Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.389
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Anal Chem ; 96(16): 6170-6179, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38616610

RESUMO

Despite their many important physiological functions, past work on the diverse sequences of human milk oligosaccharides (HMOs) has been focused mainly on the highly abundant HMOs with a relatively low degree of polymerization (DP) due to the lack of efficient methods for separation/purification and high-sensitivity sequencing of large-sized HMOs with DP ≥ 10. Here we established an ultrahigh-temperature preparative HPLC based on a porous graphitized carbon column at up to 145 °C to overcome the anomeric α/ß splitting problem and developed further the negative-ion ESI-CID-MS/MS into multistage MSn using a combined product-ion scanning of singly charged molecular ion and doubly charged fragment ion of the branching Gal and adjacent GlcNAc residues. The separation and sequencing method allows efficient separation of a neutral fraction with DP ≥ 10 into 70 components, among which 17 isomeric difucosylated nona- and decasaccharides were further purified and sequenced. As a result, novel branched difucosyl heptaose and octaose backbones were unambiguously identified in addition to the conventional linear and branched octaose backbones. The novel structures of difucosylated DF-novo-heptaose, DF-novo-LNO I, and DF-novo-LNnO I were corroborated by NMR. The various fucose-containing Lewis epitopes identified on different backbones were confirmed by oligosaccharide microarray analysis.


Assuntos
Leite Humano , Oligossacarídeos , Espectrometria de Massas por Ionização por Electrospray , Humanos , Leite Humano/química , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Oligossacarídeos/análise , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Temperatura
2.
Neurochem Res ; 49(6): 1592-1602, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38305960

RESUMO

In the present study, sulfated polysaccharides were obtained by digestion of Sargassum horneri and preparation with enzyme-assisted extraction using three food-grade enzymes, and their anti- Alzheimer's activities were investigated. The results demonstrated that the crude sulfated polysaccharides extracted using AMGSP, CSP and VSP dose-dependently (25-100 µg·mL- 1) raised the spontaneous alternating manner (%) in the Y maze experiment of mice and reduced the escape latency time in Morris maze test. AMGSP, CSP and VSP also exhibited good anti-AChE and moderate anti-BuChE activities. CSP displayed the best inhibitory efficacy against AChE. with IC50 values of 9.77 µM. And, CSP also exhibited good inhibitory selectivity of AChE over BuChE. Next, CSP of the best active crude extract was separated by the preparation type high performance liquid phase to obtain the sulphated fucooligosaccharide section: SFcup (→3-α-L-fucp(2-SO3-)-1→4-α-L-fucp(2,3-SO3-)-1→section), SFcup showed a best inhibitory efficacy against AChE with IC50 values of 4.03 µM. The kinetic research showed that SFcup inhibited AChE through dual binding sites. Moreover, the molecular docking of SFcup at the AChE active site was in accordance with the acquired pharmacological results.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Inibidores da Colinesterase , Simulação de Acoplamento Molecular , Oligossacarídeos , Sargassum , Sargassum/química , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/isolamento & purificação , Inibidores da Colinesterase/química , Inibidores da Colinesterase/uso terapêutico , Camundongos , Acetilcolinesterase/metabolismo , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Masculino , Sulfatos/química , Sulfatos/farmacologia , Butirilcolinesterase/metabolismo , Aprendizagem em Labirinto/efeitos dos fármacos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Relação Dose-Resposta a Droga
3.
Mar Drugs ; 22(6)2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38921576

RESUMO

Three polysaccharides (SnNG, SnFS and SnFG) were purified from the body wall of Stichopus naso. The physicochemical properties, including monosaccharide composition, molecular weight, sulfate content, and optical rotation, were analyzed, confirming that SnFS and SnFG are sulfated polysaccharides commonly found in sea cucumbers. The highly regular structure {3)-L-Fuc2S-(α1,}n of SnFS was determined via a detailed NMR analysis of its oxidative degradation product. By employing ß-elimination depolymerization of SnFG, tri-, penta-, octa-, hendeca-, tetradeca-, and heptadeca-saccharides were obtained from the low-molecular-weight product. Their well-defined structures confirmed that SnFG possessed the backbone of {D-GalNAc4S6S-ß(1,4)-D-GlcA}, and each GlcA residue was branched with Fuc2S4S. SnFS and SnFG are both structurally the simplest version of natural fucan sulfate and fucosylated glycosaminoglycan, facilitating the application of low-value sea cucumbers S. naso. Bioactivity assays showed that SnFG and its derived oligosaccharides exhibited potent anticoagulation and intrinsic factor Xase (iXase) inhibition. Moreover, a comparative analysis with the series of oligosaccharides solely branched with Fuc3S4S showed that in oligosaccharides with lower degrees of polymerization, such as octasaccharides, Fuc2S4S led to a greater increase in APTT prolongation and iXase inhibition. As the degree of polymerization increases, the influence from the sulfation pattern diminishes, until it is overshadowed by the effects of molecular weight.


Assuntos
Anticoagulantes , Peso Molecular , Oligossacarídeos , Polissacarídeos , Animais , Anticoagulantes/farmacologia , Anticoagulantes/química , Anticoagulantes/isolamento & purificação , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/isolamento & purificação , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Stichopus/química , Pepinos-do-Mar/química , Sulfatos/química , Espectroscopia de Ressonância Magnética , Coagulação Sanguínea/efeitos dos fármacos
4.
Chem Biodivers ; 21(5): e202400506, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38507138

RESUMO

Acute lung injury (ALI) is a disease characterized by extensive lung damage and rampant inflammation, with a high mortality rate and no effective treatments available. Morinda officinalis oligosaccharides (MOOs), derived from the root of the traditional Chinese medicinal herb Morinda officinalis, known for its immune-boosting properties, presents a novel therapeutic possibility. To date, the impact of MOOs on ALI has not been explored. Our study aimed to investigate the potential protective effects of MOOs against ALI and to uncover the underlying mechanisms through an integrated approach of network pharmacology, molecular docking, and experimental validation. We discovered that MOOs significantly mitigated the pathological damage and decreased the expression of pro-inflammatory cytokines in LPS-induced ALI in mice. Complementary in vitro studies further demonstrated that MOOs effectively attenuated the M1 polarization induced by LPS. Network pharmacology analysis identified HSP90AA1, HSP90AB1, and NF-κB as key overlapping targets within a protein-protein interaction (PPI) network. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses elucidated the biological processes and signaling pathways implicated in MOOs' therapeutic action on ALI. Subsequently, molecular docking affirmed the binding of MOOs to the active sites of these identified targets. Corroborating these findings, our in vivo and in vitro experiments consistently demonstrated that MOOs significantly inhibited the LPS-induced upregulation of HSP90 and NF-κB. Collectively, these findings suggest that MOOs confer protection against ALI through a multi-target, multi-pathway mechanism, offering a promising new therapeutic strategy to mitigate this severe pulmonary condition.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Simulação de Acoplamento Molecular , Morinda , Oligossacarídeos , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/patologia , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Animais , Morinda/química , Camundongos , Oligossacarídeos/farmacologia , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Masculino , Células RAW 264.7 , Camundongos Endogâmicos C57BL , Citocinas/metabolismo , NF-kappa B/metabolismo
5.
Mar Drugs ; 19(3)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802739

RESUMO

Ulva sp. is known to be a source of bioactive compounds such as ulvans, but their biological activity on human dermal fibroblast extracellular matrix (ECM) is poorly reported. In this work, the regulation of ECM has been investigated for the first time at both proteomic and transcriptomic levels in normal human skin dermal fibroblasts, after 48 h of incubation with poly- and oligosaccharide fractions from Ulva sp. obtained after enzyme-assisted extraction and depolymerization. Cell proliferation enhancement (up to +68%) without exhibiting any cytotoxic effect on fibroblasts was demonstrated at 50 and 1000 µg/mL by both fractions. At the proteomic level, polysaccharide fractions at 1000 µg/mL enhanced the most the synthesis of glycosaminoglycans (GAGs, up to +57%), total collagen, especially types I (up to +217%) and III, as well as the synthesis and activity of MMP-1 (Matrix Metalloproteinase-1, up to +309%). In contrast, oligosaccharide fractions had no effect on GAGs synthesis but exhibited similarities for collagens and MMP-1 regulation. At the transcriptomic level, the decrease of COL1A1 and COL1A2 expression, and increase of COL3A1 and MMP-1 expression, confirmed the modulation of ECM metabolism by both fractions. Our research emphasizes that poly- and oligosaccharide Ulva sp. fractions exhibit interesting biological activities and supports their potential use in the area of skin renewal for anti-aging dermo-cosmetic applications.


Assuntos
Fibroblastos/efeitos dos fármacos , Oligossacarídeos/farmacologia , Polissacarídeos/farmacologia , Ulva/química , Proliferação de Células/genética , Células Cultivadas , Colágeno/metabolismo , Cosméticos/isolamento & purificação , Cosméticos/farmacologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Humanos , Metaloproteinase 1 da Matriz/metabolismo , Oligossacarídeos/isolamento & purificação , Polissacarídeos/isolamento & purificação , Proteômica , Pele/citologia , Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos dos fármacos
6.
Mar Drugs ; 19(6)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205503

RESUMO

Microbial oligosaccharides have been regarded as one of the most appealing natural products attributable to their potent and selective bioactivities, such as antimicrobial activity, inhibition of α-glucosidases and lipase, interference of cellular recognition and signal transduction, and disruption of cell wall biosynthesis. Accordingly, a handful of bioactive oligosaccharides have been developed for the treatment of bacterial infections and type II diabetes mellitus. Given that naturally occurring oligosaccharides have increasingly gained recognition in recent years, a comprehensive review is needed. The current review highlights the chemical structures, biological activities and divergent biosynthetic origins of three subgroups of oligomers including the acarviosine-containing oligosaccharides, saccharomicins, and orthosomycins.


Assuntos
Antibacterianos , Produtos Biológicos , Hipoglicemiantes , Oligossacarídeos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias/efeitos dos fármacos , Infecções Bacterianas/tratamento farmacológico , Produtos Biológicos/química , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Metabolismo dos Carboidratos/efeitos dos fármacos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Oligossacarídeos/farmacologia , Oligossacarídeos/uso terapêutico
7.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494150

RESUMO

Bacterial pathogens expose on the cell surface a variety of complex carbohydrate molecules. Gram-negative bacteria produce lipopolysaccharides, which are the main components of the outer membrane of bacterial envelopes and play a major role in host-pathogen interactions. B. pertussis, B. parapertussis, B. bronchiseptica, and B. holmesii, are mammalian respiratory pathogens, having substantial economic impact on human health and agriculture. B. pertussis is responsible for whooping cough (pertussis) and B. holmesii is the second pertussis etiological factor, but the current anti-pertussis vaccines do not provide cross-protection. The structural data on any given hypothetical carbohydrate antigen is a prerequisite for further analysis of structure-related activities and their interaction with hosts. 1H NMR spectra constitute fingerprints of the analyzed glycans and provide unique identity information. The concept of structure-reporter groups has now been augmented by 1H,13C-correlation spectra of the Bordetella oligosaccharides. The comparative analysis of Bordetellae oligosaccharides (OS) revealed that the hexasaccharide, comprising the α-GlcpN, α-GlcpA, 4,6-disubstituted-ß-Glcp, 2,7-disubstituted-l-α-d-Hepp, 3,4-disubstituted-l-α-d-Hepp, and Kdo, constitute the least variable OS segment. This minimal common element in the structure of lipopolysaccharides of Bordetellae could be used to devise a universal cross-protective vaccine component against infections with various bacteria from the genus Bordetella.


Assuntos
Bordetella , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Oligossacarídeos/química , Polissacarídeos Bacterianos/química , Bordetella pertussis , Humanos , Oligossacarídeos/isolamento & purificação , Polissacarídeos Bacterianos/isolamento & purificação , Análise Espectral , Coqueluche/microbiologia
8.
Molecules ; 26(23)2021 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-34885827

RESUMO

A method based on high performance liquid chromatography with evaporative light scattering detection (HPLC-ELSD) was developed for the quantitative analysis of three active compounds and chemical fingerprint analyses of saccharides in Morindae officinalis radix. Ten batches of Morindae officinalis radix were collected from different plantations in the Guangdong region of China and used to establish the fingerprint. The samples were separated with a COSMOIL Sugar-D column (4.6 mm × 250 mm, 5 µm) by using gradient elution with water (A) and acetonitrile (B). In addition, Trapped-Ion-Mobility (tims) Time-Of-Flight (tims TOF) was used to identify saccharides of Morindae officinalis radix. Fingerprint chromatogram presented 26 common characteristic peaks in the roots of Morinda officinalis How, and the similarities were more than 0.926. In quantitative analysis, the three compounds showed good regression (r = 0.9995-0.9998) within the test ranges, and the recoveries of the method were in the range of 96.7-101.7%. The contents of sucrose, kestose and nystose in all samples were determined as 1.21-7.92%, 1.02-3.37%, and 2.38-6.55%, respectively. The developed HPLC fingerprint method is reliable and was validated for the quality control and identification of Morindae officinalis radix and can be successfully used to assess the quality of Morindae officinalis radix.


Assuntos
Medicamentos de Ervas Chinesas , Oligossacarídeos , Espalhamento de Radiação , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/química , Modelos Lineares , Oligossacarídeos/análise , Oligossacarídeos/isolamento & purificação , Análise de Componente Principal , Reprodutibilidade dos Testes
9.
Prep Biochem Biotechnol ; 51(5): 440-449, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33044121

RESUMO

Commercial production of inulooligosaccharides (IOS) relies largely on chicory roots. However, Jerusalem artichoke (JA) tubers provide a suitable alternative due to their high inulin content and low cultivation requirements. In this study, three inulin-rich substrate preparations from JA were investigated to maximize IOS production, namely powder from dried JA tuber slices (Substrate 1), solid residues after extracting protein from the JA powder (Substrate 2) and an inulin-rich fraction extracted from protein extraction residues (Substrate 3). The preferred temperature, pH and inulin substrate concentration were determined after which enzyme dosage and extraction time were optimized to maximize IOS extraction from the three substrates, using pure chicory inulin as benchmark. Under the optimal conditions, Substrate 3 resulted in the highest IOS yield of 82.3% (w/winulin). However, IOS production from the Substrate 1 proved more efficient since it renders the highest overall IOS yield (mass of IOS per mass of the starting biomass). In the case of co-production of protein and IOS from the JA tuber in a biorefinery concept, IOS production from the Substrate 2 is preferred since it reduces the inulin losses incurred during substrate preparation. For all the inulin-rich substrates studied, an enzyme dosage of 14.8 U/ginulin was found to be optimal at reaction time less than 6 h. JA tuber exhibited excellent potential for commercial production of IOS with improved yield and the possible advantage of a reduced biomass cost.


Assuntos
Helianthus/química , Inulina/química , Oligossacarídeos , Tubérculos/química , Glicosídeo Hidrolases/química , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação
10.
Molecules ; 26(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063753

RESUMO

Azobenzenes are photochromic molecules that possess a large range of applications. Their syntheses are usually simple and fast, and their purifications can be easy to perform. Oligosaccharide is also a wide family of biopolymer constituted of linear chain of saccharides. It can be extracted from biomass, as for cellulose, being the principal constituent of plant cell wall, or it can be enzymatically produced as for cyclodextrins, having properties not far from cellulose. Combining these two materials families can afford interesting applications such as controlled drug-release systems, photochromic liquid crystals, photoresponsive films or even fluorescent indicators. This review will compile the different syntheses of azo-dyes-grafted oligosaccharides, and will show their various applications.


Assuntos
Compostos Azo/química , Oligossacarídeos/síntese química , Celulose/química , Preparações de Ação Retardada/química , Corantes Fluorescentes/química , Cristais Líquidos/química , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação
11.
Molecules ; 26(21)2021 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34770811

RESUMO

Aristotelia chilensis is a plant rich in phenolics and other bioactive compounds. Their leaves are discarded as waste in the maqui berry industry. A new application of these wastes is intended by the recovery of bioactive compounds using pressurized hot water extraction with conventional or microwave heating. Both technologies have been selected for their green character regarding the type of solvent and the high efficiency in shorter operation times. Extractions were performed in the temperature range 140-200 °C with a solid/liquid ratio of 1:15 (w:w). The extracts' total phenolic content, antioxidant capacity, and saccharides content obtained with both heating methods were measured. Additionally, the thermo-rheological properties of the gelling matrix enriched with these extracts were analyzed. Optimum conditions for lyophilized extracts were found with conventional heating, at 140 °C and 20 min extraction; 250.0 mg GAE/g dry extract and 1321.5 mg Trolox/g dry extract. Close to optimum performance was achieved with microwave heating in a fraction of the time (5 min) at 160 °C (extraction), yielding extracts with 231.9 mg GAE/g dry extract of total phenolics and antiradical capacity equivalent to 1176.3 mg Trolox/g dry extract. Slightly higher antioxidant values were identified for spray-dried extracts (between 5% for phenolic content and 2.5% for antioxidant capacity). The extracts obtained with both heating methods at 200 °C contained more than 20% oligosaccharides, primarily glucose. All the formulated gelling matrices enriched with the obtained extracts displayed intermediate gel strength properties. The tested technologies efficiently recovered highly active antioxidant extracts, rich in polyphenolics, and valuable for formulating gelling matrices with potential applicability in foods and other products.


Assuntos
Elaeocarpaceae/química , Glucose/isolamento & purificação , Hidrogéis/química , Oligossacarídeos/isolamento & purificação , Glucose/química , Oligossacarídeos/química , Pressão , Temperatura , Água/química
12.
Molecules ; 26(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33926080

RESUMO

Plant biomass constitutes the main source of renewable carbon on the planet. Its valorization has traditionally been focused on the use of cellulose, although hemicellulose is the second most abundant group of polysaccharides on Earth. The main enzymes involved in plant biomass degradation are glycosyl hydrolases, and filamentous fungi are good producers of these enzymes. In this study, a new strain of Aspergillus niger was used for hemicellulase production under solid-state fermentation using wheat straw as single-carbon source. Physicochemical parameters for the production of an endoxylanase were optimized by using a One-Factor-at-a-Time (OFAT) approach and response surface methodology (RSM). Maximum xylanase yield after RSM optimization was increased 3-fold, and 1.41- fold purification was achieved after ultrafiltration and ion-exchange chromatography, with about 6.2% yield. The highest activity of the purified xylanase was observed at 50 °C and pH 6. The enzyme displayed high thermal and pH stability, with more than 90% residual activity between pH 3.0-9.0 and between 30-40 °C, after 24 h of incubation, with half-lives of 30 min at 50 and 60 °C. The enzyme was mostly active against wheat arabinoxylan, and its kinetic parameters were analyzed (Km = 26.06 mg·mL-1 and Vmax = 5.647 U·mg-1). Wheat straw xylan hydrolysis with the purified ß-1,4 endoxylanase showed that it was able to release xylooligosaccharides, making it suitable for different applications in food technology.


Assuntos
Aspergillus niger/metabolismo , Endo-1,4-beta-Xilanases/biossíntese , Fermentação , Glucuronatos/biossíntese , Oligossacarídeos/biossíntese , Triticum/química , Resíduos , Algoritmos , Biomassa , Fenômenos Químicos , Endo-1,4-beta-Xilanases/isolamento & purificação , Ativação Enzimática , Glucuronatos/isolamento & purificação , Concentração de Íons de Hidrogênio , Hidrólise , Modelos Químicos , Oligossacarídeos/isolamento & purificação , Polissacarídeos/biossíntese , Especificidade por Substrato , Xilanos/química
13.
Acc Chem Res ; 52(3): 760-768, 2019 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-30761895

RESUMO

This Account describes the risky proposition of organizing a multidisciplinary team to interrogate a challenging problem in chemical biology: characterizing how human milk, at the molecular level, protects infants from infectious diseases. At the outset, our initial hypothesis was that human milk oligosaccharides (HMOs) possess antimicrobial and antivirulence activities. Early on, we discovered that HMOs do indeed modulate bacterial growth and biofilm production for numerous bacterial pathogens. In light of this discovery, three priorities emerged for our program moving forward. The first was to decode the mode of action behind this activity. The second was to decipher the functional effects of HMO structural diversity as there are ca. 200 unique HMOs present in human milk. Finally, we set our sights on discovering novel uses for HMOs as we believed this would uniquely position our team to achieve a major breakthrough in human health and wellness. Through a combination of fractionation techniques, chemical synthesis, and industrial partnerships, we have determined the identities of several HMOs with potent antimicrobial activity against the important neonate pathogen Group B Streptococcus (Group B Strep; GBS). In addition to a structure-activity relationship (SAR) study, we observed that HMOs are effective adjuvants for intracellular-targeting antibiotics against GBS. This included two antibiotics that GBS has evolved resistance to. At their half maximal inhibitory concentration (IC50), heterogeneous HMOs reduced the minimum inhibitory concentration (MIC) of select antibiotics by up to 32-fold. Similarly, we observed that HMOs potentiate the activity of polymyxin B (Gram-negative-selective antibiotic) against GBS (Gram-positive species). Based on these collective discoveries, we hypothesized that HMOs function by increasing bacterial cell permeability, which would be a novel mode of action for these molecules. This hypothesis was validated as HMOs were found to increase membrane permeability by around 30% compared to an untreated control. The question that remains is how exactly HMOs interact with bacterial membranes to induce permeability changes (i.e., through promiscuous insertion into the bilayer, engagement of proteins involved in membrane synthesis, or HMO-capsular polysaccharide interactions). Our immediate efforts in this regard are to apply chemoproteomics to identify the molecular target(s) of HMOs. These investigations are enabled through manipulation of HMOs produced via total synthesis or enzymatic and whole-cell microbial biotransformation.


Assuntos
Antibacterianos/farmacologia , Leite Humano/química , Oligossacarídeos/farmacologia , Adjuvantes Farmacêuticos/química , Adjuvantes Farmacêuticos/isolamento & purificação , Adjuvantes Farmacêuticos/farmacologia , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Sequência de Carboidratos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Feminino , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Streptococcus agalactiae/efeitos dos fármacos , Relação Estrutura-Atividade
14.
Pharmacol Res ; 159: 104942, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32504835

RESUMO

As traditional Chinese medicine, Bletilla striata has been widely applied to clinical treatment for its unique pharmacological profiles. This study aimed to investigate the beneficial role of Bletilla striata oligosaccharides (BO) in improving the metabolic syndrome by regulation of gut microbiota and intestinal metabolites. Treatment of HFD-fed mice with BO prevented weight gain, reversed the glucose intolerance and insulin resistance, and inhibited adipocyte hypertrophy. BO-treated mice also suppressed chronic inflammation and protected intestinal barrier from damage. These effects were linked to the reversal of gut microbiota dysbiosis, which contributed to the homeostasis of intestinal metabolites including bile acids, short-chain fatty acids and tryptophan catabolites. The depletion and reconstitution of intestinal flora from BO- or HFD-treated mice confirmed the significance of gut microbiota in regulation of HFD-induced metabolic disorders. We demonstrated for the first time that BO improved metabolic syndrome through the regulation of gut microbiota and intestinal metabolites. The modulation initiated by BO represents a promising strategy for treatment of obesity and related metabolic diseases.


Assuntos
Bactérias/efeitos dos fármacos , Colo/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Síndrome Metabólica/terapia , Oligossacarídeos/farmacologia , Orchidaceae , Extratos Vegetais/farmacologia , Animais , Bactérias/metabolismo , Ácidos e Sais Biliares/metabolismo , Colo/metabolismo , Colo/microbiologia , Colo/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Disbiose , Ácidos Graxos Voláteis/metabolismo , Transplante de Microbiota Fecal , Masculino , Síndrome Metabólica/metabolismo , Síndrome Metabólica/microbiologia , Síndrome Metabólica/patologia , Camundongos Endogâmicos C57BL , Oligossacarídeos/isolamento & purificação , Orchidaceae/química , Extratos Vegetais/isolamento & purificação , Triptofano/metabolismo
15.
Mar Drugs ; 18(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233702

RESUMO

Three new acylated aminooligosaccharide (1-3), along with five known congeners (4-8), were isolated from the marine-derived Streptomyces sp. HO1518. Their structures were fully elucidated by extensive spectroscopic analysis, mainly based on 1D-selective and 2D TOCSY, HSQC-TOCSY, and HRESIMS spectrometry measurements, and by chemical transformations. All of the compounds were evaluated for their α-glucosidase and pancreatic lipase inhibitory activities. Among the isolates, D6-O-isobutyryl-acarviostatin II03 (3) and D6-O-acetyl-acarviostatin II03 (8), sharing acarviostatin II03-type structure, showed the most potent α-glucosidase and lipase inhibitory effects, far stronger than the antidiabetic acarbose towards α-glucosidase and almost equal to the anti-obesity orlistat towards lipase in vitro. This is the first report on inhibitory activities against the two major digestive enzymes for acylated aminooligosaccharides. The results from our investigation highlight the potential of acylated aminooligosaccharides for the future development of multi-target anti-diabetic drug.


Assuntos
Inibidores Enzimáticos/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Lipase/antagonistas & inibidores , Oligossacarídeos/farmacologia , Streptomyces/metabolismo , Acilação , Inibidores Enzimáticos/isolamento & purificação , Sedimentos Geológicos/microbiologia , Inibidores de Glicosídeo Hidrolases/isolamento & purificação , Lipase/metabolismo , Estrutura Molecular , Oligossacarídeos/isolamento & purificação , Relação Estrutura-Atividade
16.
Mar Drugs ; 18(10)2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33086600

RESUMO

Polysaccharides extracted from marine algae have attracted much attention due to their biotechnological applications, including therapeutics, cosmetics, and mainly in agriculture and horticulture as biostimulants, biofertilizers, and stimulators of the natural defenses of plants. This study aimed to evaluate the ability of alginate isolated from Bifurcaria bifurcata from the Moroccan coast and oligoalginates derivatives to stimulate the natural defenses of tomato seedlings. Elicitation was carried out by the internodal injection of bioelicitor solutions. The elicitor capacities were evaluated by monitoring the activity of phenylalanine ammonia-lyase (PAL) as well as polyphenols content in the leaves located above the elicitation site for 5 days. Alginate and oligoalginates treatments triggered plant defense responses, which showed their capacity to significantly induce the PAL activity and phenolic compounds accumulation in the leaves of tomato seedlings. Elicitation by alginates and oligoalginates showed an intensive induction of PAL activity, increasing from 12 h of treatment and remaining at high levels throughout the period of treatment. The amount of polyphenols in the leaves was increased rapidly and strongly from 12 h of elicitation by both saccharide solutions, representing peaks value after 24 h of application. Oligoalginates exhibited an effective elicitor capacity in polyphenols accumulation compared to alginate polymers. The alginate and oligosaccharides derivatives revealed a similar elicitor capacity in PAL activity whereas the accumulation of phenolic compounds showed a differential effect. Polysaccharides extracted from the brown seaweed Bifurcaria bifurcate and oligosaccharides derivatives induced significantly the phenylpropanoid metabolism in tomato seedlings. These results contribute to the valorization of marine biomass as a potential bioresource for plant protection against phytopathogens in the context of eco-sustainable green technology.


Assuntos
Alginatos/farmacologia , Oligossacarídeos/farmacologia , Phaeophyceae/química , Substâncias Protetoras/farmacologia , Plântula/metabolismo , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Alginatos/química , Alginatos/isolamento & purificação , Marrocos , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Fenilalanina Amônia-Liase/análise , Fenilalanina Amônia-Liase/efeitos dos fármacos , Fenilalanina Amônia-Liase/isolamento & purificação , Folhas de Planta/química , Polifenóis/análise , Polifenóis/isolamento & purificação , Polifenóis/metabolismo , Substâncias Protetoras/química , Substâncias Protetoras/isolamento & purificação , Metabolismo Secundário , Plântula/química
17.
Mar Drugs ; 18(9)2020 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-32842556

RESUMO

Parkinson's disease (PD), characterized by dopaminergic neuron degeneration in the substantia nigra and dopamine depletion in the striatum, affects up to 1% of the global population over 50 years of age. Our previous study found that a heteropolysaccharide from Saccharina japonica exhibits neuroprotective effects through antioxidative stress. In view of its high molecular weight and complex structure, we degraded the polysaccharide and subsequently obtained four oligosaccharides. In this study, we aimed to further detect the neuroprotective mechanism of the oligosaccharides. We applied MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) to induce PD, and glucuronomannan oligosaccharides (GMn) was subsequently administered. Results showed that GMn ameliorated behavioral deficits in Parkinsonism mice. Furthermore, we observed that glucuronomannan oligosaccharides contributed to down-regulating the apoptotic signaling pathway through enhancing the expression of tyrosine hydroxylase (TH) in dopaminergic neurons. These results suggest that glucuronomannan oligosaccharides protect dopaminergic neurons from apoptosis in PD mice.


Assuntos
Antiparkinsonianos/farmacologia , Apoptose/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Glucuronatos/farmacologia , Manose/análogos & derivados , Oligossacarídeos/farmacologia , Transtornos Parkinsonianos/prevenção & controle , Alga Marinha , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Antiparkinsonianos/isolamento & purificação , Proteínas Reguladoras de Apoptose/metabolismo , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Glucuronatos/isolamento & purificação , Masculino , Manose/isolamento & purificação , Manose/farmacologia , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Oligossacarídeos/isolamento & purificação , Teste de Campo Aberto/efeitos dos fármacos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Alga Marinha/química , Tirosina 3-Mono-Oxigenase/metabolismo
18.
Int J Mol Sci ; 21(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947917

RESUMO

Plesiomonas shigelloides is a Gram-negative, rod-shaped bacterium which causes foodborne intestinal infections, including gastroenteritis. It is one of the most frequent causes of travellers' diarrhoea. Lipopolysaccharide (LPS, endotoxin), an important virulence factor of the species, is in most cases characterised by a smooth character, demonstrated by the presence of all regions, such as lipid A, core oligosaccharide, and O-specific polysaccharide, where the latter part determines O-serotype. P. shigelloides LPS is still a poorly characterised virulence factor considering a "translation" of the particular O-serotype into chemical structure. To date, LPS structure has only been elucidated for 15 strains out of 102 O-serotypes. Structures of the new O-specific polysaccharide and core oligosaccharide of P. shigelloides from the Czechoslovak National Collection of Type Cultures CNCTC 90/89 LPS (O22), investigated by chemical analysis, mass spectrometry, and 1H,13C nuclear magnetic resonance (NMR) spectroscopy, have now been reported. The pentasaccharide repeating unit of the O-specific polysaccharide is built of one d-QuipNAc and is rich in four d-GalpNAcAN residues. Moreover, the new core oligosaccharide shares common features of other P. shigelloides endotoxins, i.e., the lack of phosphate groups and the presence of uronic acids.


Assuntos
Lipopolissacarídeos/química , Antígenos O/química , Plesiomonas/química , Sequência de Carboidratos , Lipopolissacarídeos/isolamento & purificação , Ressonância Magnética Nuclear Biomolecular , Antígenos O/isolamento & purificação , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
19.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105791

RESUMO

During the past decade, detailed studies using well-defined 'second generation' chitosans have amply proved that both their material properties and their biological activities are dependent on their molecular structure, in particular on their degree of polymerisation (DP) and their fraction of acetylation (FA). Recent evidence suggests that the pattern of acetylation (PA), i.e., the sequence of acetylated and non-acetylated residues along the linear polymer, is equally important, but chitosan polymers with defined, non-random PA are not yet available. One way in which the PA will influence the bioactivities of chitosan polymers is their enzymatic degradation by sequence-dependent chitosan hydrolases present in the target tissues. The PA of the polymer substrates in conjunction with the subsite preferences of the hydrolases determine the type of oligomeric products and the kinetics of their production and further degradation. Thus, the bioactivities of chitosan polymers will at least in part be carried by the chitosan oligomers produced from them, possibly through their interaction with pattern recognition receptors in target cells. In contrast to polymers, partially acetylated chitosan oligosaccharides (paCOS) can be fully characterised concerning their DP, FA, and PA, and chitin deacetylases (CDAs) with different and known regio-selectivities are currently emerging as efficient tools to produce fully defined paCOS in quantities sufficient to probe their bioactivities. In this review, we describe the current state of the art on how CDAs can be used in forward and reverse mode to produce all of the possible paCOS dimers, trimers, and tetramers, most of the pentamers and many of the hexamers. In addition, we describe the biotechnological production of the required fully acetylated and fully deacetylated oligomer substrates, as well as the purification and characterisation of the paCOS products.


Assuntos
Amidoidrolases/química , Amidoidrolases/metabolismo , Quitosana/química , Oligossacarídeos/química , Acetilação , Amidoidrolases/genética , Biotecnologia/métodos , Quitina/química , Quitina/metabolismo , Quitosana/metabolismo , Espectrometria de Massas , Oligossacarídeos/síntese química , Oligossacarídeos/isolamento & purificação , Oligossacarídeos/metabolismo , Polimerização , Terminologia como Assunto
20.
Molecules ; 25(6)2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183067

RESUMO

The deposition of aggregated human islet amyloid polypeptide (hIAPP) in the pancreas, that has been associated with ß-cell dysfunction, is one of the common pathological features of patients with type 2 diabetes (T2D). Therefore, hIAPP aggregation inhibitors hold a promising therapeutic schedule for T2D. Chitosan oligosaccharides (COS) have been reported to exhibit a potential antidiabetic effect, but the function of COS on hIAPP amyloid formation remains elusive. Here, we show that COS inhibited the aggregation of hIAPP and disassembled preformed hIAPP fibrils in a dose-dependent manner by thioflavin T fluorescence assay, circular dichroism spectroscopy, and transmission electron microscope. Furthermore, COS protected mouse ß-cells from cytotoxicity of amyloidogenic hIAPP, as well as apoptosis and cycle arrest. There was no direct binding of COS and hIAPP, as revealed by surface plasmon resonance analysis. In addition, both chitin-oligosaccharide and the acetylated monosaccharide of COS and glucosamine had no inhibition effect on hIAPP amyloid formation. It is presumed that, mechanistically, COS regulate hIAPP amyloid formation relating to the positive charge and degree of polymerization. These findings highlight the potential role of COS as inhibitors of hIAPP amyloid formation and provide a new insight into the mechanism of COS against diabetes.


Assuntos
Amiloide/metabolismo , Quitosana/farmacologia , Citoproteção/efeitos dos fármacos , Células Secretoras de Insulina/patologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Oligossacarídeos/farmacologia , Animais , Benzotiazóis/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Quitosana/síntese química , Quitosana/química , Quitosana/isolamento & purificação , Fluorescência , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Polipeptídeo Amiloide das Ilhotas Pancreáticas/ultraestrutura , Cinética , Camundongos , Oligossacarídeos/síntese química , Oligossacarídeos/química , Oligossacarídeos/isolamento & purificação , Agregados Proteicos/efeitos dos fármacos , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA