Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 616
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Exp Parasitol ; 259: 108711, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38355002

RESUMO

Animal African trypanosomosis (AAT) is a disease caused by Trypanosoma brucei brucei, T. vivax, T. evansi and T. congolense which are mainly transmitted by tsetse flies (maybe the family/genus scientific name for the tsetse flies here?). Synthetic trypanocidal drugs are used to control AAT but have reduced efficacy due to emergence of drug resistant trypanosomes. Therefore, there is a need for the continued development of new safe and effective drugs. The aim of this study was to evaluate the in vitro anti-trypanosomal activity of novel nitrofurantoin compounds against trypanosomes (Trypanosoma brucei brucei, T. evansi and T. congolense) causing AAT. This study assessed previously synthesized nineteen nitrofurantoin-triazole (NFT-TZ) hybrids against animal trypanosomes and evaluated their cytotoxicity using Madin-Darby bovine kidney cells. The n-alkyl sub-series hybrids, 8 (IC50 0.09 ± 0.02 µM; SI 686.45) and 9 (IC50 0.07 ± 0.04 µM; SI 849.31) had the highest anti-trypanosomal activity against T. b. brucei. On the contrary, the nonyl 6 (IC50 0.12 ± 0.06 µM; SI 504.57) and nitrobenzyl 18 (IC50 0.11 ± 0.03 µM; SI 211.07) displayed the highest trypanocidal activity against T. evansi. The nonyl hybrid 6 (IC50 0.02 ± 0.01 µM; SI 6328.76) was also detected alongside the undecyl 8 (IC50 0.02 ± 0.01 µM; SI 3454.36) and 3-bromobenzyl 19 (IC50 0.02 ± 0.01 µM; SI 2360.41) as the most potent hybrids against T. congolense. These hybrids had weak toxicity effects on the mammalian cells and highly selective submicromolar antiparasitic action efficacy directed towards the trypanosomes, hence they can be regarded as potential trypanocidal leads for further in vivo investigation.


Assuntos
Trypanosoma brucei brucei , Trypanosoma congolense , Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Bovinos , Nitrofurantoína/farmacologia , Tripanossomíase Africana/tratamento farmacológico , Tripanossomíase Africana/veterinária , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/parasitologia , Mamíferos
2.
J Antimicrob Chemother ; 78(2): 373-379, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36480295

RESUMO

BACKGROUND: Nitrofurantoin has been re-introduced as a first-choice antibiotic to treat uncomplicated acute urinary tract infections in England and Wales. Highly effective against common uropathogens such as Escherichia coli, its use is accompanied by a low incidence (<10%) of antimicrobial resistance. Resistance to nitrofurantoin is predominantly via the acquisition of loss-of-function, step-wise mutations in the nitroreductase genes nfsA and nfsB. OBJECTIVE: To explore the in situ evolution of NitR in E. coli isolates from 17 patients participating in AnTIC, a 12-month open label randomized controlled trial assessing the efficacy of antibiotic prophylaxis in reducing urinary tract infections (UTIs) incidence in clean intermittent self-catheterizing patients. METHODS: The investigation of NitR evolution in E. coli used general microbiology techniques and genetics to model known NitR mutations in NitSE. coli strains. RESULTS: Growth rate analysis identified a 2%-10% slower doubling time for nitrofurantoin resistant strains: NitS: 20.8 ±â€Š0.7 min compared to NitR: 23 ±â€Š0.8 min. Statistically, these data indicated no fitness advantage of evolved strains compared to the sensitive predecessor (P-value = 0.13). Genetic manipulation of E. coli to mimic NitR evolution, supported no fitness advantage (P-value = 0.22). In contrast, data argued that a first-step mutant gained a selective advantage, at sub-MIC (4-8 mg/L) nitrofurantoin concentrations. CONCLUSION: Correlation of these findings to nitrofurantoin pharmacokinetic data suggests that the low incidence of E. coli NitR, within the community, is driven by urine-based nitrofurantoin concentrations that selectively inhibit the growth of E. coli strains carrying the key first-step loss-of-function mutation.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Nitrofurantoína/farmacologia , Nitrofurantoína/uso terapêutico , Escherichia coli Uropatogênica/genética , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Urinárias/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Testes de Sensibilidade Microbiana
3.
BMC Microbiol ; 23(1): 112, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081381

RESUMO

BACKGROUND: Resistance to antibiotics has increased steadily over time, thus there is a pressing need for safer alternatives to antibiotics. Current study aims to evaluate the influence of vitamin C as an antibacterial and anti-biofilm agent against uropathogenic E. coli (UPEC) strains. The expression of beta-lactamases and biofilm encoding genes among E. coli isolates before and after treating the isolates with sub MIC of vitamin C was analyzed by Real-time PCR. The in vivo assessment of the antibacterial and anti-biofilm effects of vitamin C against uropathogenic E. coli strains was done using a urinary tract infection (UTI) rat model. RESULTS: The effective concentration of vitamin C that could inhibit the growth of most study isolates (70%) was 1.25 mg/ml. Vitamin C showed a synergistic effect with most of the studied antibiotics; no antagonistic effect was detected at all. Vitamin C showed an excellent anti-biofilm effect against studied isolates, where 43 biofilm-producing isolates were converted to non-biofilm at a concentration of 0.312 mg/ml. The expression levels of most studied genes were down-regulated after treatment of E. coli isolates with vitamin C. In vivo assessment of vitamin C in treating UTIs showed that vitamin C has a rapid curative effect as the comparable antibiotic. Administration of both vitamin C and nitrofurantoin at a lower dose for treatment of UTI in rats had a better effect. CONCLUSION: Vitamin C as an antibacterial and anti-biofilm agent either alone or in combination with antibiotics could markedly improve UTI in experimental rats.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Escherichia coli Uropatogênica , Animais , Ratos , Ácido Ascórbico/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Nitrofurantoína/farmacologia , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Vitaminas/farmacologia
4.
PLoS Biol ; 18(9): e3000856, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32941420

RESUMO

Antibiotic combination therapies are important for the efficient treatment of many types of infections, including those caused by antibiotic-resistant pathogens. Combination treatment strategies are typically used under the assumption that synergies are conserved across species and strains, even though recent results show that the combined treatment effect is determined by specific drug-strain interactions that can vary extensively and unpredictably, both between and within bacterial species. To address this problem, we present a new method in which antibiotic synergy is rapidly quantified on a case-by-case basis, allowing for improved combination therapy. The novel CombiANT methodology consists of a 3D-printed agar plate insert that produces defined diffusion landscapes of 3 antibiotics, permitting synergy quantification between all 3 antibiotic pairs with a single test. Automated image analysis yields fractional inhibitory concentration indices (FICis) with high accuracy and precision. A technical validation with 3 major pathogens, Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus, showed equivalent performance to checkerboard methodology, with the advantage of strongly reduced assay complexity and costs for CombiANT. A synergy screening of 10 antibiotic combinations for 12 E. coli urinary tract infection (UTI) clinical isolates illustrates the need for refined combination treatment strategies. For example, combinations of trimethoprim (TMP) + nitrofurantoin (NIT) and TMP + mecillinam (MEC) showed synergy, but only for certain individual isolates, whereas MEC + NIT combinations showed antagonistic interactions across all tested strains. These data suggest that the CombiANT methodology could allow personalized clinical synergy testing and large-scale screening. We anticipate that CombiANT will greatly facilitate clinical and basic research of antibiotic synergy.


Assuntos
Antibacterianos/administração & dosagem , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana/métodos , Algoritmos , Andinocilina/administração & dosagem , Andinocilina/farmacologia , Antibacterianos/farmacologia , Quimioterapia Combinada/métodos , Quimioterapia Combinada/normas , Escherichia coli/isolamento & purificação , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Humanos , Testes de Sensibilidade Microbiana/instrumentação , Nitrofurantoína/administração & dosagem , Nitrofurantoína/farmacologia , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Pseudomonas aeruginosa/isolamento & purificação , Reprodutibilidade dos Testes , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/isolamento & purificação , Trimetoprima/administração & dosagem , Trimetoprima/farmacologia , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia
5.
PLoS Biol ; 18(1): e3000612, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31986134

RESUMO

Antibiotic resistance increasingly limits the success of antibiotic treatments, and physicians require new ways to achieve efficient treatment despite resistance. Resistance mechanisms against a specific antibiotic class frequently confer increased susceptibility to other antibiotic classes, a phenomenon designated collateral sensitivity (CS). An informed switch of antibiotic may thus enable the efficient treatment of resistant strains. CS occurs in many pathogens, but the mechanisms that generate hypersusceptibility are largely unknown. We identified several molecular mechanisms of CS against the antibiotic nitrofurantoin (NIT). Mutants that are resistant against tigecycline (tetracycline), mecillinam (ß-lactam), and protamine (antimicrobial peptide) all show CS against NIT. Their hypersusceptibility is explained by the overexpression of nitroreductase enzymes combined with increased drug uptake rates, or increased drug toxicity. Increased toxicity occurs through interference of the native drug-response system for NIT, the SOS response, with growth. A mechanistic understanding of CS will help to develop drug switches that combat resistance.


Assuntos
Sensibilidade Colateral a Medicamentos/genética , Nitrofurantoína/farmacologia , Ativação Metabólica/efeitos dos fármacos , Ativação Metabólica/genética , Antibacterianos/farmacocinética , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mutação/efeitos dos fármacos , Nitrofurantoína/farmacocinética , Organismos Geneticamente Modificados , Pró-Fármacos/farmacocinética , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Salmonella enterica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
6.
Environ Res ; 216(Pt 2): 114531, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36244438

RESUMO

The purpose of this research was to investigate the biodegradation of nitrofurantoin (NFT), a typical nitrofuran antibiotic of potential carcinogenic properties, by two microbial communities derived from distinct environmental niches - mountain stream (NW) and seaport water (SS). The collected environmental samples represent the reserve of the protected area with no human intervention and the contaminated area that concentrates intense human activities. The structure, composition, and diversity of the communities were analyzed at three timepoints during NFT biodegradation. Comamonadaceae (43.2%) and Pseudomonadaceae (19.6%) were the most abundant families in the initial NW sample. The top families in the initial SS sample included Aeromonadaceae (31.4%) and Vibrionaceae (25.3%). The proportion of the most abundant families in both consortia was remarkably reduced in all samples treated with NFT. The biodiversity significantly increased in both consortia treated with NFT suggesting that NFT significantly alters community structure in the aquatic systems. In this study, NFT removal efficiency and transformation products were also studied. The biodegradation rate decreased with the increasing initial NFT concentration. Biodegradation followed similar pathways for both consortia and led to the formation of transformation products: 1-aminohydantoin, semicarbazide (SEM), and hydrazine (HYD). SEM and HYD were detected for the first time as NFT biotransformation products. This study demonstrates that the structure of the microbial community may be directly correlated with the presence of NFT. Enchanced biodiversity of the microbial community does not have to be correlated with increase in functional capacity, such as the ability to biodegradation because higher biodiversity corresponded to lower biodegradation. Our findings provide new insights into the effect of NFT contamination on aquatic microbiomes. The study also increases our understanding of the environmental impact of nitrofuran residues and their biodegradation.


Assuntos
Microbiota , Nitrofurantoína , Humanos , Nitrofurantoína/química , Nitrofurantoína/metabolismo , Nitrofurantoína/farmacologia , Biotransformação , Biodegradação Ambiental , Biodiversidade , Consórcios Microbianos
7.
J Korean Med Sci ; 38(48): e361, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38084025

RESUMO

BACKGROUND: Pediatric urinary tract infection (UTI) caused by extended-spectrum ß-lactamase (ESBL)-positive gram-negative bacilli (GNB) has limited options for oral antibiotic treatment. The purpose of this study was to investigate the susceptibility of ESBL-positive Escherichia coli and Klebsiella pneumoniae isolates from pediatric urine samples to two oral antibiotics (fosfomycin and nitrofurantoin). METHODS: From November 2020 to April 2022, ESBL-positive E. coli and K. pneumoniae isolates from urine samples were collected at Samsung Medical Center, Seoul, Korea. Patients over 18 years of age or with malignancy were excluded. For repeated isolates from the same patient, only the first isolate was tested. Minimum inhibitory concentrations (MICs) were measured using agar (fosfomycin) or broth (nitrofurantoin) dilution methods. MIC50 and MIC90 were measured for fosfomycin and nitrofurantoin in both E. coli and K. pneumoniae. RESULTS: There were 117 isolates from 117 patients, with a median age of 7 months (range, 0.0-18.5 years). Among 117 isolates, 92.3% (108/117) were E. coli and 7.7% (9/117) were K. pneumoniae. Isolates from the pediatric intensive care unit (PICU) and general ward (GW) was 11.1% (13/117) and 88.9% (104/117), respectively. Among 108 E. coli isolates, MIC50 and MIC90 for fosfomycin were 0.5 µg/mL and 2 µg/mL, respectively. Fosfomycin susceptibility rate was 97.2% (105/108) with a breakpoint of 128 µg/mL. Fosfomycin susceptibility rate was significantly lower in PICU isolates than in GW isolates (81.8% vs. 99.0%, P = 0.027). For nitrofurantoin, both the MIC50 and MIC90 were 16 µg/mL. Nitrofurantoin susceptibility rate was 96.3% (104/108) with a breakpoint of 64 µg/mL based on Clinical and Laboratory Standards Institute guidelines. Among the nine K. pneumoniae isolates, the MIC50 and MIC90 for fosfomycin was 2 µg/mL and 32 µg/mL, respectively. MIC50 and MIC90 for nitrofurantoin were 64 µg/mL and 128 µg/mL, respectively. CONCLUSION: For uncomplicated UTI caused by ESBL-positive GNB in Korean children, treatment with fosfomycin and nitrofurantoin for E. coli infections can be considered as an effective oral therapy option.


Assuntos
Infecções por Escherichia coli , Fosfomicina , Infecções Urinárias , Humanos , Criança , Adolescente , Adulto , Recém-Nascido , Lactente , Fosfomicina/farmacologia , Fosfomicina/uso terapêutico , Nitrofurantoína/farmacologia , Nitrofurantoína/uso terapêutico , Escherichia coli , Klebsiella pneumoniae , beta-Lactamases , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Escherichia coli/tratamento farmacológico , Infecções Urinárias/tratamento farmacológico , Testes de Sensibilidade Microbiana
8.
Arch Pharm (Weinheim) ; 356(5): e2200529, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36759973

RESUMO

Leishmaniasis is a neglected tropical disease that is caused by the Leishmania parasite. It is estimated that there are more than 350 million people at risk of infection annually. Current treatments that are in clinical use are expensive, have toxic side effects, and are facing parasitic resistance. Therefore, new drugs are urgently required. In the quest for new, safe, and cost-effective drugs, a series of novel ethylene glycol derivatives of nitrofurantoin was synthesised and the in vitro antileishmanial efficacy of the compounds tested against Leishmania donovani and Leishmania major strains. Arylated ethylene glycol derivatives were found to be the most potent, with submicromolar activity up to 294-fold greater than the parent compound nitrofurantoin. Analogues 2j and 2k had the best antipromastigote activities with submicromolar IC50 values against L. major IR-173 and antimonial-resistant L. donovani 9515 strains.


Assuntos
Antiprotozoários , Leishmania donovani , Humanos , Nitrofurantoína/farmacologia , Relação Estrutura-Atividade , Antiprotozoários/farmacologia , Etilenoglicóis/farmacologia
9.
J Pak Med Assoc ; 73(7): 1495-1497, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37469065

RESUMO

Urinary tract infection (UTI) caused by bacteria is the commonest infection accountable for the unforeseen healthcare cost throughout the globe. Nitrofurantoin is being studied as a solution to the perpetually increasing threat of antimicrobial resistance. The objectives of this study were to determine the frequency of urinary isolates causing UTI and their susceptibility pattern against Nitrofurantoin. Data of all isolates reported as uropathogens from April 1, to December 31, 2021, was collected through Electronic Medical Record system of Shalamar Hospital, Lahore. Results of Nitrofurantoin susceptibility were recorded to find the resistance pattern of bacterial isolates. Out of a total of 3,221 samples, 672 (20.9%) were positive with significant bacteriuria. Of the positive samples, 418 (62.2%) were collected from females and 254 (37.8%) from males, with female to male ratio of 1.65:1. The number of female patients was higher in adult age. Of the positive samples, E. coli was the commonest isolate seen in 390 (58%) of samples, followed by Enterococcus spp. 92 (13.7%), Klebsiella spp. 86 (12.8%), Pseudomonas spp. 35 (5.2%), Staphylococcus saprophyticus 24 (3.6%), Proteus spp. 21 (3.1%), Citrobacter spp. 15 (2.2%), and Acinetobacter spp. 9 (1.3%). Overall, 587 (87.4%) isolates were sensitive to Nitrofurantoin. However, it showed increased resistance to 28 (32.6%) isolates of Klebsiella spp. E. coli remains the commonest uropathogen. In conclusion, Nitrofurantoin can be used to treat UTI caused by common bacterial pathogens except Klebsiella spp.


Assuntos
Nitrofurantoína , Infecções Urinárias , Adulto , Humanos , Masculino , Feminino , Nitrofurantoína/farmacologia , Escherichia coli , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/epidemiologia , Infecções Urinárias/microbiologia , Bactérias , Klebsiella , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
10.
Microb Pathog ; 172: 105514, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35537594

RESUMO

BACKGROUND: Vibrio cholera (V. cholera) is a facultative pathogen that colonizes the small intestine and produces cholerae toxin as the primary virulence factor that causes cholera and fatal diarrhea in humans. In recent decades, V. cholera has emerged as a notorious multidrug-resistant enteric pathogen. This meta-analysis estimated the pooled proportion of V. cholera antimicrobial resistance against RNA and DNA effective antibiotics. METHOD: A systematic search was performed for relevant literature until 05 June 2021 in PubMed, Scopus, Embase, and Web of Science databases. Freeman-Tukey double arcsine transformation was performed to estimate weighted pooled resistance (WPR). RESULTS: The meta-analysis were included 164 articles. The WPR of V. cholera were as follows 76% [67,84] to furazolidone, 65% [29,94] to nitrofurantoin, 55% [44,66] to nalidixic acid, 10% [2,23] to rifampicin, 4%(0, 12) to novobiocin, 4% [2,6] to norfloxacin, 3% [1,4] to ciprofloxacin, 1%(0, 3) to sparofloxacin, 0%(0, 3) to levofloxacin, 0%(0, 2) to ofloxacin, 0%(0, 0) to gatifloxacin. CONCLUSION: V. cholera is a severe problem in Asia and Africa, especially in South Asian countries. The resistance patterns are various in geographical regions. novobiocin 0% (0, 0), and ofloxacin 0% (0, 1) in Africa, gatifloxacin 0% (0, 0), and levofloxacin 0% (0, 6) in Asia and ciprofloxacin 0% (0, 2) in North America are most effective antibiotis. The resistance rate to furazolidone, nalidixic acid, nitrofurantoin, and cephalothin has increased over the years. Monitoring antibiotic resistance and prescribing an appropriate antibiotic is vital to control resistance.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Vibrio cholerae , Humanos , Antibacterianos/farmacologia , Cefalotina/farmacologia , Cólera/tratamento farmacológico , Toxina da Cólera/genética , Ciprofloxacina/farmacologia , Furazolidona/farmacologia , Gatifloxacina/farmacologia , Levofloxacino/farmacologia , Testes de Sensibilidade Microbiana , Ácido Nalidíxico/farmacologia , Nitrofurantoína/farmacologia , Norfloxacino/farmacologia , Novobiocina/farmacologia , Rifampina/farmacologia , Vibrio cholerae/efeitos dos fármacos , Fatores de Virulência
11.
Cell Biol Toxicol ; 38(5): 847-864, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34021431

RESUMO

Toxicity is not only a function of damage mechanisms, but is also determined by cellular resilience factors. Glutathione has been reported as essential element to counteract negative influences. The present work hence pursued the question how intracellular glutathione can be elevated transiently to render cells more resistant toward harmful conditions. The antibiotic nitrofurantoin (NFT) was identified to stimulate de novo synthesis of glutathione in the human hepatoma cell line, HepG2, and in primary human hepatocytes. In intact cells, activation of NFT yielded a radical anion, which subsequently initiated nuclear-factor-erythroid 2-related-factor-2 (Nrf2)-dependent induction of glutamate cysteine ligase (GCL). Application of siRNA-based intervention approaches confirmed the involvement of the Nrf2-GCL axis in the observed elevation of intracellular glutathione levels. Quantitative activation of Nrf2 by NFT, and the subsequent rise in glutathione, were similar as observed with the potent experimental Nrf2 activator diethyl maleate. The elevation of glutathione levels, observed even 48 h after withdrawal of NFT, rendered cells resistant to different stressors such as the mitochondrial inhibitor rotenone, the redox cycler paraquat, the proteasome inhibitors MG-132 or bortezomib, or high concentrations of NFT. Repurpose of the antibiotic NFT as activator of Nrf2 could thus be a promising strategy for a transient and targeted activation of the endogenous antioxidant machinery. Graphical abstract.


Assuntos
Glutamato-Cisteína Ligase , Fator 2 Relacionado a NF-E2 , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Bortezomib/farmacologia , Glutamato-Cisteína Ligase/metabolismo , Glutamato-Cisteína Ligase/farmacologia , Glutationa/metabolismo , Hepatócitos/metabolismo , Humanos , Fator 2 Relacionado a NF-E2/metabolismo , Nitrofurantoína/metabolismo , Nitrofurantoína/farmacologia , Estresse Oxidativo , Paraquat/metabolismo , Paraquat/farmacologia , Inibidores de Proteassoma/farmacologia , RNA Interferente Pequeno/metabolismo , Rotenona/metabolismo , Rotenona/farmacologia
12.
Lett Appl Microbiol ; 74(3): 334-343, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34839528

RESUMO

MDR UPEC has become a global health challenge. Our study investigates the pairwise interactions among FOS, COL, NIT and TRI against 29 UPEC strains using the checkerboard method. The synergistic combinations are further evaluated for their bactericidal effects against the most resistant strain (MRS) using the time-kill method. The results showed that 100% of these strains were resistant to TRI and NIT, whereas 75·86% of them were susceptible to FOS and COL. Among all tested strains, only seven strains were highly resistant to all used antibiotics. Remarkably, FOS/COL, COL/NIT and COL/TRI combinations represent the most effective synergistic (fractional inhibitory concentration index <1) combinations against the seven strains at MICs lower than the susceptible breakpoint ranges, followed by FOS/NIT and FOS/TRI, which achieved synergistic interactions against 1/7 and 2/7 of these strains. Importantly, the bactericidal effects (reduction ≥3·0 log10 CFU per ml) were only observed with FOS/COL, COL/NIT and COL/TRI combinations against MRS after 24 h of post-treatment. Our data suggested that FOS/COL, COL/NIT and COL/TRI combinations could be a promising option against MDR UPEC infections. Additionally, FOS/NIT and FOS/TRI probably represent a good option for MDR UPEC with lower MICs.


Assuntos
Fosfomicina , Preparações Farmacêuticas , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Colistina/farmacologia , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Escherichia coli , Fosfomicina/farmacologia , Testes de Sensibilidade Microbiana , Nitrofurantoína/farmacologia , Trimetoprima/farmacologia
13.
Euro Surveill ; 27(30)2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35904060

RESUMO

BackgroundEvidence on the distribution of bacteria and therapy recommendations in male outpatients with urinary tract infections (UTI) remains insufficient.AimWe aimed to report frequency distributions and antimicrobial resistance (AMR) of bacteria causing UTI in men and to identify risk factors for resistance of Escherichia coli against trimethoprim (TMP) and ciprofloxacin (CIP).MethodsWe conducted a retrospective observational study using routinely collected midstream urine specimens from 102,736 adult male outpatients sent from 6,749 outpatient practices to nine collaborating laboratories from all major regions in Germany between 2015 and 2020. Resistance in E. coli was predicted using logistic regression.ResultsThe three most frequent bacteria were E. coli (38.4%), Enterococcus faecalis (16.5%) and Proteus mirabilis (9.3%). Resistance of E. coli against amoxicillin (45.7%), TMP (26.6%) and CIP (19.8%) was common. Multiple drug resistance was high (22.9%). Resistance against fosfomycin (0.9%) and nitrofurantoin (1.9%) was low. Resistance of En. faecalis against CIP was high (29.3%). Isolates of P. mirabilis revealed high resistance against TMP (41.3%) and CIP (16.6%). The CIP and TMP resistance was significantly higher among bacteria derived from recurrent UTI (p < 0.05). Age ≥ 90 years, recurrent UTI and regions East and South were independently associated with AMR of E. coli against TMP and CIP (p < 0.05).ConclusionThe most frequent UTI-causing pathogens showed highresistance against TMP and CIP, empirical therapy is therefore likely to fail. Apart from intrinsically resistant pathogens, susceptibility to fosfomycin and nitrofurantoin remains sufficient. Therefore, they remain an additional option for empirical treatment of uncomplicated UTI in men.


Assuntos
Infecções por Escherichia coli , Fosfomicina , Infecções Urinárias , Adulto , Idoso de 80 Anos ou mais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana , Escherichia coli , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Fosfomicina/farmacologia , Fosfomicina/uso terapêutico , Humanos , Laboratórios , Masculino , Testes de Sensibilidade Microbiana , Nitrofurantoína/farmacologia , Nitrofurantoína/uso terapêutico , Pacientes Ambulatoriais , Proteus mirabilis , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/epidemiologia , Infecções Urinárias/microbiologia
14.
J Emerg Med ; 62(3): 368-377, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35000812

RESUMO

BACKGROUND: The Proteeae group (i.e., Proteus species, Morganella morganii, and Providencia species) frequently causes urinary tract infections (UTIs) and is generally resistant to nitrofurantoin. Proteeae species can produce urease, which can increase urine pH. OBJECTIVE: Our aim was to determine whether higher urine pH in the emergency department is associated with nitrofurantoin resistance. METHODS: A single health system database of emergency department patients aged 18 years and older who received urinalysis between April 18, 2014, and March 7, 2017, was examined using χ2 test and multivariable regression analysis. RESULTS: Of 67,271 urine samples analyzed, 13,456 samples grew a single bacterial species. Urine cultures growing the Proteeae group were associated with significantly more alkaline urine than other bacteriuria cultures (odds ratio [OR] 2.20, 95% confidence interval [CI] 2.06-2.36; p < 0.001). The Proteeae species represented 4.4% of urine samples at pH 5-7, 24.4% at pH 8-9, and 40.0% at pH 9. At urine pH 5-7, 80.4% of urine samples were sensitive to nitrofurantoin; however, this percentage decreased to 66.1% for urine pH 8-9 and 54.6% for urine pH 9. Nitrofurantoin had the highest OR (2.10, 95% CI 1.85-2.39) among cefazolin, ciprofloxacin, and trimethoprim/sulfamethoxazole for bacteriuria sensitive to those antibiotics at urine pH 5-7. At urine pH 8-9 and 9, nitrofurantoin had the lowest OR among the antibiotics: 0.48 (95% CI 0.42-0.54) and 0.31 (95% CI 0.24-0.40), respectively (p < 0.001 for both). CONCLUSIONS: Urine pH of 8 or higher is associated with high rates of nitrofurantoin resistance.


Assuntos
Bacteriúria , Infecções Urinárias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bacteriúria/tratamento farmacológico , Serviço Hospitalar de Emergência , Feminino , Humanos , Masculino , Testes de Sensibilidade Microbiana , Nitrofurantoína/farmacologia , Nitrofurantoína/uso terapêutico , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia
15.
Ter Arkh ; 94(8): 1006-1013, 2022 Oct 12.
Artigo em Russo | MEDLINE | ID: mdl-36286982

RESUMO

In recent years, the harmonization of domestic and foreign clinical recommendations for the treatment of cystitis has been achieved. Nitrofurans and fosfomycin trometamol are recommended as first line therapy antibiotics, and oral 3rd generation of cephalosporins are recommended as alternative antibiotics; fluoroquinolones are excluded from the recommended medications due to an unfavorable safety profile. The main rationale for inclusion of antibiotics in the recommendations as a first line therapy of cystitis is the level of resistance of uropathogens to antibiotics, primarily Escherichia coli. Stable low level of resistance of E. coli in Russia was noted to nitrofurans and fosfomycin (5%), higher to cephalosporins. Among nitrofurans, furazidine is characterized by higher activity against E. coli compared to nitrofurantoin. The potassium salt of furazidine in dosage form with magnesium carbonate is preferred, since it is characterized by higher bioavailability and provides a therapeutic level of concentrations in urine above the MIC during the entire dosing period. Due to the global increase in the resistance of uropathogens observed in recent years, experts have begun to pay more and more attention to the ecological safety of antimicrobial therapy in order to minimize the risk of concomitant (collateral) damage, contributing to the selection of multi-drug resistant strains of microorganisms. In the latest WHO document of 2021, experts divided antibiotics into three groups (ACCESS, WATCH, RESERVE) according to the priority of choice. The ACCESS group of drugs for the treatment of cystitis includes nitrofurantoin and furazidine as agents with minimal collateral effect, while fosfomycin trometamol and cephalosporins are listed in the WATCH group. Thus, from the standpoint of ecological safety, WHO experts recommend prescribing nitrofurans in the treatment of cystitis in the first line of therapy.


Assuntos
Cistite , Fosfomicina , Nitrofuranos , Infecções Urinárias , Humanos , Fosfomicina/efeitos adversos , Antibacterianos/efeitos adversos , Nitrofurantoína/farmacologia , Nitrofurantoína/uso terapêutico , Escherichia coli , Trometamina/farmacologia , Trometamina/uso terapêutico , Cistite/diagnóstico , Cistite/tratamento farmacológico , Fluoroquinolonas/farmacologia , Fluoroquinolonas/uso terapêutico , Cefalosporinas/farmacologia , Cefalosporinas/uso terapêutico , Nitrofuranos/farmacologia , Nitrofuranos/uso terapêutico , Potássio/farmacologia , Potássio/uso terapêutico , Infecções Urinárias/tratamento farmacológico
16.
Artigo em Inglês | MEDLINE | ID: mdl-33361301

RESUMO

Nitrofurantoin (NIT) is a broad-spectrum bactericidal antibiotic used in the treatment of urinary tract infections. It is a prodrug that once activated by nitroreductases goes on to inhibit bacterial DNA, RNA, cell wall, and protein synthesis. Previous work has suggested that NIT retains considerable activity against nongrowing bacteria. Here, we have found that Escherichia coli grown to stationary phase in minimal or artificial urine medium is not susceptible to NIT. Supplementation with glucose under conditions where cells remained nongrowing (other essential nutrients were absent) sensitized cultures to NIT. We conceptualized NIT sensitivity as a multi-input AND gate and lack of susceptibility as an insufficiency in one or more of those inputs. The inputs considered were an activating enzyme, cytoplasmic abundance of NIT, and reducing equivalents required for NIT activation. We systematically assessed the contribution of each of these inputs and found that NIT import and the level of activating enzyme were not contributing factors to the lack of susceptibility. Rather, evidence suggested that the low abundance of reducing equivalents is why stationary-phase E. coli are not killed by NIT and catabolites can resensitize those cells. We found that this phenomenon also occurred when using nitrofurazone, which established generality to the nitrofuran antibiotic class. In addition, we observed that NIT activity against stationary-phase uropathogenic E. coli (UPEC) could also be potentiated through metabolite supplementation. These findings suggest that the combination of nitrofurans with specific metabolites could improve the outcome of uncomplicated urinary tract infections.


Assuntos
Infecções por Escherichia coli , Nitrofuranos , Infecções Urinárias , Escherichia coli Uropatogênica , Humanos , Nitrofuranos/farmacologia , Nitrofurantoína/farmacologia , Infecções Urinárias/tratamento farmacológico
17.
J Infect Chemother ; 27(2): 250-255, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33060044

RESUMO

INTRODUCTION: Nitrofurantoin is a well-established antibiotic, and is an important first-line oral treatment for uncomplicated urinary tract infections. However, little information is available with respect to its antibacterial activity in Japan, in vivo efficacy, or the in vivo biological cost of resistant strains. METHODS: We compared the susceptibility of six representative antibacterial agents-nitrofurantoin, sulfamethoxazole/trimethoprim, fosfomycin, mecillinam, ciprofloxacin, and cefdinir-against E. coli clinically isolated in Japan during 2017. We evaluated the in vivo efficacy of nitrofurantoin using a model of mouse urinary tract infection caused by ciprofloxacin resistant E. coli. We obtained nitrofurantoin resistant isolates through tests generating spontaneous mutations, and assessed the in vivo fitness of nitrofurantoin resistant isolates. RESULTS: The MIC90 of nitrofurantoin was 16 µg/mL, and was the lowest among the drugs tested. It was found that, in the mouse urinary tract infection model, 30 mg/kg and 100 mg/kg of nitrofurantoin reduced the count of viable bacterial cells in the kidney, while 100 mg/kg of ciprofloxacin did not. All spontaneous bacterial mutants resistant to nitrofurantoin had deletions in the nfsA gene, and we found that the resistant strain had lower growth in the mouse urinary tract infection model than in the parent strain. CONCLUSIONS: We demonstrated promising in vitro and in vivo activity of nitrofurantoin against E. coli clinical isolates in Japan, and lower in vivo fitness of the resistant strain of nitrofurantoin.


Assuntos
Infecções por Escherichia coli , Infecções Urinárias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli/genética , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Japão , Testes de Sensibilidade Microbiana , Nitrofurantoína/farmacologia , Nitrofurantoína/uso terapêutico , Infecções Urinárias/tratamento farmacológico
18.
BMC Microbiol ; 20(1): 87, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276590

RESUMO

BACKGROUND: Bartonella henselae is a Gram-negative bacterium transmitted to humans by a scratch from cat in the presence of ectoparasites. Humans infected with B. henselae can result in various clinical diseases including local lymphadenopathy and more serious systemic disease such as persistent bacteremia and endocarditis. The current treatment of persistent B. henselae infections is not very effective and remains a challenge. To find more effective treatments for persistent and biofilm Bartonella infections, in this study, we evaluated a panel of drugs and drug combinations based on the current treatment and also promising hits identified from a recent drug screen against stationary phase and biofilm recovered cells of B. henselae. RESULTS: We evaluated 14 antibiotics and 25 antibiotic combinations for activity against stationary phase B. henselae (all antibiotics were at 5 µg/ml) and found that ciprofloxacin, gentamicin, and nitrofurantoin were the most active agents, while clofazimine and miconazole had poor activity. Drug combinations azithromycin/ciprofloxacin, azithromycin/methylene blue, rifampin/ciprofloxacin, and rifampin/methylene blue could rapidly kill stationary phase B. henselae with no detectable CFU after 1-day exposure. Methylene blue and rifampin were the most active agents against the biofilm B. henselae after 6 days of drug exposure. Antibiotic combinations (azithromycin/ciprofloxacin, azithromycin/methylene blue, rifampin/ciprofloxacin, rifampin/methylene blue) completely eradicated the biofilm B. henselae after treatment for 6 days. CONCLUSIONS: These findings may facilitate development of more effective treatment of persistent Bartonella infections in the future.


Assuntos
Analgésicos/farmacologia , Bartonella henselae/fisiologia , Biofilmes/efeitos dos fármacos , Azitromicina/farmacologia , Bartonella henselae/efeitos dos fármacos , Ciprofloxacina/farmacologia , Combinação de Medicamentos , Quimioterapia Combinada , Gentamicinas/farmacologia , Azul de Metileno/farmacologia , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Nitrofurantoína/farmacologia , Rifampina/farmacologia
19.
Mol Pharm ; 17(12): 4435-4442, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32941048

RESUMO

With the aim of developing multidrug solids through a tuned crystal engineering approach, we have selected two antiurinary infective drugs, namely, nitrofurantoin (NF) and trimethoprim (TMP) and isolated eight binary drug-drug solid solvates along with a nonsolvated cocrystal. Crystal structure analyses were performed for eight of these solids and rationalized in terms of known supramolecular synthons formed by pyrimidine, imide, and amine functionalities. Notably, the TMP-NF anhydrous cocrystal and its ionic cocrystal hydrate exhibit enhanced equilibrium solubilities compared to pure NF or the simple NF hydrate. Furthermore, the ionic cocrystal hydrate exhibits greater antibacterial activity against the Gram-negative bacteria, E. coli, compared to the parent TMP and NF at the lowest concentration of 3.9 µg/mL. This study indicates initial pathways using the cocrystal methodology that would help to eventually arrive at an antiurinary cocrystal with optimal properties.


Assuntos
Anti-Infecciosos Urinários/química , Composição de Medicamentos/métodos , Nitrofurantoína/química , Trimetoprima/química , Anti-Infecciosos Urinários/farmacologia , Anti-Infecciosos Urinários/uso terapêutico , Química Farmacêutica/métodos , Cristalização , Combinação de Medicamentos , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Nitrofurantoína/farmacologia , Nitrofurantoína/uso terapêutico , Solubilidade , Trimetoprima/farmacologia , Trimetoprima/uso terapêutico , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia
20.
Bioorg Chem ; 96: 103587, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32044516

RESUMO

The emergence of drug-resistant tuberculosis (DR-TB) as well as the requirement for long, expensive and toxic drug regimens impede efforts to control and eliminate TB. Therefore, there's a need for effective and affordable anti-mycobacterial agents which can shorten the duration of therapy and are active against Mycobacterium tuberculosis (Mtb) in both active and latent phases. Nitrofurantoin (NFT) is a hypoxic agent with activity against a myriad of anaerobic pathogens and, like the first-line TB drug, rifampicin (RIF), kills non-replicating bacilli. However, the poor ability of NFT to cross host cell membranes and penetrate tissue means that it does not reach therapeutic concentrations. To improve TB efficacy of NFT, a series of NFT analogues was synthesized and evaluated in vitro for anti-mycobacterial activity against the laboratory strain, Mtb H37Rv, and for potential cytotoxicity using human embryonic kidney (HEK-293) and Chinese hamster ovarian (CHO) cells. The NFT analogues showed good safety profiles, enhanced anti-mycobacterial potency, improved lipophilicity, as well as reduced protein binding affinity. Analogue 9 which contains an eight carbon aliphatic chain was the most active, equipotent to isoniazid (INH), a major front-line agent, with MIC90 = 0.5 µM, 30-fold more potency than the parent drug, nitrofurantoin (MIC90 = 15 µM), and 100-fold more selective towards mycobacteria. Therefore, 9 was identified as a validated hit for further investigation in the urgent search for new, safe and affordable TB drugs.


Assuntos
Antituberculosos/química , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Nitrofurantoína/análogos & derivados , Nitrofurantoína/farmacologia , Animais , Antituberculosos/síntese química , Células CHO , Técnicas de Química Sintética , Cricetulus , Desenho de Fármacos , Células HEK293 , Humanos , Testes de Sensibilidade Microbiana , Nitrofurantoína/síntese química , Tuberculose/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA