Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 175(7): 1756-1768.e17, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30550785

RESUMO

Irisin is secreted by muscle, increases with exercise, and mediates certain favorable effects of physical activity. In particular, irisin has been shown to have beneficial effects in adipose tissues, brain, and bone. However, the skeletal response to exercise is less clear, and the receptor for irisin has not been identified. Here we show that irisin binds to proteins of the αV class of integrins, and biophysical studies identify interacting surfaces between irisin and αV/ß5 integrin. Chemical inhibition of the αV integrins blocks signaling and function by irisin in osteocytes and fat cells. Irisin increases both osteocytic survival and production of sclerostin, a local modulator of bone remodeling. Genetic ablation of FNDC5 (or irisin) completely blocks osteocytic osteolysis induced by ovariectomy, preventing bone loss and supporting an important role of irisin in skeletal remodeling. Identification of the irisin receptor should greatly facilitate our understanding of irisin's function in exercise and human health.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Remodelação Óssea , Fibronectinas/metabolismo , Integrina alfaV/metabolismo , Osteócitos/metabolismo , Osteólise/metabolismo , Adipócitos/patologia , Animais , Linhagem Celular Tumoral , Feminino , Fibronectinas/genética , Células HEK293 , Humanos , Integrina alfaV/genética , Camundongos , Osteócitos/patologia , Osteólise/genética
2.
J Cell Physiol ; 239(8): e31299, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38764231

RESUMO

Osteoclasts are the cells primarily responsible for inflammation-induced bone loss, as is particularly seen in rheumatoid arthritis. Increasing evidence suggests that osteoclasts formed under homeostatic versus inflammatory conditions may differ in phenotype. While microRNA-29-3p family members (miR-29a-3p, miR-29b-3p, miR-29c-3p) promote the function of RANKL-induced osteoclasts, the role of miR-29-3p during inflammatory TNF-α-induced osteoclastogenesis is unknown. We used bulk RNA-seq, histology, qRT-PCR, reporter assays, and western blot analysis to examine bone marrow monocytic cell cultures and tissue from male mice in which the function of miR-29-3p family members was decreased by expression of a miR-29-3p tough decoy (TuD) competitive inhibitor in the myeloid lineage (LysM-cre). We found that RANKL-treated monocytic cells expressing the miR-29-3p TuD developed a hypercytokinemia/proinflammatory gene expression profile in vitro, which is associated with macrophages. These data support the concept that miR-29-3p suppresses macrophage lineage commitment and may have anti-inflammatory effects. In correlation, when miR-29-3p activity was decreased, TNF-α-induced osteoclast formation was accentuated in an in vivo model of localized osteolysis and in a cell-autonomous manner in vitro. Further, miR-29-3p targets mouse TNF receptor 1 (TNFR1/Tnfrsf1a), an evolutionarily conserved regulatory mechanism, which likely contributes to the increased TNF-α signaling sensitivity observed in the miR-29-3p decoy cells. Whereas our previous studies demonstrated that the miR-29-3p family promotes RANKL-induced bone resorption, the present work shows that miR-29-3p dampens TNF-α-induced osteoclastogenesis, indicating that miR-29-3p has pleiotropic effects in bone homeostasis and inflammatory osteolysis. Our data supports the concept that the knockdown of miR-29-3p activity could prime myeloid cells to respond to an inflammatory challenge and potentially shift lineage commitment toward macrophage, making the miR-29-3p family a potential therapeutic target for modulating inflammatory response.


Assuntos
Inflamação , MicroRNAs , Osteoclastos , Osteólise , Ligante RANK , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Osteólise/genética , Osteólise/patologia , Osteólise/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patologia , Camundongos , Ligante RANK/metabolismo , Ligante RANK/genética , Inflamação/genética , Inflamação/patologia , Inflamação/metabolismo , Masculino , Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Osteogênese/genética , Camundongos Endogâmicos C57BL , Monócitos/metabolismo
3.
Haematologica ; 109(7): 2207-2218, 2024 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-38205555

RESUMO

Osteolytic bone lesion is a major cause of lower quality of life and poor prognosis in patients with multiple myeloma (MM), but molecular pathogenesis of the osteolytic process in MM remains elusive. Fms-like tyrosine kinase 3 ligand (FLT3L) was reported to be elevated in bone marrow (BM) and blood of patients with advanced MM who often show osteolysis. Here, we investigated a functional link of FLT3L to osteolytic process in MM. We recruited 86, 306, and 52 patients with MM, acute myeloid leukemia (AML), and acute lymphoblastic leukemia (ALL), respectively. FLT3L levels of patients with hematologic malignancies were measured in BM-derived plasma and found to be significantly higher in MM than in AML or ALL, which rarely show osteolysis. FLT3L levels were further elevated in MM patients with bone lesion compared with patients without bone lesion. In vitro cell-based assays showed that the administration of FLT3L to HEK293T, HeLa, and U2OS cells led to an increase in the DKK1 transcript level through STAT3 phosphorylation at tyrosine 705. WNT reporter assay showed that FLT3L treatment reduced WNT signaling and nuclear translocation of ß-catenin. These results collectively show that the FLT3L-STAT3-DKK1 pathway inhibits WNT signaling-mediated bone formation in MM, which can cause osteolytic bone lesion. Finally, transcriptomic profiles revealed that FLT3L and DKK1 were predominantly elevated in the hyperdiploidy subtype of MM. Taken together, FLT3L can serve as a promising biomarker for predicting osteolytic bone lesion and also a potential therapeutic target to prohibit the progression of the osteolytic process in MM with hyperdiploidy.


Assuntos
Mieloma Múltiplo , Osteólise , Humanos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Mieloma Múltiplo/metabolismo , Osteólise/patologia , Osteólise/genética , Osteólise/etiologia , Via de Sinalização Wnt , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Linhagem Celular Tumoral , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Estadiamento de Neoplasias , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Adulto
4.
Am J Med Genet A ; 194(8): e63616, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38551204

RESUMO

Multicentric carpotarsal osteolysis syndrome (MCTO) is a rare skeletal disorder characterized by progressive osteolysis involving the carpal and tarsal bones, and often associated with nephropathy. It is caused by heterozygous mutation in the MAF bZIP transcription factor B (MAFB) gene. Heterogeneous clinical manifestation and wide spectrum of disease severity have been observed in patients with MCTO. Here, we report a case of a male patient who presented with kidney failure in childhood with progressive disabling skeletal deformity. He was diagnosed with MCTO at 31-years-old, where a de novo pathogenic heterozygous variant in NM_005461.5:c.212C>A: p.(Pro71His) of the MAFB gene was identified. While there has been little data on the long-term prognosis and life expectancy of this disease, this case report sheds light on the debilitating disease course with multiple significant morbidities of a patient with MCTO throughout his lifetime of 33 years.


Assuntos
Fator de Transcrição MafB , Osteólise , Humanos , Masculino , Osteólise/genética , Osteólise/patologia , Fator de Transcrição MafB/genética , Adulto , Mutação/genética , Ossos do Tarso/patologia , Ossos do Tarso/anormalidades , Ossos do Carpo/anormalidades , Ossos do Carpo/patologia , Heterozigoto , Fenótipo
5.
J Cell Mol Med ; 27(2): 189-203, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36541023

RESUMO

Circular RNAs (circRNAs) are often found in eukaryocyte and have a role in the pathogenesis of a variety of human disorders. Our related research has shown the differential expression of circRNAs in periprosthetic osteolysis (PPOL). However, the involvement of circRNAs in the exact process is yet unknown. CircSLC8A1 expression was evaluated in clinical samples and human bone marrow mesenchymal stem cells (hBMSCs) in this investigation using quantitative real-time PCR. In vitro and in vivo studies were conducted to explicate its functional role and pathway. We demonstrated CircSLC8A1 is involved in PPOL using gain- and loss-of-function methods. The association of CircSLC8A1 and miR-144-3p, along with miR-144-3p and RUNX1, was predicted using bioinformatics. RNA pull-down and luciferase assays confirmed it. The impact of CircSLC8A1 in the PPOL-mouse model was also investigated using adeno-associated virus. CircSLC8A1 was found to be downregulated in PPOL patients' periprosthetic tissues. Overexpression of CircSLC8A1 promoted osteogenic differentiation (OD) and inhibited apoptosis of hBMSCs in vitro. The osteogenic markers of RUNX1, osteopontin (OPN) and osteocalcin (OCN) were significantly upregulated in hBMSCs after miR-144-3p inhibitor was transferred. Mechanistic analysis demonstrated that CircSLC8A1 directly bound to miR-144-3p and participated in PPOL through the miR-144-3p/RUNX1 pathway in hBMSCs. Micro-CT and quantitative analysis showed that CircSLC8A1 markedly inhibited PPOL, and osteogenic markers (RUNX1, OPN and OCN) were significantly increased (P<0.05) in the mice model. Our findings prove that CircSLC8A1 exerted a regulatory role in promoting osteogenic differentiation in hBMSCs, and CircSLC8A1/miR-144-3p/RUNX1 pathway may provide a potential target for prevention of PPOL.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteólise , Animais , Camundongos , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Osteogênese/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Osteólise/genética , Osteólise/metabolismo , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Osteocalcina/metabolismo , Células Cultivadas
6.
FASEB J ; 36(2): e22115, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35032415

RESUMO

Bone loss is a hallmark of inflammatory bone diseases caused by aberrantly activated osteoclasts (OCLs). Studies have shown that OCLs exhibit various phenotypes and functions due to variations in the source(s) of precursor cells, cytokine expressions, and microenvironment-dependent factors. During these conditions, inflammatory osteoclasts (iOCLs) lose their immune-suppressive effect relative to OCLs under physiological conditions. This induces TNF α-producing CD4+ T cells in an antigen-dependent manner and finally leads to cascade amplification of iOCLs. OCL-derived exosomes have been reported to regulate OCL formation and inhibit the osteoblast activity. However, the specific function and mechanism of iOCL-derived exosomes on osteoblast have not been studied yet. In the present study, we compare the osteoblast promoting activities of iOCL-derived exosomes and OCL-derived exosomes. We found that iOCLs exosomes specifically target osteoblasts through ephrinA2/EphA2. Mechanistically, the lncRNA LIOCE is enriched in iOCL exosomes and promotes the osteoblast activity after being incorporated into osteoblasts. Furthermore, our results revealed that exosomal lncRNA LIOCE stabilizes osteogenic transcription factor Osterix by interacting and reducing the ubiquitination level of Osterix. This study demonstrated that the bone loss is alleviated in the inflammatory osteolysis mice model after injection of iOCL exosomes encapsulating lncRNA LIOCE. The role of exosomes encapsulating lncRNA LIOCE in promoting bone formation was well established in the rat bone repair model. Our results indicate that iOCL-derived exosomal lncRNA LIOCE promotes bone formation by upregulating Osx expression, and thus, the exosomes encapsulating lncRNA LIOCE may be an effective strategy to increase bone formation in osteoporosis and other bone metabolic disorders.


Assuntos
Exossomos/genética , Inflamação/genética , Osteoblastos/fisiologia , Osteoclastos/fisiologia , Osteogênese/genética , RNA Longo não Codificante/genética , Fator de Transcrição Sp7/genética , Células 3T3 , Animais , Diferenciação Celular/genética , Linhagem Celular , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteólise/genética , Osteoporose/genética , Ratos , Fatores de Transcrição/genética , Ubiquitinação/genética , Regulação para Cima/genética
7.
Curr Osteoporos Rep ; 21(1): 85-94, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36477366

RESUMO

PURPOSE OF REVIEW: Multicentric carpotarsal osteolysis (MCTO) is an ultra-rare disorder characterized by osteolysis of the carpal and tarsal bones, subtle craniofacial deformities, and nephropathy. The molecular pathways underlying the pathophysiology are not well understood. RECENT FINDINGS: MCTO is caused by heterozygous mutations in MAFB, which encodes the widely expressed transcription factor MafB. All MAFB mutations in patients with MCTO result in replacement of amino acids that cluster in a phosphorylation region of the MafB transactivation domain and account for a presumed gain-of-function for the variant protein. Since 2012, fewer than 60 patients with MCTO have been described with 20 missense mutations in MAFB. The clinical presentations are variable, and a genotype-phenotype correlation is lacking. Osteolysis, via excessive osteoclast activity, has been regarded as the primary mechanism, although anti-resorptive agents demonstrate little therapeutic benefit. This paper appraises current perspectives of MafB protein action, inflammation, and dysfunctional bone formation on the pathogenesis of the skeletal phenotype in MCTO. More research is needed to understand the pathogenesis of MCTO to develop rational therapies.


Assuntos
Ossos do Carpo , Osteólise , Humanos , Osteólise/genética , Mutação , Mutação de Sentido Incorreto , Ossos do Carpo/patologia , Fenótipo
8.
BMC Musculoskelet Disord ; 24(1): 735, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37710205

RESUMO

BACKGROUND: Multicentric osteolysis nodulosis and arthropathy (MONA) is a rare autosomal recessive disorder characterized by marked progressive bone loss and joint destruction resulting in skeletal deformities. MONA is caused by MMP2 deficiency. Here we report clinical and molecular analyses of four patients in two families from Pakistan and Finland. METHODS: Clinical analyses including radiography were completed and blood samples were collected. The extracted DNA was subjected to whole-exome analysis or target gene sequencing. Segregation analyses were performed in the nuclear pedigree. Pathogenicity prediction scores for the selected variants and conservation analyses of affected amino acids were observed. RESULTS: The phenotype in the four affected individuals was consistent with multicentric osteolysis or MONA, as the patients had multiple affected joints, osteolysis of hands and feet, immobility of knee joint and progressive bone loss. Long-term follow up of the patients revealed the progression of the disease. We found a novel MMP2 c.1336 + 2T > G homozygous splice donor variant segregating with the phenotype in the Pakistani family while a MMP2 missense variant c.1188 C > A, p.(Ser396Arg) was homozygous in both Finnish patients. In-silico analysis predicted that the splicing variant may eventually introduce a premature stop codon in MMP2. Molecular modeling for the p.(Ser396Arg) variant suggested that the change may disturb MMP2 collagen-binding region. CONCLUSION: Our findings expand the genetic spectrum of Multicentric osteolysis nodulosis and arthropathy. We also suggest that the age of onset of this disorder may vary from childhood up to late adolescence and that a significant degree of intrafamilial variability may be present.


Assuntos
Síndrome de Hajdu-Cheney , Artropatias , Osteólise , Adolescente , Humanos , Criança , Metaloproteinase 2 da Matriz , Artropatias/diagnóstico por imagem , Artropatias/genética , Osteólise/diagnóstico por imagem , Osteólise/genética
10.
J Cell Physiol ; 236(2): 1432-1444, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32853427

RESUMO

Revision operations have become a new issue after successful artificial joint replacements, and periprosthetic osteolysis leading to prosthetic loosening is the main cause of why the overactivation of osteoclasts (OCs) plays an important role. The effect of biochanin A (BCA) has been examined in osteoporosis, but no study on the role of BCA in prosthetic loosening osteolysis has been conducted yet. In this study, we utilised enzyme-linked immunosorbent assay, computed tomography imaging, and histological analysis. Results showed that BCA downregulated the secretion levels of tumor necrosis factor-α, interleukin-1α (IL-1α), and IL-1ß to suppress inflammatory responses. The secretion levels of receptor-activated nuclear factor-κB ligand, CTX-1, and osteoclast-associated receptor as well as Ti-induced osteolysis were also reduced. BCA effectively inhibited osteoclastogenesis and suppressed hydroxyapatite resorption by downregulating OC-related genes in vitro. Analysis of mechanisms indicated that BCA inhibited the signalling pathways of mitogen-activated protein kinase (P38, extracellular signal-regulated kinase, and c-JUN N-terminal kinase) and nuclear factor-κB (inhibitor κB-α and P65), thereby downregulating the expression of nuclear factor of activated T cell 1 and c-Fos. In conclusion, BCA may be an alternative choice for the prevention of prosthetic loosening caused by OCs.


Assuntos
Reabsorção Óssea/genética , Genisteína/farmacologia , Inflamação/genética , Osteogênese/genética , Osteoporose/genética , Animais , Artroplastia de Substituição/efeitos adversos , Reabsorção Óssea/induzido quimicamente , Reabsorção Óssea/patologia , Reabsorção Óssea/prevenção & controle , Linhagem Celular , Durapatita/química , Durapatita/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Inflamação/prevenção & controle , Interleucina-1alfa/genética , Interleucina-1beta/genética , Camundongos , NF-kappa B/genética , Osteoclastos/efeitos dos fármacos , Osteoclastos/patologia , Osteólise/genética , Osteólise/patologia , Osteólise/prevenção & controle , Osteoporose/induzido quimicamente , Osteoporose/patologia , Osteoporose/prevenção & controle , Próteses e Implantes/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Titânio/toxicidade , Fator de Necrose Tumoral alfa/genética
11.
J Cell Physiol ; 236(3): 1950-1966, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32722851

RESUMO

Osteolysis is a common medical condition characterized by excessive activity of osteoclasts and bone resorption, leading to severe poor quality of life. It is essential to identify the medications that can effectively suppress the excessive differentiation and function of osteoclasts to prevent and reduce the osteolytic conditions. It has been reported that Carnosol (Car), isolated from rosemary and salvia, has anti-inflammatory, antioxidative, and anticancer effects, but its activity on osteolysis has not been determined. In this study, we found that Car has a strong inhibitory effect on the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast differentiation dose-dependently without any observable cytotoxicity. Moreover, Car can inhibit the RANKL-induced osteoclastogenesis and resorptive function via suppressing NFATc1, which is a result of affecting MAPK, NF-κB and Ca2+ signaling pathways. Moreover, the particle-induced osteolysis mouse model confirmed that Car could be effective for the treatment of bone loss in vivo. Taken together, by suppressing the formation and function of RANKL-induced osteoclast, Car, may be a therapeutic supplementary in the prevention or the treatment of osteolysis.


Assuntos
Abietanos/uso terapêutico , Osteogênese , Osteólise/induzido quimicamente , Osteólise/tratamento farmacológico , Ligante RANK/farmacologia , Titânio/efeitos adversos , Abietanos/farmacologia , Animais , Reabsorção Óssea/complicações , Reabsorção Óssea/genética , Reabsorção Óssea/patologia , Sinalização do Cálcio/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Inibidor de NF-kappaB alfa/metabolismo , NF-kappa B/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Osteólise/genética , Osteólise/patologia , Proteólise/efeitos dos fármacos , Crânio/efeitos dos fármacos , Crânio/patologia
12.
Mol Med ; 27(1): 23, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33691630

RESUMO

BACKGROUND: To investigate effect of microRNA-325-3p (miR-325-3p) on bone metastasis of colorectal cancer (CRC) and the precise role on osteoclastogenesis. METHODS: CT-26 cells were injected into tibias to establish bone metastatic model of CRC in vivo. AgomiR-325-3p or antagomir-325-3p were injected in tail-veins of Balb/c mice to interfere the osteoclastogenesis and bone metastasis of CRC. Safranin O and Fast Green staining examined the changes of trabecular area and TRAP staining examined the osteoclast number in bone metastasis of CRC. Real-time PCR was conducted to test the RNA level of miR-325-3p and mRNA levels of TRAP and Cathepsin K in osteoclast precursors (OCPs). Dual-luciferase reporter system was utilized to identify the direct target of miR-325-3p. Conditioned medium from CT-26 cells was collected to stimulate the OCPs during osteoclastogenesis induced by RANKL and M-CSF in vitro. Western blot analysis was performed to examine the protein level of S100A4 in OCPs after interfered by agomiR-325-3p or antagomir-325-3p cultured in CM or not. RESULTS: miR-325-3p downregulated in OCPs in CRC microenvironment both in vivo and in vitro. By luciferase activity assay, S100A4 was the target gene of miR-325-3p and the protein level of S100A4 in OCPs upregulated in CRC microenvironment. Overexpression of miR-325-3p inhibited the osteoclastogenesis of OCPs and it can be reversed after transfection with plasmid containing S100A4. Treatment with miR-325-3p can preserve trabecular area in bone metastasis of CRC. CONCLUSION: miR-325-3p can prevent osteoclast formation through targeting S100A4 in OCPs. Overexpression of miR-325-3p efficiently decreased the osteoclast number and attenuated bone resorption in bone metastasis of CRC.


Assuntos
Neoplasias Ósseas/genética , Neoplasias Colorretais/genética , MicroRNAs , Osteogênese/genética , Osteólise/genética , Proteína A4 de Ligação a Cálcio da Família S100/genética , Animais , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Células Cultivadas , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Masculino , Camundongos Endogâmicos BALB C , Osteoclastos/metabolismo , Proteína A4 de Ligação a Cálcio da Família S100/metabolismo
13.
Blood ; 133(21): 2320-2324, 2019 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-30745304

RESUMO

Bone marrow (BM) sclerosis is commonly found in patients with late-stage myelofibrosis (MF). Because osteoclasts (OCs) and osteoblasts play a key role in bone remodeling, and MF monocytes, the OC precursors, are derived from the neoplastic clone, we wondered whether decreased OC numbers or impairment in their osteolytic function affects the development of osteosclerosis. Analysis of BM biopsies from 50 MF patients showed increased numbers of multinucleated tartrate-resistant acid phosphatase (TRAP)/cathepsin K+ OCs expressing phosphorylated Janus kinase 2 (JAK2). Randomly microdissected TRAP+ OCs from 16 MF patients harbored JAK2 or calreticulin (CALR) mutations, confirming MF OCs are clonal. To study OC function, CD14+ monocytes from MF patients and healthy individuals were cultured and differentiated into OCs. Unlike normal OCs, MF OCs appeared small and round, with few protrusions, and carried the mutations and chromosomal abnormalities of neoplastic clones. In addition, MF OCs lacked F-actin-rich ring-like structures and had fewer nuclei and reduced colocalization signals, compatible with decreased fusion events, and their mineral resorption capacity was significantly reduced, indicating impaired osteolytic function. Taken together, our data suggest that, although the numbers of MF OCs are increased, their impaired osteolytic activity distorts bone remodeling and contributes to the induction of osteosclerosis.


Assuntos
Remodelação Óssea , Osteoclastos , Osteólise , Mielofibrose Primária , Calreticulina/metabolismo , Catepsina K/genética , Catepsina K/metabolismo , Feminino , Humanos , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Masculino , Mutação , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteólise/genética , Osteólise/metabolismo , Osteólise/patologia , Mielofibrose Primária/genética , Mielofibrose Primária/metabolismo , Mielofibrose Primária/patologia , Fosfatase Ácida Resistente a Tartarato/genética , Fosfatase Ácida Resistente a Tartarato/metabolismo
14.
FASEB J ; 34(2): 2392-2407, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908034

RESUMO

Bone resorption is a severe consequence of inflammatory diseases associated with osteolysis, such as rheumatoid arthritis (RA), often leading to disability in patients. In physiological conditions, the differentiation of bone-resorbing osteoclasts is delicately regulated by the balance between osteoclastogenic and anti-osteoclastogenic mechanisms. Inflammation has complex impact on osteoclastogenesis and bone destruction, and the underlying mechanisms of which, especially feedback inhibition, are underexplored. Here, we identify a novel regulatory network mediated by RBP-J/NFATc1-miR182 in TNF-induced osteoclastogenesis and inflammatory bone resorption. This network includes negative regulator RBP-J and positive regulators, NFATc1 and miR182, of osteoclast differentiation. In this network, miR182 is a direct target of both RBP-J and NFATc1. RBP-J represses, while NFATc1 activates miR182 expression through binding to specific open chromatin regions in the miR182 promoter. Inhibition of miR182 by RBP-J servers as a critical mechanism that limits TNF-induced osteoclast differentiation and inflammatory bone resorption. Inflammation, such as that which occurs in RA, shifts the expression levels of the components in this network mediated by RBP-J/NFATc1-miR182-FoxO3/PKR (previously identified miR182 targets) towards more osteoclastogenic, rather than healthy conditions. Treatment with TNF inhibitors in RA patients reverses the expression changes of the network components and osteoclastogenic potential. Thus, this network controls the balance between activating and repressive signals that determine the extent of osteoclastogenesis. These findings collectively highlight the biological significance and translational implication of this newly identified intrinsic regulatory network in inflammatory osteoclastogenesis and osteolysis.


Assuntos
Regulação da Expressão Gênica , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , MicroRNAs/metabolismo , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/metabolismo , Osteólise/metabolismo , Animais , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Knockout , MicroRNAs/genética , Fatores de Transcrição NFATC/genética , Osteoclastos/patologia , Osteólise/genética , Osteólise/patologia
15.
Int J Mol Sci ; 22(13)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34199096

RESUMO

Integrins participate in the pathogenesis and progression of tumors at many stages during the metastatic cascade. However, current evidence for the role of integrins in breast cancer progression is contradictory and seems to be dependent on tumor stage, differentiation status, and microenvironmental influences. While some studies suggest that loss of α2ß1 enhances cancer metastasis, other studies suggest that this integrin is pro-tumorigenic. However, few studies have looked at α2ß1 in the context of bone metastasis. In this study, we aimed to understand the role of α2ß1 integrin in breast cancer metastasis to bone. To address this, we utilized in vivo models of breast cancer metastasis to bone using MDA-MB-231 cells transfected with an α2 expression plasmid (MDA-OEα2). MDA cells overexpressing the α2 integrin subunit had increased primary tumor growth and dissemination to bone but had no change in tumor establishment and bone destruction. Further in vitro analysis revealed that tumors in the bone have decreased α2ß1 expression and increased osteolytic signaling compared to primary tumors. Taken together, these data suggest an inverse correlation between α2ß1 expression and bone-metastatic potential. Inhibiting α2ß1 expression may be beneficial to limit the expansion of primary tumors but could be harmful once tumors have established in bone.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Expressão Gênica , Integrina alfa2beta1/genética , Animais , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Invasividade Neoplásica , Osteólise/genética , Osteólise/metabolismo , Fenótipo
16.
J Cell Mol Med ; 24(8): 4389-4401, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32155312

RESUMO

Sphingosine-1-phosphate (S1P) is a natural bioactive lipid molecule and a common first or second messenger in the cardiovascular and immune systems. By binding with its receptors, S1P can serve as mediator of signalling during cell migration, differentiation, proliferation and apoptosis. Although the predominant role of S1P in bone regeneration has been noted in many studies, this role is not as well-known as its roles in the cardiovascular and immune systems. In this review, we summarize previous research on the role of S1P receptors (S1PRs) in osteoblasts and osteoclasts. In addition, S1P is regarded as a bridge between bone resorption and formation, which brings hope to patients with bone-related diseases. Finally, we discuss S1P and its receptors as therapeutic targets for treating osteoporosis, inflammatory osteolysis and bone metastasis based on the biological effects of S1P in osteoclastic/osteoblastic cells, immune cells and tumour cells.


Assuntos
Neoplasias Ósseas/genética , Reabsorção Óssea/genética , Lisofosfolipídeos/genética , Receptores de Esfingosina-1-Fosfato/genética , Esfingosina/análogos & derivados , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Reabsorção Óssea/patologia , Humanos , Metástase Neoplásica , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteólise/genética , Osteólise/patologia , Osteoporose/genética , Osteoporose/patologia , Esfingosina/genética , Receptores de Esfingosina-1-Fosfato/metabolismo
17.
J Cell Mol Med ; 24(7): 4233-4244, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32134561

RESUMO

The increase in bone resorption and/or the inhibition of bone regeneration caused by wear particles are the main causes of periprosthetic osteolysis. The SOST gene and Sclerostin, a protein synthesized by the SOST gene, are the characteristic marker of osteocytes and regulate bone formation and resorption. We aimed to verify whether the SOST gene was involved in osteolysis induced by titanium (Ti) particles and to investigate the effects of SOST reduction on osteolysis. The results showed osteolysis on the skull surface with an increase of sclerostin levels after treated with Ti particles. Similarly, sclerostin expression in MLO-Y4 osteocytes increased when treated with Ti particles in vitro. After reduction of SOST, local bone mineral density and bone volume increased, while number of lytic pores on the skull surface decreased and the erodibility of the skull surface was compensated. Histological analyses revealed that SOST reduction increased significantly alkaline phosphatase- (ALP) and osterix-positive expression on the skull surface which promoted bone formation. ALP activity and mineralization of MC3T3-E1 cells also increased in vitro when SOST was silenced, even if treated with Ti particles. In addition, Ti particles decreased ß-catenin expression with an increase in sclerostin levels, in vivo and in vitro. Inversely, reduction of SOST expression increased ß-catenin expression. In summary, our results suggested that reduction of SOST gene can activate the Wnt/ß-catenin signalling pathway, promoting bone formation and compensated for bone loss induced by Ti particles. Thus, this study provided new perspectives in understanding the mechanisms of periprosthetic osteolysis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Osteogênese/genética , Osteólise/genética , Crânio/crescimento & desenvolvimento , beta Catenina/genética , Células 3T3 , Animais , Regeneração Óssea/efeitos dos fármacos , Regeneração Óssea/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Camundongos , Osteoblastos/efeitos dos fármacos , Osteoclastos/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteólise/induzido quimicamente , Osteólise/fisiopatologia , Crânio/efeitos dos fármacos , Crânio/metabolismo , Titânio/efeitos adversos , Titânio/uso terapêutico , Via de Sinalização Wnt/genética
18.
J Cell Mol Med ; 24(13): 7490-7503, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32485091

RESUMO

Aseptic loosening caused by periprosthetic osteolysis (PPO) is the main reason for the primary artificial joint replacement. Inhibition of inflammatory osteolysis has become the main target of drug therapy for prosthesis loosening. MiR-106b is a newly discovered miRNA that plays an important role in tumour biology, inflammation and the regulation of bone mass. In this study, we analysed the in vivo effect of miR-106b on wear debris-induced PPO. A rat implant loosening model was established. The rats were then administrated a lentivirus-mediated miR-106b inhibitor, miR-106b mimics or an equivalent volume of PBS by tail vein injection. The expression levels of miR-106b were analysed by real-time PCR. Morphological changes in the distal femurs were assessed via micro-CT and histopathological analysis, and cytokine expression levels were examined via immunohistochemical staining and ELISA. The results showed that treatment with the miR-106b inhibitor markedly suppressed the expression of miR-106b in distal femur and alleviated titanium particle-induced osteolysis and bone loss. Moreover, the miR-106b inhibitor decreased TRAP-positive cell numbers and suppressed osteoclast formation, in addition to promoting the activity of osteoblasts and increasing bone formation. MiR-106b inhibition also significantly regulated macrophage polarization and decreased the inflammatory response as compared to the control group. Furthermore, miR-106b inhibition blocked the activation of the PTEN/PI3K/AKT and NF-κB signalling pathways. Our findings indicated that miR-106b inhibition suppresses wear particles-induced osteolysis and bone destruction and thus may serve as a potential therapy for PPO and aseptic loosening.


Assuntos
Osso e Ossos/patologia , Inflamação/genética , MicroRNAs/metabolismo , Osteólise/etiologia , Osteólise/genética , Próteses e Implantes/efeitos adversos , Animais , Reabsorção Óssea/diagnóstico por imagem , Reabsorção Óssea/etiologia , Reabsorção Óssea/genética , Osso e Ossos/diagnóstico por imagem , Contagem de Células , Polaridade Celular , Citocinas/metabolismo , Inflamação/patologia , Rim/patologia , Fígado/patologia , Macrófagos/metabolismo , Masculino , MicroRNAs/genética , NF-kappa B/metabolismo , Osteoclastos/patologia , Osteogênese/genética , Osteólise/diagnóstico por imagem , Osteoprotegerina/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ligante RANK/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais , Titânio/efeitos adversos
19.
Hum Mol Genet ; 27(16): 2775-2788, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29741626

RESUMO

Winchester syndrome (WS, MIM #277950) is an extremely rare autosomal recessive skeletal dysplasia characterized by progressive joint destruction and osteolysis. To date, only one missense mutation in MMP14, encoding the membrane-bound matrix metalloprotease 14, has been reported in WS patients. Here, we report a novel hypomorphic MMP14 p.Arg111His (R111H) allele, associated with a mitigated form of WS. Functional analysis demonstrated that this mutation, in contrast to previously reported human and murine MMP14 mutations, does not affect MMP14's transport to the cell membrane. Instead, it partially impairs MMP14's proteolytic activity. This residual activity likely accounts for the mitigated phenotype observed in our patients. Based on our observations as well as previously published data, we hypothesize that MMP14's catalytic activity is the prime determinant of disease severity. Given the limitations of our in vitro assays in addressing the consequences of MMP14 dysfunction, we generated a novel mmp14a/b knockout zebrafish model. The fish accurately reflected key aspects of the WS phenotype including craniofacial malformations, kyphosis, short-stature and reduced bone density owing to defective collagen remodeling. Notably, the zebrafish model will be a valuable tool for developing novel therapeutic approaches to a devastating bone disorder.


Assuntos
Anormalidades Múltiplas/genética , Contratura/genética , Opacidade da Córnea/genética , Anormalidades Craniofaciais/genética , Transtornos do Crescimento/genética , Metaloproteinase 14 da Matriz/genética , Osteólise/genética , Osteoporose/genética , Anormalidades Múltiplas/fisiopatologia , Alelos , Animais , Domínio Catalítico/genética , Contratura/fisiopatologia , Opacidade da Córnea/fisiopatologia , Anormalidades Craniofaciais/fisiopatologia , Técnicas de Inativação de Genes , Transtornos do Crescimento/fisiopatologia , Humanos , Camundongos , Osteólise/fisiopatologia , Osteoporose/fisiopatologia , Fenótipo , Peixe-Zebra
20.
Biochem Biophys Res Commun ; 529(3): 629-634, 2020 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-32736684

RESUMO

Periprosthetic osteolysis (PIO) caused by wear particles is the main cause of implant failure, which is regulated by nuclear factor κ B receptor activator ligand (RANKL)/osteoprotegerin (OPG) system. At present, there is a lack of effective drugs to prevent or treat PIO. Previous studies have confirmed that DNA methylation is closely related to postmenopausal osteoporosis and can affect the expression of OPG and RANKL. However, the relationship between DNA methylation and PIO is not clear. In this study, we investigated the inhibitory effect of 5-Aza-2-deoxycytidine (AzadC) on osteolysis induced by titanium particles in a mouse model. This inhibition mechanism is achieved by changing the ratio of RANKL/OPG in the osteolysis model. In conclusion, there is a relationship between DNA methylation and PIO. AzadC has a certain inhibitory effect on osteolysis induced by titanium particles. Regulating DNA methylation may be a new way to treat PIO. Our findings lay a foundation for epigenetic understanding and intervention of osteolysis.


Assuntos
Decitabina/farmacologia , Osteólise/prevenção & controle , Osteoprotegerina/metabolismo , Ligante RANK/metabolismo , Animais , Sequência de Bases , Western Blotting , Ilhas de CpG/genética , Metilação de DNA/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos Endogâmicos BALB C , Osteólise/induzido quimicamente , Osteólise/genética , Osteoprotegerina/genética , Tamanho da Partícula , Ligante RANK/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Crânio/anatomia & histologia , Crânio/efeitos dos fármacos , Crânio/metabolismo , Titânio , Microtomografia por Raio-X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA