Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.079
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 160(6): 1209-21, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25728666

RESUMO

Rice is sensitive to cold and can be grown only in certain climate zones. Human selection of japonica rice has extended its growth zone to regions with lower temperature, while the molecular basis of this adaptation remains unknown. Here, we identify the quantitative trait locus COLD1 that confers chilling tolerance in japonica rice. Overexpression of COLD1(jap) significantly enhances chilling tolerance, whereas rice lines with deficiency or downregulation of COLD1(jap) are sensitive to cold. COLD1 encodes a regulator of G-protein signaling that localizes on plasma membrane and endoplasmic reticulum (ER). It interacts with the G-protein α subunit to activate the Ca(2+) channel for sensing low temperature and to accelerate G-protein GTPase activity. We further identify that a SNP in COLD1, SNP2, originated from Chinese Oryza rufipogon, is responsible for the ability of COLD(jap/ind) to confer chilling tolerance, supporting the importance of COLD1 in plant adaptation.


Assuntos
Proteínas e Peptídeos de Choque Frio/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Cruzamento , Proteínas e Peptídeos de Choque Frio/genética , Temperatura Baixa , Retículo Endoplasmático , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Mutação , Oryza/citologia , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Alinhamento de Sequência
2.
Cell ; 160(6): 1045-6, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25768901

RESUMO

Cold tolerance fundamentally affects world crop harvest. Ma et al. now identify a single-nucleotide polymorphism in a gene called COLD1 that confers cold tolerance in japonica rice. This study reveals important insights into agronomical traits that are essential for human nutrition.


Assuntos
Proteínas e Peptídeos de Choque Frio/metabolismo , Oryza/fisiologia , Proteínas de Plantas/metabolismo
3.
Nature ; 618(7966): 799-807, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316670

RESUMO

Plants deploy receptor-like kinases and nucleotide-binding leucine-rich repeat receptors to confer host plant resistance (HPR) to herbivores1. These gene-for-gene interactions between insects and their hosts have been proposed for more than 50 years2. However, the molecular and cellular mechanisms that underlie HPR have been elusive, as the identity and sensing mechanisms of insect avirulence effectors have remained unknown. Here we identify an insect salivary protein perceived by a plant immune receptor. The BPH14-interacting salivary protein (BISP) from the brown planthopper (Nilaparvata lugens Stål) is secreted into rice (Oryza sativa) during feeding. In susceptible plants, BISP targets O. satvia RLCK185 (OsRLCK185; hereafter Os is used to denote O. satvia-related proteins or genes) to suppress basal defences. In resistant plants, the nucleotide-binding leucine-rich repeat receptor BPH14 directly binds BISP to activate HPR. Constitutive activation of Bph14-mediated immunity is detrimental to plant growth and productivity. The fine-tuning of Bph14-mediated HPR is achieved through direct binding of BISP and BPH14 to the selective autophagy cargo receptor OsNBR1, which delivers BISP to OsATG8 for degradation. Autophagy therefore controls BISP levels. In Bph14 plants, autophagy restores cellular homeostasis by downregulating HPR when feeding by brown planthoppers ceases. We identify an insect saliva protein sensed by a plant immune receptor and discover a three-way interaction system that offers opportunities for developing high-yield, insect-resistant crops.


Assuntos
Hemípteros , Proteínas de Insetos , Oryza , Defesa das Plantas contra Herbivoria , Proteínas de Plantas , Animais , Hemípteros/imunologia , Hemípteros/fisiologia , Leucina/metabolismo , Nucleotídeos/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/imunologia , Oryza/metabolismo , Oryza/fisiologia , Defesa das Plantas contra Herbivoria/imunologia , Defesa das Plantas contra Herbivoria/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Insetos/metabolismo , Autofagia
4.
Plant Cell ; 36(6): 2117-2139, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38345423

RESUMO

Plants have evolved complex mechanisms to adapt to harsh environmental conditions. Rice (Oryza sativa) is a staple food crop that is sensitive to low temperatures. However, its cold stress responses remain poorly understood, thus limiting possibilities for crop engineering to achieve greater cold tolerance. In this study, we constructed a rice pan-transcriptome and characterized its transcriptional regulatory landscape in response to cold stress. We performed Iso-Seq and RNA-Seq of 11 rice cultivars subjected to a time-course cold treatment. Our analyses revealed that alternative splicing-regulated gene expression plays a significant role in the cold stress response. Moreover, we identified CATALASE C (OsCATC) and Os03g0701200 as candidate genes for engineering enhanced cold tolerance. Importantly, we uncovered central roles for the 2 serine-arginine-rich proteins OsRS33 and OsRS2Z38 in cold tolerance. Our analysis of cold tolerance and resequencing data from a diverse collection of 165 rice cultivars suggested that OsRS2Z38 may be a key selection gene in japonica domestication for cold adaptation, associated with the adaptive evolution of rice. This study systematically investigated the distribution, dynamic changes, and regulatory mechanisms of alternative splicing in rice under cold stress. Overall, our work generates a rich resource with broad implications for understanding the genetic basis of cold response mechanisms in plants.


Assuntos
Processamento Alternativo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/fisiologia , Processamento Alternativo/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Temperatura Baixa , Resposta ao Choque Frio/genética , Transcriptoma/genética
5.
Plant Cell ; 36(8): 2834-2850, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38701348

RESUMO

Salt stress is an environmental factor that limits plant growth and crop production. With the rapid expansion of salinized arable land worldwide, investigating the molecular mechanisms underlying the salt stress response in plants is urgently needed. Here, we report that GROWTH REGULATING FACTOR 7 (OsGRF7) promotes salt tolerance by regulating arbutin (hydroquinone-ß-D-glucopyranoside) metabolism in rice (Oryza sativa). Overexpression of OsGRF7 increased arbutin content, and exogenous arbutin application rescued the salt-sensitive phenotype of OsGRF7 knockdown and knockout plants. OsGRF7 directly promoted the expression of the arbutin biosynthesis genes URIDINE DIPHOSPHATE GLYCOSYLTRANSFERASE 1 (OsUGT1) and OsUGT5, and knockout of OsUGT1 or OsUGT5 reduced rice arbutin content, salt tolerance, and grain size. Furthermore, OsGRF7 degradation through its interaction with F-BOX AND OTHER DOMAINS CONTAINING PROTEIN 13 reduced rice salinity tolerance and grain size. These findings highlight an underexplored role of OsGRF7 in modulating rice arbutin metabolism, salt stress response, and grain size, as well as its broad potential use in rice breeding.


Assuntos
Arbutina , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Tolerância ao Sal , Oryza/genética , Oryza/metabolismo , Oryza/fisiologia , Oryza/efeitos dos fármacos , Oryza/crescimento & desenvolvimento , Tolerância ao Sal/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arbutina/metabolismo , Arbutina/farmacologia , Plantas Geneticamente Modificadas , Estresse Salino
6.
Plant Cell ; 36(5): 1913-1936, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38242836

RESUMO

Low temperature is a major environmental factor limiting plant growth and crop production. Epigenetic regulation of gene expression is important for plant adaptation to environmental changes, whereas the epigenetic mechanism of cold signaling in rice (Oryza sativa) remains largely elusive. Here, we report that the histone deacetylase (HDAC) OsHDA716 represses rice cold tolerance by interacting with and deacetylating the transcription factor OsbZIP46. The loss-of-function mutants of OsHDA716 exhibit enhanced chilling tolerance, compared with the wild-type plants, while OsHDA716 overexpression plants show chilling hypersensitivity. On the contrary, OsbZIP46 confers chilling tolerance in rice through transcriptionally activating OsDREB1A and COLD1 to regulate cold-induced calcium influx and cytoplasmic calcium elevation. Mechanistic investigation showed that OsHDA716-mediated OsbZIP46 deacetylation in the DNA-binding domain reduces the DNA-binding ability and transcriptional activity as well as decreasing OsbZIP46 protein stability. Genetic evidence indicated that OsbZIP46 deacetylation mediated by OsHDA716 reduces rice chilling tolerance. Collectively, these findings reveal that the functional interplay between the chromatin regulator and transcription factor fine-tunes the cold response in plant and uncover a mechanism by which HDACs repress gene transcription through deacetylating nonhistone proteins and regulating their biochemical functions.


Assuntos
Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Histona Desacetilases , Oryza , Proteínas de Plantas , Estabilidade Proteica , Ativação Transcricional , Oryza/genética , Oryza/enzimologia , Oryza/metabolismo , Oryza/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Ativação Transcricional/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Plantas Geneticamente Modificadas , Acetilação
7.
Cell ; 151(6): 1358-69, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23217716

RESUMO

Determining the drivers of gene expression patterns is more straightforward in laboratory conditions than in the complex fluctuating environments where organisms typically live. We gathered transcriptome data from the leaves of rice plants in a paddy field along with the corresponding meteorological data and used them to develop statistical models for the endogenous and external influences on gene expression. Our results indicate that the transcriptome dynamics are predominantly governed by endogenous diurnal rhythms, ambient temperature, plant age, and solar radiation. The data revealed diurnal gates for environmental stimuli to influence transcription and pointed to relative influences exerted by circadian and environmental factors on different metabolic genes. The model also generated predictions for the influence of changing temperatures on transcriptome dynamics. We anticipate that our models will help translate the knowledge amassed in laboratories to problems in agriculture and that our approach to deciphering the transcriptome fluctuations in complex environments will be applicable to other organisms.


Assuntos
Regulação da Expressão Gênica de Plantas , Modelos Estatísticos , Oryza/genética , Transcriptoma , Clima , Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Meio Ambiente , Genes de Plantas , Luz , Oryza/fisiologia
8.
Plant J ; 119(3): 1289-1298, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38818938

RESUMO

The apocarotenoid strigolactones (SLs) facilitate pre-symbiotic communication between arbuscular mycorrhizal (AM) fungi and plants. Related blumenol-C-glucosides (blumenols), have also been associated with symbiosis, but the cues that are involved in the regulation of blumenol accumulation during AM symbiosis remain unclear. In rice, our analyses demonstrated a strict correlation between foliar blumenol abundance and intraradical fungal colonisation. More specifically, rice mutants affected at distinct stages of the interaction revealed that fungal cortex invasion was required for foliar blumenol accumulation. Plant phosphate status and D14L hormone signalling had no effect, contrasting their known role in induction of SLs. This a proportion of the SL biosynthetic enzymes, D27 and D17, are equally required for blumenol production. These results importantly clarify that, while there is a partially shared biosynthetic pathway between SL and blumenols, the dedicated induction of the related apocarotenoids occurs in response to cues acting at distinct stages during the root colonisation process. However, we reveal that neither SLs nor blumenols are essential for fungal invasion of rice roots.


Assuntos
Lactonas , Micorrizas , Oryza , Simbiose , Micorrizas/fisiologia , Oryza/microbiologia , Oryza/metabolismo , Oryza/genética , Oryza/fisiologia , Lactonas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Glucosídeos/metabolismo , Regulação da Expressão Gênica de Plantas
9.
Plant J ; 118(6): 1955-1971, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38491864

RESUMO

Photoperiod employs complicated networks to regulate various developmental processes in plants, including flowering transition. However, the specific mechanisms by which photoperiod affects epigenetic modifications and gene expression variations in plants remain elusive. In this study, we conducted a comprehensive analysis of DNA methylation, small RNA (sRNA) accumulation, and gene expressions under different daylengths in facultative long-day (LD) grass Brachypodium distachyon and short-day (SD) grass rice. Our results showed that while overall DNA methylation levels were minimally affected by different photoperiods, CHH methylation levels were repressed under their favorable light conditions, particularly in rice. We identified numerous differentially methylated regions (DMRs) that were influenced by photoperiod in both plant species. Apart from differential sRNA clusters, we observed alterations in the expression of key components of the RNA-directed DNA methylation pathway, DNA methyltransferases, and demethylases, which may contribute to the identified photoperiod-influenced CHH DMRs. Furthermore, we identified many differentially expressed genes in response to different daylengths, some of which were associated with the DMRs. Notably, we discovered a photoperiod-responsive gene MYB11 in the transcriptome of B. distachyon, and further demonstrated its role as a flowering inhibitor by repressing FT1 transcription. Together, our comparative and functional analysis sheds light on the effects of daylength on DNA methylation, sRNA accumulation, and gene expression variations in LD and SD plants, thereby facilitating better designing breeding programs aimed at developing high-yield crops that can adapt to local growing seasons.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica de Plantas , Oryza , Fotoperíodo , RNA de Plantas , Oryza/genética , Oryza/metabolismo , Oryza/fisiologia , RNA de Plantas/genética , RNA de Plantas/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Brachypodium/fisiologia , Epigênese Genética , Flores/genética , Flores/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Plant J ; 119(2): 998-1013, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761113

RESUMO

The pollen viability directly affects the pollination process and the ultimate grain yield of rice. Here, we identified that the MORN motif-containing proteins, OsMORN1 and OsMORN2, had a crucial role in maintaining pollen fertility. Compared with the wild type (WT), the pollen viability of the osmorn1 and osmorn2 mutants was reduced, and pollen germination was abnormal, resulting in significantly lower spikelet fertility, seed-setting rate, and grain yield per plant. Further investigation revealed that OsMORN1 was localized to the Golgi apparatus and lipid droplets. Lipids associated with pollen viability underwent alterations in osmorn mutants, such as the diacylglyceride (18:3_18:3) was 5.1-fold higher and digalactosyldiacylglycerol (18:2_18:2) was 5.2-fold lower in osmorn1, while the triacylglycerol (TG) (16:0_18:2_18:3) was 8.3-fold higher and TG (16:0_18:1_18:3) was 8.5-fold lower in osmorn2 than those in WT. Furthermore, the OsMORN1/2 was found to be associated with rice cold tolerance, as osmorn1 and osmorn2 mutants were more sensitive to chilling stress than WT. The mutants displayed increased hydrogen peroxide accumulation, reduced antioxidant enzyme activities, elevated malondialdehyde content, and a significantly decreased seedling survival rate. Lipidomics analysis revealed distinct alterations in lipids under low temperature, highlighting significant changes in TG (18:2_18:3_18:3) and TG (18:4_18:2_18:2) in osmorn1, TG (16:0_18:2_18:2) and PI (17:2_18:3) in osmorn2 compared to the WT. Therefore, it suggested that OsMORN1 and OsMORN2 regulate both pollen viability and cold tolerance through maintaining lipid homeostasis.


Assuntos
Oryza , Proteínas de Plantas , Pólen , Oryza/genética , Oryza/fisiologia , Oryza/metabolismo , Pólen/genética , Pólen/fisiologia , Pólen/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Germinação/fisiologia , Regulação da Expressão Gênica de Plantas , Temperatura Baixa , Mutação , Gotículas Lipídicas/metabolismo
11.
Plant J ; 119(1): 413-431, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38625788

RESUMO

The protein-repairing enzyme (PRE) PROTEIN L-ISOASPARTYL METHYLTRANSFERASE (PIMT) influences seed vigor by repairing isoaspartyl-mediated protein damage in seeds. However, PIMTs function in other seed traits, and the mechanisms by which PIMT affects such seed traits are still poorly understood. Herein, through molecular, biochemical, and genetic studies using overexpression and RNAi lines in Oryza sativa and Arabidopsis thaliana, we demonstrate that PIMT not only affects seed vigor but also affects seed size and weight by modulating enolase (ENO) activity. We have identified ENO2, a glycolytic enzyme, as a PIMT interacting protein through Y2H cDNA library screening, and this interaction was further validated by BiFC and co-immunoprecipitation assay. We show that mutation or suppression of ENO2 expression results in reduced seed vigor, seed size, and weight. We also proved that ENO2 undergoes isoAsp modification that affects its activity in both in vivo and in vitro conditions. Further, using MS/MS analyses, amino acid residues that undergo isoAsp modification in ENO2 were identified. We also demonstrate that PIMT repairs such isoAsp modification in ENO2 protein, protecting its vital cellular functions during seed maturation and storage, and plays a vital role in regulating seed size, weight, and seed vigor. Taken together, our study identified ENO2 as a novel substrate of PIMT, and both ENO2 and PIMT in turn implicate in agronomically important seed traits.


Assuntos
Arabidopsis , Oryza , Fosfopiruvato Hidratase , Proteína D-Aspartato-L-Isoaspartato Metiltransferase , Sementes , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Sementes/genética , Sementes/fisiologia , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/genética , Oryza/genética , Oryza/enzimologia , Oryza/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas
12.
Plant J ; 119(3): 1449-1464, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837713

RESUMO

The aleurone layer in cereal grains acts as a major reservoir of essential mineral nutrients, significantly influencing seed germination. However, the molecular mechanism underlying the redistribution of nutrients from the aleurone layer in the germinating seed is still not well understood. Here, in rice, we identified a plasma membrane (PM) localized magnesium transporter, MAGNESIUM RELEASE TRANSPORTER 3 (MGR3), is critical for seed germination. OsMGR3 is predominantly expressed in the aleurone layer cells of endosperm, facilitating magnesium remobilization during germination. Non-invasive Micro-test Technology assay data demonstrated that the loss-of-function of OsMGR3 restrained magnesium efflux from the aleurone layer. In the embryo/endosperm grafting experiment, we observed that the mutation of OsMGR3 in the aleurone layer suppressed the growth and differentiation of the embryo during germination. Furthermore, magnesium fluorescence imaging revealed the osmgr3 mutant seeds showed impaired exportation of aleurone layer-stored magnesium to the embryo, consequently delaying germination. Importantly, we discovered that disrupting OsMGR3 could inhibit pre-harvest sprouting without affecting rice yield and quality. Therefore, the magnesium efflux transporter OsMGR3 in the aleurone layer represents a promising genetic target for future agronomic trait improvement.


Assuntos
Membrana Celular , Germinação , Magnésio , Oryza , Proteínas de Plantas , Sementes , Oryza/genética , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Magnésio/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Sementes/genética , Sementes/metabolismo , Sementes/crescimento & desenvolvimento , Membrana Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Endosperma/metabolismo , Endosperma/genética , Mutação
13.
Plant J ; 118(5): 1550-1568, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38412303

RESUMO

The increased soil salinity is becoming a major challenge to produce more crops and feed the growing population of the world. In this study, we demonstrated that overexpression of OsDIR55 gene enhances rice salt tolerance by altering the root diffusion barrier. OsDIR55 is broadly expressed in all examined tissues and organs with the maximum expression levels at lignified regions in rice roots. Salt stress upregulates the expression of OsDIR55 gene in an abscisic acid (ABA)-dependent manner. Loss-function and overexpression of OsDIR55 compromised and improved the development of CS and root diffusion barrier, manifested with the decreased and increased width of CS, respectively, and ultimately affected the permeability of the apoplastic diffusion barrier in roots. OsDIR55 deficiency resulted in Na+ accumulation, ionic imbalance, and growth arrest, whereas overexpression of OsDIR55 enhances salinity tolerance and provides an overall benefit to plant growth and yield potential. Collectively, we propose that OsDIR55 is crucial for ions balance control and salt stress tolerance through regulating lignification-mediated root barrier modifications in rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Raízes de Plantas , Tolerância ao Sal , Oryza/genética , Oryza/fisiologia , Oryza/metabolismo , Oryza/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Tolerância ao Sal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Abscísico/metabolismo , Sódio/metabolismo , Plantas Geneticamente Modificadas , Estresse Salino/genética
14.
Plant J ; 119(2): 861-878, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761097

RESUMO

Low phytic acid (lpa) crop is considered as an effective strategy to improve crop nutritional quality, but a substantial decrease in phytic acid (PA) usually has negative effect on agronomic performance and its response to environment adversities. Myo-inositol-3-phosphate synthase (MIPS) is the rate-limiting enzyme in PA biosynthesis pathway, and regarded as the prime target for engineering lpa crop. In this paper, the rice MIPS gene (RINO2) knockout mutants and its wild type were performed to investigate the genotype-dependent alteration in the heat injury-induced spikelet fertility and its underlying mechanism for rice plants being imposed to heat stress at anthesis. Results indicated that RINO2 knockout significantly enhanced the susceptibility of rice spikelet fertility to heat injury, due to the severely exacerbated obstacles in pollen germination and pollen tube growth in pistil for RINO2 knockout under high temperature (HT) at anthesis. The loss of RINO2 function caused a marked reduction in inositol and phosphatidylinositol derivative concentrations in the HT-stressed pollen grains, which resulted in the strikingly lower content of phosphatidylinositol 4,5-diphosphate (PI (4,5) P2) in germinating pollen grain and pollen tube. The insufficient supply of PI (4,5) P2 in the HT-stressed pollen grains disrupted normal Ca2+ gradient in the apical region of pollen tubes and actin filament cytoskeleton in growing pollen tubes. The severely repressed biosynthesis of PI (4,5) P2 was among the regulatory switch steps leading to the impaired pollen germination and deformed pollen tube growth for the HT-stressed pollens of RINO2 knockout mutants.


Assuntos
Citoesqueleto de Actina , Germinação , Oryza , Proteínas de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Oryza/metabolismo , Citoesqueleto de Actina/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pólen/crescimento & desenvolvimento , Pólen/genética , Sinalização do Cálcio , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Tubo Polínico/genética , Temperatura Alta , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico , Liases Intramoleculares/metabolismo , Liases Intramoleculares/genética , Inositol/metabolismo , Inositol/análogos & derivados
15.
Plant J ; 119(4): 2063-2079, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38859561

RESUMO

Drought stress (DS) is one of the major constraints limiting yield in crop plants including rice. Gene regulation under DS is largely governed by accessibility of the transcription factors (TFs) to their cognate cis-regulatory elements (CREs). In this study, we used DNase I hypersensitive assays followed by sequencing to identify the accessible chromatin regions under DS in a drought-sensitive (IR64) and a drought-tolerant (N22) rice cultivar. Our results indicated that DNase I hypersensitive sites (DHSs) were highly enriched at transcription start sites (TSSs) and numerous DHSs were detected in the promoter regions. DHSs were concurrent with epigenetic marks and the genes harboring DHSs in their TSS and promoter regions were highly expressed. In addition, DS induced changes in DHSs (∆DHSs) in TSS and promoter regions were positively correlated with upregulation of several genes involved in drought/abiotic stress response, those encoding TFs and located within drought-associated quantitative trait loci, much preferentially in the drought-tolerant cultivar. The CREs representing the binding sites of TFs involved in DS response were detected within the ∆DHSs, suggesting differential accessibility of TFs to their cognate sites under DS in different rice cultivars, which may be further deployed for enhancing drought tolerance in rice.


Assuntos
Cromatina , Desoxirribonuclease I , Secas , Regulação da Expressão Gênica de Plantas , Oryza , Estresse Fisiológico , Oryza/genética , Oryza/fisiologia , Desoxirribonuclease I/metabolismo , Desoxirribonuclease I/genética , Cromatina/genética , Cromatina/metabolismo , Estresse Fisiológico/genética , Regiões Promotoras Genéticas/genética , Mapeamento Cromossômico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Sítio de Iniciação de Transcrição , Locos de Características Quantitativas/genética
16.
Plant Physiol ; 195(3): 2176-2194, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38423969

RESUMO

Leaf senescence is a combined response of plant cells stimulated by internal and external signals. Sugars acting as signaling molecules or energy metabolites can influence the progression of leaf senescence. Both sugar starvation and accumulation can promote leaf senescence with diverse mechanisms that are reported in different species. Sugars Will Eventually be Exported Transporters (SWEETs) are proposed to play essential roles in sugar transport, but whether they have roles in senescence and the corresponding mechanism are unclear. Here, we functionally characterized a sugar transporter, OsSWEET1b, which transports sugar and promotes senescence in rice (Oryza sativa L.). OsSWEET1b could import glucose and galactose when heterologously expressed in Xenopus oocytes and translocate glucose and galactose from the extracellular apoplast into the intracellular cytosol in rice. Loss of function of OsSWEET1b decreased glucose and galactose accumulation in leaves. ossweet1b mutants showed accelerated leaf senescence under natural and dark-induced conditions. Exogenous application of glucose and galactose complemented the defect of OsSWEET1b deletion-promoted senescence. Moreover, the senescence-activated transcription factor OsWRKY53, acting as a transcriptional repressor, genetically functions upstream of OsSWEET1b to suppress its expression. OsWRKY53-overexpressing plants had attenuated sugar accumulation, exhibiting a similar phenotype as the ossweet1b mutants. Our findings demonstrate that OsWRKY53 downregulates OsSWEET1b to impair its influx transport activity, leading to compromised sugar accumulation in the cytosol of rice leaves where sugar starvation promotes leaf senescence.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Folhas de Planta , Proteínas de Plantas , Oryza/genética , Oryza/fisiologia , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glucose/metabolismo , Senescência Vegetal/genética , Galactose/metabolismo , Açúcares/metabolismo , Deleção de Genes , Transporte Biológico
17.
Plant Physiol ; 195(2): 1586-1600, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38478430

RESUMO

Leaf angle is a major trait of ideal architecture, which is considered to influence rice (Oryza sativa) cultivation and grain yield. Although a few mutants with altered rice leaf inclination angles have been reported, the underlying molecular mechanism remains unclear. In this study, we showed that a WRKY transcription factor gene, OsWRKY72, was highly expressed in the leaf sheath and lamina joint. Phenotypic analyses showed that oswrky72 mutants had smaller leaf angles than the wild type, while OsWRKY72 overexpression lines exhibited an increased leaf angle. This observation suggests that OsWRKY72 functions as a positive regulator, promoting the enlargement of the leaf angle. Our bioinformatics analysis identified LAZY1 as the downstream gene of OsWRKY72. Electrophoretic mobility shift assays and dual-luciferase analysis revealed that OsWRKY72 directly inhibited LAZY1 by binding to its promoter. Moreover, knocking out OsWRKY72 enhanced shoot gravitropism, which contrasted with the phenotype of lazy1 plants. These results imply that OsWRKY72 regulates the leaf angle through gravitropism by reducing the expression of LAZY1. In addition, OsWRKY72 could directly regulate the expression of other leaf angle-related genes such as FLOWERING LOCUS T-LIKE 12 (OsFTL12) and WALL-ASSOCIATED KINASE 11 (OsWAK11). Our study indicates that OsWRKY72 contributes positively to the expansion of the leaf angle by interfering with shoot gravitropism in rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Gravitropismo , Oryza , Folhas de Planta , Proteínas de Plantas , Brotos de Planta , Fatores de Transcrição , Oryza/genética , Oryza/fisiologia , Oryza/crescimento & desenvolvimento , Gravitropismo/genética , Gravitropismo/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/anatomia & histologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Regiões Promotoras Genéticas/genética , Fenótipo
18.
Plant Physiol ; 195(3): 1954-1968, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38466155

RESUMO

Due to climate change, drought has become a major threat to rice (Oryza sativa L.) growth and yield worldwide. Understanding the genetic basis of drought tolerance in rice is therefore of great importance. Here, we identified a microRNA, miR1432, which regulates rice drought tolerance by targeting the CALMODULIN-LIKE2 (OsCaML2) gene. Mutation of MIR1432 or suppression of miR1432 expression significantly impaired seed germination and seedling growth under drought-stress conditions. Molecular analysis demonstrated that miR1432 affected rice drought tolerance by directly targeting OsCaML2, which encodes an EF-hand chiral calcium-binding protein. Overexpression of a miR1432-resistant form of OsCaML2 (OEmCaML2) phenocopied the mir1432 mutant and miR1432 suppression plants. Furthermore, the suppression of miR1432 severely affected the expression of genes involved in responses to stimulation, metabolism and signal transduction, especially the mitogen-activated protein kinase (MAPK) pathway and hormone transduction pathway in rice under drought stress. Thus, our findings show that the miR1432-OsCaML2 module plays an important role in the regulation of rice drought tolerance, suggesting its potential utilization in developing molecular breeding strategies that improve crop drought tolerance.


Assuntos
Calmodulina , Secas , Regulação da Expressão Gênica de Plantas , MicroRNAs , Oryza , Proteínas de Plantas , Estresse Fisiológico , Oryza/genética , Oryza/fisiologia , MicroRNAs/genética , MicroRNAs/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico/genética , Mutação/genética , Plantas Geneticamente Modificadas , Plântula/genética , Plântula/fisiologia , Plântula/crescimento & desenvolvimento , Adaptação Fisiológica/genética , Germinação/genética
19.
Plant Physiol ; 195(3): 2195-2212, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38589996

RESUMO

Efficient uptake, translocation, and distribution of Cu to rice (Oryza sativa) spikelets is crucial for flowering and yield production. However, the regulatory factors involved in this process remain unidentified. In this study, we isolated a WRKY transcription factor gene induced by Cu deficiency, OsWRKY37, and characterized its regulatory role in Cu uptake and transport in rice. OsWRKY37 was highly expressed in rice roots, nodes, leaf vascular bundles, and anthers. Overexpression of OsWRKY37 promoted the uptake and root-to-shoot translocation of Cu in rice under -Cu condition but not under +Cu condition. While mutation of OsWRKY37 significantly decreased Cu concentrations in the stamen, the root-to-shoot translocation and distribution ratio in brown rice affected pollen development, delayed flowering time, decreased fertility, and reduced grain yield under -Cu condition. yeast one-hybrid, transient co-expression and EMSAs, together with in situ RT-PCR and RT-qPCR analysis, showed that OsWRKY37 could directly bind to the upstream promoter region of OsCOPT6 (copper transporter) and OsYSL16 (yellow stripe-like protein) and positively activate their expression levels. Analyses of oscopt6 mutants further validated its important role in Cu uptake in rice. Our study demonstrated that OsWRKY37 acts as a positive regulator involved in the uptake, root-to-shoot translocation, and distribution of Cu through activating the expression of OsCOPT6 and OsYSL16, which is important for pollen development, flowering, fertility, and grain yield in rice under Cu deficient conditions. Our results provide a genetic strategy for improving rice yield under Cu deficient condition.


Assuntos
Cobre , Flores , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Fatores de Transcrição , Oryza/genética , Oryza/crescimento & desenvolvimento , Oryza/fisiologia , Oryza/metabolismo , Cobre/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/crescimento & desenvolvimento , Flores/fisiologia , Flores/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Fertilidade/genética
20.
Plant Physiol ; 195(2): 1277-1292, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38431526

RESUMO

Low temperatures occurring at the booting stage in rice (Oryza sativa L.) often result in yield loss by impeding male reproductive development. However, the underlying mechanisms by which rice responds to cold at this stage remain largely unknown. Here, we identified MITOCHONDRIAL ACYL CARRIER PROTEIN 2 (OsMTACP2), the encoded protein of which mediates lipid metabolism involved in the cold response at the booting stage. Loss of OsMTACP2 function compromised cold tolerance, hindering anther cuticle and pollen wall development, resulting in abnormal anther morphology, lower pollen fertility, and seed setting. OsMTACP2 was highly expressed in tapetal cells and microspores during anther development, with the encoded protein localizing to both mitochondria and the cytoplasm. Comparative transcriptomic analysis revealed differential expression of genes related to lipid metabolism between the wild type and the Osmtacp2-1 mutant in response to cold. Through a lipidomic analysis, we demonstrated that wax esters, which are the primary lipid components of the anther cuticle and pollen walls, function as cold-responsive lipids. Their levels increased dramatically in the wild type but not in Osmtacp2-1 when exposed to cold. Additionally, mutants of two cold-induced genes of wax ester biosynthesis, ECERIFERUM1 and WAX CRYSTAL-SPARSE LEAF2, showed decreased cold tolerance. These results suggest that OsMTACP2-mediated wax ester biosynthesis is essential for cold tolerance in rice at the booting stage.


Assuntos
Proteína de Transporte de Acila , Temperatura Baixa , Regulação da Expressão Gênica de Plantas , Oryza , Proteínas de Plantas , Pólen , Oryza/genética , Oryza/fisiologia , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , Pólen/metabolismo , Pólen/crescimento & desenvolvimento , Pólen/fisiologia , Proteína de Transporte de Acila/metabolismo , Proteína de Transporte de Acila/genética , Flores/genética , Flores/fisiologia , Flores/crescimento & desenvolvimento , Metabolismo dos Lipídeos/genética , Mutação/genética , Ceras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA