Counting Kit-8, colony formation, and 5-ethynyl-2'-deoxyuridine assays. Hoechst/propidium iodide (PI) double staining and flow cytometry were performed to evaluate apoptosis and cell cycle analysis. Wound healing and transwell assays were utilized to assess cell migration and invasion. Tube formation assay was employed to analyze angiogenesis. Protein levels were determined using western blotting, and mRNA expression levels were assessed using quantitative real-time polymerase chain reaction (PCR). A xenograft mouse model was used to confirm the antitumor effects of parecoxib on HCC tumors in vivo. Our data demonstrated that parecoxib effectively inhibited the proliferation of HCC cells in a dose- and time-dependent manner. In addition, parecoxib induced cell cycle arrest in the G2 phase and promoted apoptosis. Moreover, parecoxib hindered tumor migration and invasion by impeding the epithelial-mesenchymal transition process. Further investigation showed that parecoxib could significantly suppress angiogenesis through the inhibition of extracellular signal-regulated kinase (ERK)-vascular endothelial growth factor (VEGF) axis. Notably, treatment with the ERK activator phorbol myristate acetate upregulated the expression of matrix metalloproteinase (MMP)-2, MMP-9, and VEGF and reversed the function of parecoxib in HCC cells. Besides, parecoxib displayed its antitumor efficacy in vivo. Collectively, our results suggest that parecoxib ameliorates HCC progression by regulating proliferation, cell cycle, apoptosis, migration, invasion, and angiogenesis through the ERK-VEGF/MMPs signaling pathway.


Assuntos
Apoptose , Carcinoma Hepatocelular , Movimento Celular , Proliferação de Células , Isoxazóis , Neoplasias Hepáticas , Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/genética , Animais , Isoxazóis/farmacologia , Camundongos , Proliferação de Células/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Nus , Transdução de Sinais/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Masculino , Linhagem Celular Tumoral , Angiogênese
14.
Cytokine ; 180: 156674, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38852491

RESUMO

Vascular endothelial growth factor (VEGF) inhibition is an essential targeted strategy for malignant tumors, but its efficacy is severely constrained by drug resistance. The traditional view holds that the target of VEGF inhibition is endothelial cells, and thus compensatory angiogenesis is considered the main mechanism of drug resistance. In this study, we found that tumor cells themselves could develop acquired resistance to VEGF therapy, indicating an independent resistance mechanism apart from angiogenesis. Notably, this acquired resistance was temporary, disappearing completely four days after discontinuing exposure to the drug in vitro. Our findings suggest that tumor cells may also be targets of VEGF inhibition, and their response to treatment should not be overlooked in contributing to drug resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Neovascularização Patológica , Fator A de Crescimento do Endotélio Vascular , Humanos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Linhagem Celular Tumoral , Neovascularização Patológica/tratamento farmacológico , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/patologia
15.
Toxicol Appl Pharmacol ; 486: 116938, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38642809

RESUMO

Drug resistance is a serious problem for gefitinib in the treatment of lung cancer. Ginsenoside CK, a metabolite of diol ginsenosides, have many excellent pharmacological activities, but whether ginsenoside CK can overcome gefitinib resistance remains unclear. In our study, the sensitizing activity of ginsenoside CK on gefitinib-resistant non-small cell lung cancer (NSCLC) in vitro and in vivo was investigated. Ginsenoside CK was confirmed to enhance the anti-proliferation, pro-apoptotic and anti-migration effects of gefitinib in primary and acquired resistant NSCLC. Furthermore, the combined administration of CK and gefitinib effectively promoted the sensitivity of lung cancer xenograft to gefitinib in vivo, and the tumor inhibition rate reached 70.97% (vs. gefitinib monotherapy 32.65%). Subsequently, tubule formation experiment and western blot results showed that co-treatment of ginsenoside CK inhibited the angiogenesis ability of HUVEC cells, and inhibited the expression of HIF-1α, VEGF, FGF and MMP2/9. More interestingly, ginsenoside CK co-treatment enhanced the expression of anti-angiogenic factor PF4, increased pericellular envelope, and promoted the normalization of vascular structure. In conclusion, ginsenoside CK improved the resistance of gefitinib by regulating the balance of angiogenic factors through down-regulating the HIF-1α/VEGF signaling pathway, providing a theoretical basis for improving the clinical efficacy of gefitinib and applying combined strategies to overcome drug resistance.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Gefitinibe , Ginsenosídeos , Células Endoteliais da Veia Umbilical Humana , Subunidade alfa do Fator 1 Induzível por Hipóxia , Neoplasias Pulmonares , Camundongos Nus , Fator A de Crescimento do Endotélio Vascular , Gefitinibe/farmacologia , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ginsenosídeos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Animais , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células A549 , Neovascularização Patológica/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Feminino
16.
Cancer Invest ; 42(7): 559-604, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38874308

RESUMO

A number of conditions and factors can cause the transformation of normal cells in the body into malignant tissue by changing the normal functions of a wide range of regulatory, apoptotic, and signal transduction pathways. Despite the current deficiency in fully understanding the mechanism of cancer action accurately and clearly, numerous genes and proteins that are causally involved in the initiation, progression, and metastasis of cancer have been identified. But due to the lack of space and the abundance of details on this complex topic, we have emphasized here more recent advances in our understanding of the principles implied tumor cell transformation, development, invasion, angiogenesis, and metastasis. Inhibition of angiogenesis is a significant strategy for the treatment of various solid tumors, that essentially depend on cutting or at least limiting the supply of blood to micro-regions of tumors, leading to pan-hypoxia and pan-necrosis inside solid tumor tissues. Researchers have continued to enhance the efficiency of anti-angiogenic drugs over the past two decades, to identify their potential in the drug interaction, and to discover reasonable interpretations for possible resistance to treatment. In this review, we have discussed an overview of cancer history and recent methods use in cancer therapy, focusing on anti-angiogenic inhibitors targeting angiogenesis formation. Further, this review has explained the molecular mechanism of action of these anti-angiogenic inhibitors in various tumor types and their limitations use. In addition, we described the synergistic mechanisms of immunotherapy and anti-angiogenic therapy and summarizes current clinical trials of these combinations. Many phase III trials found that combining immunotherapy and anti-angiogenic therapy improved survival. Therefore, targeting the source supply of cancer cells to grow and spread with new anti-angiogenic agents in combination with different conventional therapy is a novel method to reduce cancer progression. The aim of this paper is to overview the varying concepts of cancer focusing on mechanisms involved in tumor angiogenesis and provide an overview of the recent trends in anti-angiogenic strategies for cancer therapy.


Assuntos
Inibidores da Angiogênese , Neoplasias , Neovascularização Patológica , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/irrigação sanguínea , Neoplasias/patologia , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/farmacologia , Neovascularização Patológica/tratamento farmacológico , Animais
17.
Arch Biochem Biophys ; 754: 109957, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38467357

RESUMO

OBJECTIVES: To investigate the therapeutic effects of Zeaxanthin (Zea), one of the oxidized xanthophyll carotenoids belonging to the isoprenoids, on inhibiting the angiogenesis and tumor growth of glioblastoma (GBM) via an in vitro and in vivo study. METHODS: The effects of Zea on the proliferation, adhesion, migration and invasion of human GBM cell lines were detected by cell proliferation assay, cell adhesion assay and Transwell assay. The effect of Zea on angiogenesis was detected by rat aortic ring assay and human umbilical vein endothelial cells (HUVEC) in vitro tube formation assay. The effects of Zea on PARP, Caspase 3 and VEGFR2 phosphorylation as well as VEGFR2's downstream signaling pathway were detected by Western blot. The in vivo human GBM xenograft mouse model was employed to study the therapeutic efficacy of Zea. RESULTS: Zea impaired the proliferation, adhesion, migration and invasion of U87 and U251 cells as well as HUVECs. Rat aortic ring experiments displayed Zea significantly inhibited angiogenesis during VEGF-induced microvascular germination. In vitro and in vivo vascular experiments verified that Zea inhibited VEGF-induced HUVEC proliferation and capillary-like tube formation. Additionally, Zea induced GBM cells apoptosis via increasing the expression of cleaved PARP and Caspase 3. In HUVECs and U251 GBM cells, Zea down-regulated VEGF-induced activation of the VEGFR2 kinase pathway. Meanwhile the expression of p-AKT, p-ERK, p-STAT3 and FAK were all attenuated in U251 cells. Moreover, the effects of Zea on GBM cells proliferation could be blocked by VEGFR2 kinase inhibitor SU5408. These results suggest that Zea may hinder GBM angiogenesis and tumor growth through down-regulating a cascade of oncogenic signaling pathways, both through the inhibition of angiogenesis and the anti-tumor mechanism of a direct cytotoxic effect. Besides, Zea inhibits GBM angiogenesis and tumor growth exemplified through a xenograft mouse model in vivo. CONCLUSION: Zea impairs angiogenesis and tumor growth of GBM both in vitro and in vivo. It can be declared that Zea is a potential valuable anticancer candidate for the future treatment strategy of GBM.


Assuntos
Antineoplásicos , Glioblastoma , Humanos , Ratos , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Zeaxantinas/farmacologia , Caspase 3 , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiogênese , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores da Angiogênese/farmacologia , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana , Antineoplásicos/farmacologia , Neovascularização Patológica/tratamento farmacológico , Movimento Celular
18.
BMC Cancer ; 24(1): 1309, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39448911

RESUMO

BACKGROUND: Anti-angiogenic, VEGF inhibitors (VEGFi) increase progression-free survival (PFS) and, in some cases, overall survival in many solid tumours. However, their use has been compromised by a lack of informative biomarkers. We have shown that plasma Tie2 is the first tumour vascular response biomarker for VEGFi in ovarian, colorectal and gall bladder cancer: If plasma Tie2 concentrations do not change after 9 weeks of treatment with a VEGFi, the patient does not benefit, whereas a confirmed reduction of at least 10% plasma Tie2 defines a vascular response with a hazard ratio (HR) for PFS of 0.56. The aim of the VALTIVE1 study is to validate the utility of plasma Tie2 as a vascular response biomarker and to optimise the Tie2-definition of vascular response so that the subsequent randomised discontinuation VALTIVE2 study can be powered optimally. METHODS: VALTIVE1 is a multi-centre, single arm, non-interventional biomarker study, with a sample size of 205 participants (176 bevacizumab-treated participants + 29 participants receiving bevacizumab and olaparib/PARPi), who are 16 years or older, have FIGO stage IIIc/IV ovarian cancer on treatment with first-line platinum-based chemotherapy and bevacizumab. Their blood plasma samples will be collected before, during, and after treatment and the concentration of Tie2 will be determined. The primary objective is to define the PFS difference between Tie2-defined vascular responders and Tie2-defined vascular non-responders in patients receiving bevacizumab for high-risk Ovarian Cancer. Secondary objectives include defining the relationship between Tie2-defined vascular progression and disease progression assessed according to RECIST 1.1 criteria and assessing the impact of PARPi on the plasma concentration of Tie2 and, therefore, the decision-making utility of Tie2 as a vascular response biomarker for bevacizumab during combined bevacizumab-PARPi maintenance. DISCUSSION: There is an urgent need to establish a test that tells patients and their doctors when VEGFi are working and when they stop working. The data generated from this study will be used to design a second trial aiming to prove conclusively the value of the Tie2 test. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT04523116. Registered on 21 Aug 2020.


Assuntos
Inibidores da Angiogênese , Biomarcadores Tumorais , Neoplasias Ovarianas , Receptor TIE-2 , Fator A de Crescimento do Endotélio Vascular , Humanos , Receptor TIE-2/sangue , Feminino , Biomarcadores Tumorais/sangue , Fator A de Crescimento do Endotélio Vascular/sangue , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Inibidores da Angiogênese/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/sangue , Bevacizumab/uso terapêutico , Bevacizumab/farmacologia , Intervalo Livre de Progressão , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neovascularização Patológica/tratamento farmacológico
19.
BMC Cancer ; 24(1): 614, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773427

RESUMO

OBJECTIVE: Our study was to investigate the impact of taurolactone, a novel anti-tumor and anti-angiogenic drug, on AGGF1, an angiogenic factor, and angiogenesis mimicry in patients diagnosed with hepatocellular carcinoma (HCC). METHODS: A total of 120 HCC patients were enrolled from the Department of Oncology and Hepatobiliary Surgery at our hospital between May 2021 and December 2022. HCC diagnoses were confirmed through imaging or tissue biopsy for all patients. The age of patients ranged from 37 to 72 years, with an average age of 64.29 ± 4.58 years. These participants were divided equally into two groups: the control group and the observation group, each consisting of 60 individuals. While the control group received standard drug treatment, the observation group was administered taurolactone treatment. Before being included in the study, all participants or their legal representatives provided signed informed consent. Patient demographic information was collected through a questionnaire survey. ELISA was used to measure the levels of VEGF and AGGF1 in patients following treatment. Western blot was applied to assess the protein expression of PDGF, Angiopoietin, and AGGF1. MRI imaging technology was utilized to assess the perfusion characteristics of tumor blood vessels in patients. Tumor vessel density was compared between patients using ultrasonography. We also conducted a comparison between the two groups in terms of progression-free survival and overall survival. RESULTS: General patient information between the two groups showed no significant differences (P > 0.05). Of note, the observation group exhibited greatly lower levels of VEGF and AGGF1 compared to the control group (P < 0.05). Moreover, the levels of PDGF, Angiopoietin, and AGGF1 protein expression were significantly reduced in the observation group compared to the control group (P < 0.05). In terms of tumor perfusion, the observation group displayed lower average and maximum perfusion volumes in tumor blood vessels compared to the control group (P < 0.05). Additionally, the observation group demonstrated delayed peak times and arrival times of tumor blood vessels in comparison to the control group (P < 0.05). Furthermore, the density of tumor blood vessels was notably lower in the observation group compared to the control group (P < 0.05). Patients in the observation group had longer progression-free survival and overall survival than the control group (P < 0.05). CONCLUSION: In HCC patients, our study highlighted the potential efficacy of taurolactone treatment as it effectively inhibited angiogenic factors and angiogenesis mimicry, ultimately leading to an improved prognosis for these patients.


Assuntos
Inibidores da Angiogênese , Proteínas Angiogênicas , Carcinoma Hepatocelular , Neoplasias Hepáticas , Neovascularização Patológica , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Pessoa de Meia-Idade , Masculino , Feminino , Idoso , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/farmacologia , Proteínas Angiogênicas/metabolismo , Adulto , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Lactonas/uso terapêutico , Lactonas/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Angiogênese
20.
BMC Cancer ; 24(1): 1275, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39402462

RESUMO

Colorectal cancer (CRC) is the third most common malignancy, with increasing prevalence and mortality. How the ethoxy-erianin phosphate (EBTP) mediates CRC development remains unclear. Therefore, the current study evaluated the effects of EBTP on the proliferation, migration, and angiogenesis of CRC cells using CCK-8, Wound-healing, Transwell, and Tube formation assays. RNA sequencing and molecular docking techniques helped predict that EBTP could inhibit angiogenesis by regulating PIK3R2 expression while clarifying the mechanism behind EBTP-mediated CRC angiogenesis. Subsequently, several in vitro experiments indicated that PIK3R2 overexpression significantly improved the proliferation, migration, and angiogenesis of CRC cells while knocking down PIK3R2 expression inhibited their proliferation, migration, and angiogenesis. Simultaneously, PIK3R2 expression in CRC cells gradually decreased with increased EBTP concentration and action duration. Moreover, PIK3R2 overexpression in CRC cells could reverse the inhibitory EBTP effect in angiogenesis. Mouse experiments also depicted that EBTP inhibited CRC angiogenesis by down-regulating PIK3R2 expression. In addition, EBTP could inhibit PI3K/AKT pathway activity and indirectly control PIK3R2 expression through the lncRNA TMPO-AS1/miR-126-3p axis. Our findings highlighted that EBTP could inhibit CRC angiogenesis using the TMPO-AS1/miR-126-3p/PIK3R2/PI3k/AKT axis, providing a novel strategy for anti-angiogenic therapy in CRC.


Assuntos
Proliferação de Células , Neoplasias Colorretais , MicroRNAs , Neovascularização Patológica , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Camundongos , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/genética , Proliferação de Células/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Movimento Celular/efeitos dos fármacos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Angiogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA