Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.051
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 21(3): 261-273, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066955

RESUMO

Crosstalk between mesenchymal stromal cells (MSCs) and hematopoietic stem cells (HSCs) is essential for hematopoietic homeostasis and lineage output. Here, we investigate how transcriptional changes in bone marrow (BM) MSCs result in long-lasting effects on HSCs. Single-cell analysis of Cxcl12-abundant reticular (CAR) cells and PDGFRα+Sca1+ (PαS) cells revealed an extensive cellular heterogeneity but uniform expression of the transcription factor gene Ebf1. Conditional deletion of Ebf1 in these MSCs altered their cellular composition, chromatin structure and gene expression profiles, including the reduced expression of adhesion-related genes. Functionally, the stromal-specific Ebf1 inactivation results in impaired adhesion of HSCs, leading to reduced quiescence and diminished myeloid output. Most notably, HSCs residing in the Ebf1-deficient niche underwent changes in their cellular composition and chromatin structure that persist in serial transplantations. Thus, genetic alterations in the BM niche lead to long-term functional changes of HSCs.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Transativadores/deficiência , Animais , Adesão Celular/genética , Adesão Celular/fisiologia , Autorrenovação Celular/genética , Autorrenovação Celular/fisiologia , Cromatina/genética , Feminino , Hematopoese/genética , Hematopoese/fisiologia , Transplante de Células-Tronco Hematopoéticas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise de Célula Única , Nicho de Células-Tronco/genética , Nicho de Células-Tronco/fisiologia , Transativadores/genética , Transcriptoma
3.
Cell ; 162(3): 476-7, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26232219

RESUMO

Stem cells interact with their niche to maintain an undifferentiated state. The study by Pardo-Saganta et al. shows that airway basal stem cells maintain secretory daughter cells in airway epithelia through forward regulation, suggesting that stem cells may serve as a niche for their progeny.


Assuntos
Nicho de Células-Tronco/fisiologia , Células-Tronco/citologia , Animais , Feminino , Masculino
4.
Nat Rev Mol Cell Biol ; 18(12): 728-742, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29115301

RESUMO

Stem cells and their local microenvironment, or niche, communicate through mechanical cues to regulate cell fate and cell behaviour and to guide developmental processes. During embryonic development, mechanical forces are involved in patterning and organogenesis. The physical environment of pluripotent stem cells regulates their self-renewal and differentiation. Mechanical and physical cues are also important in adult tissues, where adult stem cells require physical interactions with the extracellular matrix to maintain their potency. In vitro, synthetic models of the stem cell niche can be used to precisely control and manipulate the biophysical and biochemical properties of the stem cell microenvironment and to examine how the mode and magnitude of mechanical cues, such as matrix stiffness or applied forces, direct stem cell differentiation and function. Fundamental insights into the mechanobiology of stem cells also inform the design of artificial niches to support stem cells for regenerative therapies.


Assuntos
Células-Tronco Adultas/fisiologia , Matriz Extracelular/fisiologia , Organogênese/fisiologia , Regeneração/fisiologia , Nicho de Células-Tronco/fisiologia , Células-Tronco Adultas/citologia , Animais , Fenômenos Biomecânicos/fisiologia , Humanos
6.
Nature ; 613(7942): 169-178, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36544018

RESUMO

Tissue regeneration requires coordination between resident stem cells and local niche cells1,2. Here we identify that senescent cells are integral components of the skeletal muscle regenerative niche that repress regeneration at all stages of life. The technical limitation of senescent-cell scarcity3 was overcome by combining single-cell transcriptomics and a senescent-cell enrichment sorting protocol. We identified and isolated different senescent cell types from damaged muscles of young and old mice. Deeper transcriptome, chromatin and pathway analyses revealed conservation of cell identity traits as well as two universal senescence hallmarks (inflammation and fibrosis) across cell type, regeneration time and ageing. Senescent cells create an aged-like inflamed niche that mirrors inflammation associated with ageing (inflammageing4) and arrests stem cell proliferation and regeneration. Reducing the burden of senescent cells, or reducing their inflammatory secretome through CD36 neutralization, accelerates regeneration in young and old mice. By contrast, transplantation of senescent cells delays regeneration. Our results provide a technique for isolating in vivo senescent cells, define a senescence blueprint for muscle, and uncover unproductive functional interactions between senescent cells and stem cells in regenerative niches that can be overcome. As senescent cells also accumulate in human muscles, our findings open potential paths for improving muscle repair throughout life.


Assuntos
Envelhecimento , Senescência Celular , Inflamação , Músculo Esquelético , Regeneração , Nicho de Células-Tronco , Idoso , Animais , Humanos , Camundongos , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Senescência Celular/fisiologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Músculo Esquelético/fisiologia , Músculo Esquelético/fisiopatologia , Células-Tronco/fisiologia , Fibrose/fisiopatologia , Nicho de Células-Tronco/fisiologia , Transcriptoma , Cromatina/genética , Gerociência
7.
Annu Rev Cell Dev Biol ; 31: 269-89, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26436704

RESUMO

In the adult mammalian body, self-renewal of tissue stem cells is regulated by extracellular niche environments in response to the demands of tissue organization. Intestinal stem cells expressing Lgr5 constantly self-renew in their specific niche at the crypt bottom to maintain rapid turnover of the epithelium. Niche-regulated stem cell self-renewal is perturbed in several mouse genetic models and during human tumorigenesis, suggesting roles for EGF, Wnt, BMP/TGF-ß, and Notch signaling. In vitro niche reconstitution capitalizing on this knowledge has enabled the growth of single intestinal stem cells into mini-gut epithelial organoids comprising Lgr5(+) stem cells and all types of differentiated lineages. The mini-gut organoid culture platform is applicable to various types of digestive tissue epithelium from multiple species. The mechanism of self-renewal in organoids provides novel insights for organogenesis, regenerative medicine, and tumorigenesis of the digestive system.


Assuntos
Intestinos/fisiologia , Organoides/fisiologia , Regeneração/fisiologia , Nicho de Células-Tronco/fisiologia , Células-Tronco/fisiologia , Animais , Carcinogênese/patologia , Epitélio/fisiologia , Humanos , Transdução de Sinais/fisiologia
8.
Annu Rev Cell Dev Biol ; 31: 291-315, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26355592

RESUMO

Stem cells are necessary for the maintenance of many adult tissues. Signals within the stem cell microenvironment, or niche, regulate the self-renewal and differentiation capability of these cells. Misregulation of these signals through mutation or damage can lead to overgrowth or depletion of different stem cell pools. In this review, we focus on the Drosophila testis and ovary, both of which contain well-defined niches, as well as the mouse testis, which has become a more approachable stem cell system with recent technical advances. We discuss the signals that regulate gonadal stem cells in their niches, how these signals mediate self-renewal and differentiation under homeostatic conditions, and how stress, whether from mutations or damage, can cause changes in cell fate and drive stem cell competition.


Assuntos
Autorrenovação Celular/genética , Autorrenovação Celular/fisiologia , Gônadas/fisiologia , Células-Tronco/fisiologia , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Drosophila/genética , Drosophila/fisiologia , Feminino , Humanos , Masculino , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Nicho de Células-Tronco/genética , Nicho de Células-Tronco/fisiologia
9.
EMBO J ; 43(8): 1570-1590, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38499787

RESUMO

Ten-eleven translocation (TET) proteins are dioxygenases that convert 5-methylcytosine (5mC) into 5-hydroxylmethylcytosine (5hmC) in DNA and RNA. However, their involvement in adult stem cell regulation remains unclear. Here, we identify a novel enzymatic activity-independent function of Tet in the Drosophila germline stem cell (GSC) niche. Tet activates the expression of Dpp, the fly homologue of BMP, in the ovary stem cell niche, thereby controlling GSC self-renewal. Depletion of Tet disrupts Dpp production, leading to premature GSC loss. Strikingly, both wild-type and enzyme-dead mutant Tet proteins rescue defective BMP signaling and GSC loss when expressed in the niche. Mechanistically, Tet interacts directly with Bap55 and Stat92E, facilitating recruitment of the Polybromo Brahma associated protein (PBAP) complex to the dpp enhancer and activating Dpp expression. Furthermore, human TET3 can effectively substitute for Drosophila Tet in the niche to support BMP signaling and GSC self-renewal. Our findings highlight a conserved novel catalytic activity-independent role of Tet as a scaffold protein in supporting niche signaling for adult stem cell self-renewal.


Assuntos
Dioxigenases , Proteínas de Drosophila , Drosophila melanogaster , Animais , Feminino , Humanos , Diferenciação Celular/genética , Drosophila/genética , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Germinativas/metabolismo , Nicho de Células-Tronco/fisiologia , Células-Tronco/metabolismo , Dioxigenases/metabolismo
10.
Development ; 151(11)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38832825

RESUMO

Germ stem cells in Drosophila reside within a specialized stem cell niche, but the effects of stress on these stem cell populations have been elusive. In a new study, Roach and Lenhart show that repeated mating stress induces reversible changes in the germ stem cell niche. To know more about their work, we spoke to first author, Tiffany Roach, and corresponding author, Kari Lenhart, Principal Investigator at Drexel University in Philadelphia, USA.


Assuntos
Células Germinativas , Animais , História do Século XXI , Células Germinativas/citologia , História do Século XX , Nicho de Células-Tronco/fisiologia , Drosophila , Humanos , Biologia do Desenvolvimento/história , Células-Tronco/citologia
11.
Immunity ; 48(4): 632-648, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29669248

RESUMO

Steady-state hematopoietic stem cells' (HSCs) self-renewal and differentiation toward their mature progeny in the adult bone marrow is tightly regulated by cues from the microenvironment. Recent insights into the cellular and molecular constituents have uncovered a high level of complexity. Here, we review emerging evidence showing how HSCs and their progeny are regulated by an interdependent network of mesenchymal stromal cells, nerve fibers, the vasculature, and also other hematopoietic cells. Understanding the interaction mechanisms in these intricate niches will provide great opportunities for HSC-related therapies and immune modulation.


Assuntos
Células da Medula Óssea/fisiologia , Autorrenovação Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Mesenquimais/citologia , Nicho de Células-Tronco/fisiologia , Animais , Diferenciação Celular , Células-Tronco Hematopoéticas/fisiologia , Humanos , Células-Tronco Mesenquimais/fisiologia , Camundongos , Fibras Nervosas/fisiologia
12.
Development ; 150(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37102706

RESUMO

The cells of the innate immune system are the sentinels of tissue homeostasis, acting as 'first responders' to cellular damage and infection. Although the complex interplay of different immune cells during the initial inflammatory phases of infection and repair has been documented over many decades, recent studies have begun to define a more direct role for specific immune cells in the modulation of tissue repair. One particular cell of the innate immune system, the macrophage, has emerged as a central integrator of the complex molecular processes that drive tissue repair and, in some cases, the development of specific cell types. Although macrophages display directed orchestration of stem cell activities, bidirectional cellular crosstalk mechanisms allow stem cells to regulate macrophage behaviour within their niche, thus increasing the complexity of niche regulation and control. In this Review, we characterize the roles of macrophage subtypes in individual regenerative and developmental processes and illustrate the surprisingly direct role for immune cells in coordinating stem cell formation and activation.


Assuntos
Macrófagos , Nicho de Células-Tronco , Nicho de Células-Tronco/fisiologia , Macrófagos/metabolismo , Células-Tronco
13.
PLoS Biol ; 21(11): e3002352, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37943883

RESUMO

Neural stem cells (NSCs) reside in a defined cellular microenvironment, the niche, which supports the generation and integration of newborn neurons. The mechanisms building a sophisticated niche structure around NSCs and their functional relevance for neurogenesis are yet to be understood. In the Drosophila larval brain, the cortex glia (CG) encase individual NSC lineages in membranous chambers, organising the stem cell population and newborn neurons into a stereotypic structure. We first found that CG wrap around lineage-related cells regardless of their identity, showing that lineage information builds CG architecture. We then discovered that a mechanism of temporally controlled differential adhesion using conserved complexes supports the individual encasing of NSC lineages. An intralineage adhesion through homophilic Neuroglian interactions provides strong binding between cells of a same lineage, while a weaker interaction through Neurexin-IV and Wrapper exists between NSC lineages and CG. Loss of Neuroglian results in NSC lineages clumped together and in an altered CG network, while loss of Neurexin-IV/Wrapper generates larger yet defined CG chamber grouping several lineages together. Axonal projections of newborn neurons are also altered in these conditions. Further, we link the loss of these 2 adhesion complexes specifically during development to locomotor hyperactivity in the resulting adults. Altogether, our findings identify a belt of adhesions building a neurogenic niche at the scale of individual stem cell and provide the proof of concept that niche properties during development shape adult behaviour.


Assuntos
Drosophila , Células-Tronco Neurais , Animais , Neurônios/metabolismo , Neurogênese/fisiologia , Células-Tronco Neurais/metabolismo , Neuroglia/fisiologia , Encéfalo , Nicho de Células-Tronco/fisiologia
14.
Nat Rev Mol Cell Biol ; 15(5): 301-12, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24755933

RESUMO

The astonishingly long lives of plants and their regeneration capacity depend on the activity of plant stem cells. As in animals, stem cells reside in stem cell niches, which produce signals that regulate the balance between self-renewal and the generation of daughter cells that differentiate into new tissues. Plant stem cell niches are located within the meristems, which are organized structures that are responsible for most post-embryonic development. The continuous organ production that is characteristic of plant growth requires a robust regulatory network to keep the balance between pluripotent stem cells and differentiating progeny. Components of this network have now been elucidated and provide a unique opportunity for comparing strategies that were developed in the animal and plant kingdoms, which underlie the logic of stem cell behaviour.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/citologia , Regulação da Expressão Gênica de Plantas , Meristema/citologia , Células-Tronco/citologia , Fatores de Transcrição/genética , Animais , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Células Vegetais/metabolismo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Regeneração , Transdução de Sinais , Nicho de Células-Tronco/fisiologia , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo
15.
Nature ; 577(7792): 676-681, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969699

RESUMO

Empirical and anecdotal evidence has associated stress with accelerated hair greying (formation of unpigmented hairs)1,2, but so far there has been little scientific validation of this link. Here we report that, in mice, acute stress leads to hair greying through the fast depletion of melanocyte stem cells. Using a combination of adrenalectomy, denervation, chemogenetics3,4, cell ablation and knockout of the adrenergic receptor specifically in melanocyte stem cells, we find that the stress-induced loss of melanocyte stem cells is independent of immune attack or adrenal stress hormones. Instead, hair greying results from activation of the sympathetic nerves that innervate the melanocyte stem-cell niche. Under conditions of stress, the activation of these sympathetic nerves leads to burst release of the neurotransmitter noradrenaline (also known as norepinephrine). This causes quiescent melanocyte stem cells to proliferate rapidly, and is followed by their differentiation, migration and permanent depletion from the niche. Transient suppression of the proliferation of melanocyte stem cells prevents stress-induced hair greying. Our study demonstrates that neuronal activity that is induced by acute stress can drive a rapid and permanent loss of somatic stem cells, and illustrates an example in which the maintenance of somatic stem cells is directly influenced by the overall physiological state of the organism.


Assuntos
Vias Autônomas/fisiopatologia , Cor de Cabelo/fisiologia , Melanócitos/patologia , Nicho de Células-Tronco/fisiologia , Células-Tronco/patologia , Estresse Psicológico/fisiopatologia , Sistema Nervoso Simpático/fisiopatologia , Glândulas Suprarrenais/metabolismo , Adrenalectomia , Animais , Vias Autônomas/patologia , Proliferação de Células , Células Cultivadas , Denervação , Feminino , Humanos , Masculino , Melanócitos/citologia , Melanócitos/metabolismo , Camundongos , Norepinefrina/metabolismo , Trauma Psicológico/patologia , Trauma Psicológico/fisiopatologia , Receptores Adrenérgicos beta 2/deficiência , Receptores Adrenérgicos beta 2/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Estresse Psicológico/patologia , Sistema Nervoso Simpático/patologia
16.
Immunity ; 45(6): 1219-1231, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27913094

RESUMO

Hematopoietic stem cells (HSCs) self-renew in bone marrow niches formed by mesenchymal progenitors and endothelial cells expressing the chemokine CXCL12, but whether a separate niche instructs multipotent progenitor (MPP) differentiation remains unclear. We show that MPPs resided in HSC niches, where they encountered lineage-instructive differentiation signals. Conditional deletion of the chemokine receptor CXCR4 in MPPs reduced differentiation into common lymphoid progenitors (CLPs), which decreased lymphopoiesis. CXCR4 was required for CLP positioning near Interleukin-7+ (IL-7) cells and for optimal IL-7 receptor signaling. IL-7+ cells expressed CXCL12 and the cytokine SCF, were mesenchymal progenitors capable of differentiation into osteoblasts and adipocytes, and comprised a minor subset of sinusoidal endothelial cells. Conditional Il7 deletion in mesenchymal progenitors reduced B-lineage committed CLPs, while conditional Cxcl12 or Scf deletion from IL-7+ cells reduced HSC and MPP numbers. Thus, HSC maintenance and multilineage differentiation are distinct cell lineage decisions that are both controlled by HSC niches.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Multipotentes/citologia , Nicho de Células-Tronco/fisiologia , Animais , Linhagem da Célula/fisiologia , Separação Celular , Quimiocina CXCL2/metabolismo , Citometria de Fluxo , Interleucina-7/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
17.
Nat Rev Mol Cell Biol ; 14(11): 737-48, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24064540

RESUMO

In the past years, our view of the molecular and cellular mechanisms that ensure the self-renewal of the skin has dramatically changed. Several populations of stem cells have been identified that differ in their spatio-temporal contribution to their compartment in steady-state and damaged conditions, suggesting that epidermal stem cell heterogeneity is far greater than previously anticipated. There is also increasing evidence that these different stem cells require a tightly controlled spatial and temporal communication between other skin residents to carry out their function.


Assuntos
Pele/citologia , Células-Tronco/citologia , Animais , Humanos , Modelos Biológicos , Nicho de Células-Tronco/fisiologia , Células-Tronco/fisiologia
18.
Nat Rev Mol Cell Biol ; 14(8): 467-73, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23839578

RESUMO

The field of stem cells and regenerative medicine offers considerable promise as a means of delivering new treatments for a wide range of diseases. In order to maximize the effectiveness of cell-based therapies - whether stimulating expansion of endogenous cells or transplanting cells into patients - it is essential to understand the environmental (niche) signals that regulate stem cell behaviour. One of those signals is from the extracellular matrix (ECM). New technologies have offered insights into how stem cells sense signals from the ECM and how they respond to these signals at the molecular level, which ultimately regulate their fate.


Assuntos
Matriz Extracelular/fisiologia , Células-Tronco/fisiologia , Animais , Comunicação Celular/genética , Comunicação Celular/fisiologia , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem da Célula/genética , Linhagem da Célula/fisiologia , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Humanos , Fluidez de Membrana/genética , Fluidez de Membrana/fisiologia , Modelos Biológicos , Nicho de Células-Tronco/genética , Nicho de Células-Tronco/fisiologia , Células-Tronco/metabolismo
19.
Nature ; 573(7772): 130-134, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31413369

RESUMO

Ageing causes a decline in tissue regeneration owing to a loss of function of adult stem cell and progenitor cell populations1. One example is the deterioration of the regenerative capacity of the widespread and abundant population of central nervous system (CNS) multipotent stem cells known as oligodendrocyte progenitor cells (OPCs)2. A relatively overlooked potential source of this loss of function is the stem cell 'niche'-a set of cell-extrinsic cues that include chemical and mechanical signals3,4. Here we show that the OPC microenvironment stiffens with age, and that this mechanical change is sufficient to cause age-related loss of function of OPCs. Using biological and synthetic scaffolds to mimic the stiffness of young brains, we find that isolated aged OPCs cultured on these scaffolds are molecularly and functionally rejuvenated. When we disrupt mechanical signalling, the proliferation and differentiation rates of OPCs are increased. We identify the mechanoresponsive ion channel PIEZO1 as a key mediator of OPC mechanical signalling. Inhibiting PIEZO1 overrides mechanical signals in vivo and allows OPCs to maintain activity in the ageing CNS. We also show that PIEZO1 is important in regulating cell number during CNS development. Thus we show that tissue stiffness is a crucial regulator of ageing in OPCs, and provide insights into how the function of adult stem and progenitor cells changes with age. Our findings could be important not only for the development of regenerative therapies, but also for understanding the ageing process itself.


Assuntos
Células-Tronco Adultas/patologia , Envelhecimento/patologia , Sistema Nervoso Central/patologia , Células-Tronco Multipotentes/patologia , Nicho de Células-Tronco , Animais , Animais Recém-Nascidos , Contagem de Células , Matriz Extracelular/patologia , Feminino , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Oligodendroglia/patologia , Ratos , Nicho de Células-Tronco/fisiologia
20.
Nature ; 567(7747): 234-238, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30814736

RESUMO

Longitudinal bone growth in children is sustained by growth plates, narrow discs of cartilage that provide a continuous supply of chondrocytes for endochondral ossification1. However, it remains unknown how this supply is maintained throughout childhood growth. Chondroprogenitors in the resting zone are thought to be gradually consumed as they supply cells for longitudinal growth1,2, but this model has never been proved. Here, using clonal genetic tracing with multicolour reporters and functional perturbations, we demonstrate that longitudinal growth during the fetal and neonatal periods involves depletion of chondroprogenitors, whereas later in life, coinciding with the formation of the secondary ossification centre, chondroprogenitors acquire the capacity for self-renewal, resulting in the formation of large, stable monoclonal columns of chondrocytes. Simultaneously, chondroprogenitors begin to express stem cell markers and undergo symmetric cell division. Regulation of the pool of self-renewing progenitors involves the hedgehog and mammalian target of rapamycin complex 1 (mTORC1) signalling pathways. Our findings indicate that a stem cell niche develops postnatally in the epiphyseal growth plate, which provides a continuous supply of chondrocytes over a prolonged period.


Assuntos
Condrócitos/citologia , Células Clonais/citologia , Lâmina de Crescimento/citologia , Nicho de Células-Tronco/fisiologia , Envelhecimento , Animais , Cartilagem/citologia , Autorrenovação Celular , Células Clonais/metabolismo , Feminino , Lâmina de Crescimento/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA