Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Addict Biol ; 28(1): e13260, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36577736

RESUMO

Oxycodone is a highly prescribed opioid and its abuse has been rampant. Accumulating evidence shows that the cannabinoid CB1 receptor (CB1R) plays a key role in mediating rewarding effects to opioids. However, the downstream signalling of CB1R induced by oxycodone remains unclear. The neuropeptide oxytocin is well known as a potential remedy for drug addiction. Thus, our study aims to explore the mechanism of oxycodone-induced learning and memory deficits underlying the endocannabinoid system (ECS) and the effect of oxytocin. Rats were intraperitoneally injected with oxycodone once a day for eight consecutive day. Novel object recognition, resident-intruder and Morris Water Maze tests were employed to assess the cognitive, social and spatial memory of the rats after oxycodone withdrawal. The (co-)expression of CB1R, cyclin-dependent kinase 5 (Cdk5), regulatory protein p25, tau and phosphorylated tau was measured 1 day after the last behavioural test. The histopathological staining and synaptic density in the hippocampus were observed as well. We found that oxycodone upregulated the expression of p-GSK3ß, co-expression of p-Cdk5 and p25 through CB1R. This finding was accompanied by elevation of pSer396, pSer404 in the tau, and reduction of the number of neurons, dendritic spines and synaptic density in the hippocampus. Furthermore, i.c.v. treatment with oxytocin ameliorates memory deficits in oxycodone-treated rats through inhibition of the ECS. We propose further studies on the clinical use of this neuropeptide, which may potentially cure drug addiction.


Assuntos
Neuropeptídeos , Ocitocina , Ratos , Animais , Ocitocina/farmacologia , Ocitocina/metabolismo , Endocanabinoides/metabolismo , Oxicodona/farmacologia , Oxicodona/metabolismo , Hipocampo , Analgésicos Opioides/farmacologia , Analgésicos Opioides/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Receptores de Canabinoides/metabolismo , Neuropeptídeos/metabolismo , Receptor CB1 de Canabinoide/metabolismo
2.
Pharmacogenomics J ; 22(1): 25-32, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34480108

RESUMO

Urine drug testing (UDT) is a tool for monitoring drug use, including oxycodone. While variation in cytochrome P450 (CYP) genes is known to alter oxycodone metabolism, its impact on UDT results of oxycodone and its metabolites has not been well-studied. Here, multivariate analysis was performed on retrospective UDT results of 90,379 specimens collected from 14,684 genotyped patients prescribed oxycodone. Genetic variation in CYP2D6 and CYP2C19 had a significant impact on oxymorphone/oxycodone ratios, with a 6.9-fold difference between CYP2D6 ultrarapid metabolizers (UMs) and poor metabolizers (PMs; p < 10-300) and a 1.6-fold difference between CYP2C19 UMs and PMs (p = 1.50 × 10-4). CYP2D6 variation also significantly impacted noroxycodone/oxycodone ratios (p = 6.95 × 10-38). Oxycodone-positive specimens from CYP2D6 PMs were ~5-fold more likely to be oxymorphone-negative compared to normal metabolizers. These findings indicate that multivariate analysis of UDT data may be used to reveal the real-world impact of genetic and non-genetic factors on drug metabolism.


Assuntos
Analgésicos Opioides/metabolismo , Analgésicos Opioides/urina , Citocromo P-450 CYP2C19/genética , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP3A/genética , Oxicodona/metabolismo , Oxicodona/urina , Detecção do Abuso de Substâncias/métodos , Adulto , Feminino , Testes Genéticos , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Farmacogenética , Polimorfismo Genético , Estudos Retrospectivos
3.
Addict Biol ; 27(2): e13148, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35229934

RESUMO

Neuronal ensembles within the infralimbic cortex (IL) and their projections to the nucleus accumbens (NAc) mediate opiate seeking in well-trained rats. However, it is unclear how early this circuitry is recruited during oxycodone self-administration. Here, we used retrograde labelling (CTb) and immunohistochemistry to identify NAc-projecting neurons in the IL that were activated during initial oxycodone seeking. Next, we sought to determine the role of IL neuronal ensembles in initial oxycodone self-administration. We used the Daun02 procedure in male and female Fos-LacZ rats to chemogenetically inactivate IL Fos-expressing neurons at different time points in oxycodone self-administration training: immediately after meeting criteria for acquisition of behaviour and following nine daily sessions with increasing schedules of reinforcement (FR1, FR2 and FR3) in which rats demonstrated stable oxycodone intake under increasing effort to self-administer. We found that Daun02 infusions attenuated oxycodone seeking at both the initial learning and well-trained time points. These results suggest that IL neuronal ensembles are formed during initial learning of oxycodone self-administration and required for the maintenance and expression of oxycodone seeking.


Assuntos
Neurônios , Oxicodona , Animais , Feminino , Masculino , Neurônios/metabolismo , Núcleo Accumbens/fisiologia , Oxicodona/metabolismo , Oxicodona/farmacologia , Ratos , Ratos Transgênicos , Autoadministração
4.
Addict Biol ; 27(6): e13237, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36301206

RESUMO

One of the most challenging issues in the treatment of substance use disorder, including misuse of opioids such as oxycodone, is persistent vulnerability to relapse, often triggered by cues or contexts previously associated with drug use. In rats, cue-induced craving progressively intensifies ('incubates') during withdrawal from extended-access self-administration of several classes of misused drugs, including the psychostimulants cocaine and methamphetamine. For these psychostimulants, incubation is associated with strengthening of excitatory synapses in the nucleus accumbens (NAc) through incorporation of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors that lack the GluA2 subunit and are therefore Ca2+ -permeable (CP-AMPARs). Once CP-AMPAR upregulation occurs, their stimulation is required for expression of incubation. It is not known if a similar mechanism contributes to incubation of oxycodone craving. Using male rats, we established that incubation occurs by withdrawal day (WD) 15 and persists through WD30. Then, using cell-surface biotinylation, we found that surface levels of the AMPAR subunit GluA1 but not GluA2 are elevated in NAc core and shell of oxycodone rats on WD15, although this wanes by WD30. Next, using intra-NAc injection of the selective CP-AMPAR antagonist Naspm before a seeking test, we demonstrate that CP-AMPAR blockade in either subregion decreases oxycodone seeking on WD15 or WD30 (after incubation), but not WD1, and has no effect in saline self-administering animals. The Naspm results suggest CP-AMPARs persist in synapses through WD30 even if total cell surface levels wane. These results suggest that a common neurobiological mechanism contributes to expression of incubation of craving for oxycodone and psychostimulants.


Assuntos
Cocaína , Síndrome de Abstinência a Substâncias , Ratos , Masculino , Animais , Núcleo Accumbens , Receptores de AMPA/metabolismo , Fissura/fisiologia , Oxicodona/farmacologia , Oxicodona/metabolismo , Síndrome de Abstinência a Substâncias/metabolismo , Ratos Sprague-Dawley , Cocaína/farmacologia , Autoadministração
5.
Addict Biol ; 27(6): e13241, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36301217

RESUMO

A major obstacle in treating opioid use disorder is the persistence of drug seeking or craving during periods of abstinence, which is believed to contribute to relapse. Dopamine transmission in the mesolimbic pathway is posited to contribute to opioid reinforcement, but the processes by which dopamine influences drug seeking have not been completely elucidated. To examine whether opioid seeking during abstinence is associated with alterations in dopamine transmission, female and male rats self-administered oxycodone under an intermittent access schedule of reinforcement. Following self-administration, rats underwent a forced abstinence period, and cue-induced seeking tests were conducted to assess oxycodone seeking. One day following the final seeking test, rats were sacrificed to perform ex vivo fast scan cyclic voltammetry and western blotting in the nucleus accumbens. Rats displayed reduced dopamine uptake rate on abstinence day 2 and abstinence day 15, compared to oxycodone-naïve rats. Further, on abstinence day 15, rats had reduced phosphorylation of the dopamine transporter. Additionally, local application of oxycodone to the nucleus accumbens reduced dopamine uptake in oxycodone-naïve rats and in rats during oxycodone abstinence, on abstinence day 2 and abstinence day 15. These observations suggest that abstinence from oxycodone results in dysfunctional dopamine transmission, which may contribute to sustained oxycodone seeking during abstinence.


Assuntos
Cocaína , Núcleo Accumbens , Feminino , Masculino , Ratos , Animais , Núcleo Accumbens/metabolismo , Oxicodona/farmacologia , Oxicodona/metabolismo , Dopamina/metabolismo , Analgésicos Opioides/farmacologia , Analgésicos Opioides/metabolismo , Comportamento de Procura de Droga , Autoadministração , Cocaína/farmacologia
6.
Chem Res Toxicol ; 34(1): 103-109, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33393779

RESUMO

Cytochrome P450 3A4 is a highly polymorphic enzyme and metabolizes approximately 40%-60% of therapeutic drugs. Its genetic polymorphism may significantly affect the expression and function of CYP3A4 resulting in alterations of the pharmacokinetics and pharmacodynamics of the CYP3A4-mediated drugs. The purpose of this study was to evaluate the catalytic activities of 30 CYP3A4 nonsynonymous variants and wild type toward oxycodone in vitro. CYP3A4 proteins were incubated with oxycodone for 30 min at 37 °C and the reaction was terminated by cooling to -80 °C immediately. Ultraperformance liquid chromatography tandem mass-spectrometry was used to analyze noroxycodone, and kinetic parameters Km, Vmax, and intrinsic clearance (Vmax/Km) of noroxycodone were also determined. Compared with CYP3A4.1, 24 CYP3A4 variants (CYP3A4.2-.5, -.7-.16, -.18 and -.19, -.23 and -.24, -.28 and -.29, and -.31-.34) exhibited significantly decreased relative clearance values (from 4.82% ± 0.31% to 80.98% ± 5.08%), whereas CYP3A4.6, -.17, -.20, -.21, -.26, and -.30 displayed no detectable enzyme activity. As the first study of these alleles for oxycodone metabolism in vitro, results of this study may provide insight into establishing the genotype-phenotype relationship for oxycodone and serve as a reference for clinical administrators and advance the provision of personalized precision medicine.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Oxicodona/metabolismo , Cromatografia Líquida de Alta Pressão , Citocromo P-450 CYP3A/química , Citocromo P-450 CYP3A/genética , Variação Genética/genética , Humanos , Conformação Molecular , Oxicodona/química , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Massas em Tandem
7.
Addict Biol ; 26(4): e12994, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33325096

RESUMO

Prescription opioid misuse is a major public health concern among children and adolescents in the United States. Opioids are the most commonly abused drugs and are the fastest growing drug problem among adolescents. In humans and animals, adolescence is a particularly sensitive period associated with an increased response to drugs of abuse. Our previous studies indicate that oxycodone exposure during adolescence increases morphine reward in adulthood. How early drug exposure mediates long-term changes in the brain and behavior is not known, but epigenetic regulation is a likely mechanism. To address this question, we exposed mice to oxycodone or saline during adolescence and examined epigenetic modifications at genes associated with dopamine activity during adulthood at early and late withdrawal, in the ventral tegmental area (VTA). We then compared these with alterations in the VTA of adult-treated mice following an equivalent duration of exposure and withdrawal to determine if the effects of oxycodone are age dependent. We observed persistence of adolescent-like gene expression following adolescent oxycodone exposure relative to age-matched saline exposed controls, although dopamine-related gene expression was transiently activated at 1 day of withdrawal. Following prolonged withdrawal enrichment of the repressive histone mark, H3K27me3, was maintained, consistent with inhibition of gene regulation following adolescent exposure. By contrast, mice exposed to oxycodone as adults showed loss of the repressive mark and increased gene expression following 28 days of withdrawal following oxycodone exposure. Together, our findings provide evidence that adolescent oxycodone exposure has long-term epigenetic consequences in VTA of the developing brain.


Assuntos
Analgésicos Opioides/metabolismo , Dopamina/metabolismo , Expressão Gênica/efeitos dos fármacos , Transtornos Relacionados ao Uso de Opioides/metabolismo , Oxicodona/metabolismo , Animais , Epigênese Genética/efeitos dos fármacos , Masculino , Camundongos , Morfina/metabolismo , Recompensa , Autoadministração , Área Tegmentar Ventral/efeitos dos fármacos
8.
Anal Chem ; 92(12): 8218-8227, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32412733

RESUMO

Oxycodone is a strong opioid frequently used as an analgesic. Although proven efficacious in the management of moderate to severe acute pain and cancer pain, use of oxycodone imposes a risk of adverse effects such as addiction, overdose, and death. Fast and accurate determination of oxycodone blood concentration would enable personalized dosing and monitoring of the analgesic as well as quick diagnostics of possible overdose in emergency care. However, in addition to the parent drug, several metabolites are always present in the blood after a dose of oxycodone, and to date, there is no electrochemical data available on any of these metabolites. In this paper, a single-walled carbon nanotube (SWCNT) electrode and a Nafion-coated SWCNT electrode were used, for the first time, to study the electrochemical behavior of oxycodone and its two main metabolites, noroxycodone and oxymorphone. Both electrode types could selectively detect oxycodone in the presence of noroxycodone and oxymorphone. However, we have previously shown that addition of a Nafion coating on top of the SWCNT electrode is essential for direct measurements in complex biological matrices. Thus, the Nafion/SWCNT electrode was further characterized and used for measuring clinically relevant concentrations of oxycodone in buffer solution. The limit of detection for oxycodone with the Nafion/SWCNT sensor was 85 nM, and the linear range was 0.5-10 µM in buffer solution. This study shows that the fabricated Nafion/SWCNT sensor has potential to be applied in clinical concentration measurements.


Assuntos
Técnicas Eletroquímicas , Polímeros de Fluorcarboneto/química , Nanotubos de Carbono/química , Oxicodona/análise , Eletrodos , Estrutura Molecular , Oxicodona/metabolismo , Tamanho da Partícula , Propriedades de Superfície
9.
Drug Metab Dispos ; 48(2): 106-115, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31727673

RESUMO

Oxycodone is used as a potent analgesic medication. Oxycodone is extensively metabolized. To fully describe its metabolism, the oxygenation of oxycodone to oxycodone N-oxide was investigated in hepatic preparations. The hypothesis tested was that oxycodone N-oxygenation was enzymatic and the amount of N-oxide detected was a consequence of both oxygenation and retro-reduction. Methods for testing the hypothesis included both in vitro and in vivo studies. Results indicated that oxycodone was N-oxygenated by the flavin-containing monooxygenase. Oxycodone N-oxide is chemically quite stable but in the presence of hepatic preparations and NADPH was retro-reduced to its parent compound oxycodone. Subsequently, oxycodone was metabolized to other metabolites including noroxycodone, noroxymorphone, and oxymorphone via cytochrome P-450. Retro-reduction of oxycodone N-oxide to oxycodone was facilitated by quinone reductase, aldehyde oxidase, and hemoglobin but not to a great extent by cytochrome P-450 or the flavin-containing monooxygenase. To confirm the in vitro observations, oxycodone was administered to rats and humans. In good agreement with in vitro results, substantial oxycodone N-oxide was observed in urine after oxycodone administration to rats and humans. Administration of oxycodone N-oxide to rats showed substantial amount of recovered oxycodone N-oxide. In vivo, noroxycodone was formed as a major rat urinary metabolite from oxycodone N-oxide presumably after retro-reduction to oxycodone and oxidative N-demethylation. To a lesser extent, oxycodone, noroxymorphone, and oxymorphone were observed as urinary metabolites. SIGNIFICANCE STATEMENT: This manuscript describes the N-oxygenation of oxycodone in vitro as well as in small animals and humans. A new metabolite was quantified as oxycodone N-oxide. Oxycodone N-oxide undergoes extensive retro-reduction to oxycodone. This re-establishes the metabolic profile of oxycodone and introduces new concepts about a metabolic futile cycle related to oxycodone metabolism.


Assuntos
Óxidos/metabolismo , Oxicodona/metabolismo , Analgésicos Opioides/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Feminino , Hemoglobinas/metabolismo , Humanos , Masculino , Oxigenases de Função Mista/metabolismo , Morfinanos/metabolismo , NADP/metabolismo , Oximorfona/metabolismo , Ratos
10.
J Am Chem Soc ; 141(27): 10883-10904, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31184866

RESUMO

Four distinct approaches to ent-oxycodone were designed and accomplished. All rely on the same starting material, the diene diol derived from phenethyl acetate by the whole-cell fermentation with E. coli JM109 (pDTG601A), a strain that overexpresses toluene dioxygenase. The key step in the first-generation approach involves the construction of the C-9/C-14 bond by a SmI2-mediated cyclization of a keto aldehyde. The second-generation design relies on the use of the Henry reaction to accomplish this task. In both of these syntheses, Parker's cyclization was employed to construct the D-ring. The third-generation synthesis provides an improvement over the second in that the nitrogen atom at C-9 is introduced by azidation of the C-9/C-10 olefin, followed by reduction and lactam formation between the C-9 amine and the Fukuyama-type lactone. Finally, the fourth generation takes advantage of the keto-nitrone reductive coupling to generate the C-9/C-14 linkage. The four generations of the total syntheses of ent-oxycodone were accomplished in 13, 18, 16, and 11 operations (19, 23, 24, and 18 steps), respectively. Experimental and spectral data are provided for all new compounds.


Assuntos
Escherichia coli/enzimologia , Oxicodona/metabolismo , Ciclização , Escherichia coli/genética , Escherichia coli/metabolismo , Microbiologia Industrial , Oxicodona/química , Oxigenases/genética , Oxigenases/metabolismo , Regulação para Cima
11.
Anal Chem ; 91(16): 10582-10588, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31314489

RESUMO

The opioid epidemic continues in the United States. Many have been impacted by this epidemic, including neonates who exhibit Neonatal Abstinence Syndrome (NAS). Opioid diagnosis and NAS can be negatively impacted by limited testing options outside the hospital, due to poor assay performance, false-negatives, rapid drug clearance rates, and difficulty in obtaining enough specimen for testing. Here we report a small volume urine assay for oxycodone, hydrocodone, fentanyl, noroxycodone, norhydrocodone, and norfentanyl with excellent LODs and LOQs. The free-solution assay (FSA), coupled with high affinity DNA aptamer probes and a compensated interferometric reader (CIR), represents a potential solution for quantifying opioids rapidly, at high sensitivity, and noninvasively on small sample volumes. The mix-and-read test is 5- to 275-fold and 50- to 1250-fold more sensitive than LC-MS/MS and immunoassays, respectively. Using FSA, oxycodone, hydrocodone, fentanyl, and their urinary metabolites were quantified using 10 µL of urine at 28-81 pg/mL, with >95% specificity and excellent accuracy in ∼1 h. The assay sensitivity, small sample size requirement, and speed could enable opioid screening, particularly for neonates, and points to the potential for pharmacokinetic tracking.


Assuntos
Analgésicos Opioides/urina , Aptâmeros de Nucleotídeos/química , Analgésicos Opioides/metabolismo , Fentanila/metabolismo , Fentanila/urina , Humanos , Hidrocodona/análogos & derivados , Hidrocodona/metabolismo , Hidrocodona/urina , Estrutura Molecular , Morfinanos/metabolismo , Morfinanos/urina , Oxicodona/metabolismo , Oxicodona/urina
12.
Med Sci Monit ; 25: 9073-9084, 2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31782408

RESUMO

BACKGROUND Tourniquet-related complications are a common clinical problem. In the present study, we compared the effects of dexmedetomidine vs. oxycodone in patients undergoing limb ischemia-reperfusion. MATERIAL AND METHODS Fifty-four patients undergoing unilateral lower-extremity surgery under combined spinal and epidural anesthesia were randomly assigned to a control (ischemia-reperfusion, I/R) group, a dexmedetomidine (Dex) group, and an oxycodone (Oxy) group. Tourniquet-induced hemodynamic parameters changes among groups were compared. The serum concentration of malondialdehyde (MDA), superoxide dismutase (SOD), tumor necrosis factor-alpha (TNF-alpha), interleukin-6 (IL-6), fatty acid binding protein 3 (FABP3), endothelin-1 (ET-1), and brain-derived neurotrophic factor (BDNF) were measured using ELISA before anesthesia and at 30 min and at 6 h after tourniquet release. RESULTS In the control group, tourniquet use caused significant increases in systolic arterial pressure (SAP), mean arterial pressure (MAP), diastolic arterial pressure (DAP), and rate-pressure product. Compared with Oxy, Dex significantly decreased heart rate (HR). Both Dex and Oxy lowered SAP compared with the control group. No significant difference was observed in DAP between Dex and Oxy. The levels of MDA, TNF-alpha, IL-6, FABP3, and ET-1 were significantly higher, while the SOD and BDNF were significantly lower compared to baseline in the I/R group, but the variation range of those agents was significantly smaller in the Dex and Oxy groups, and the measured values were comparable between the 2 groups. CONCLUSIONS Compared with Dex, Oxy was not inferior in mitigating tourniquet-induced hyperdynamic response, ameliorating the inflammatory reaction, and protecting remote multiple organs in lower-extremity surgery patients.


Assuntos
Dexmedetomidina/farmacologia , Oxicodona/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Adulto , Idoso , Fator Neurotrófico Derivado do Encéfalo/análise , Fator Neurotrófico Derivado do Encéfalo/sangue , China , Dexmedetomidina/metabolismo , Endotelina-1/análise , Endotelina-1/sangue , Proteína 3 Ligante de Ácido Graxo/análise , Proteína 3 Ligante de Ácido Graxo/sangue , Feminino , Hemodinâmica/efeitos dos fármacos , Humanos , Interleucina-6/análise , Interleucina-6/sangue , Isquemia/complicações , Extremidade Inferior/cirurgia , Masculino , Malondialdeído/análise , Malondialdeído/sangue , Pessoa de Meia-Idade , Oxicodona/metabolismo , Doenças Vasculares Periféricas , Estudos Prospectivos , Distribuição Aleatória , Superóxido Dismutase/análise , Superóxido Dismutase/sangue , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/sangue
13.
Addict Biol ; 24(2): 228-238, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29266563

RESUMO

Oxycodone is metabolized by CYP2D to oxymorphone. Despite oxymorphone being a more potent opioid-receptor agonist, its contribution to oxycodone analgesia may be minor because of low peripheral production, low blood-brain barrier permeability and central nervous system efflux. CYP2D metabolism within the brain may contribute to variation in central oxycodone and oxymorphone levels, thereby affecting analgesia. Brain CYP2D expression and activity are subject to exogenous regulation; nicotine induces rat brain, but not liver, CYP2D consistent with higher brain CYP2D in smokers. We assessed the role of rat brain CYP2D in orally administered oxycodone metabolism (in vivo brain microdialysis) and analgesia (tail-flick test) by inhibiting brain CYP2D selectively with intracerebroventricular propranolol (mechanism-based inhibitor) and inducing brain CYP2D with nicotine. Inhibiting brain CYP2D increased brain oxycodone levels (1.8-fold; P < 0.03) and analgesia (1.5-fold AUC0-60 ; P < 0.001) after oxycodone, while inducing brain CYP2D increased brain oxymorphone levels (4.6-fold; P < 0.001) and decreased analgesia (0.8-fold; P < 0.02). Inhibiting the induced brain CYP2D reversed the change in oxycodone levels (1.2-fold; P > 0.1) and analgesia (1.1-fold; P > 0.3). Brain, but not plasma, metabolic ratios were affected by pre-treatments. Peak analgesia was inversely correlated with ex vivo brain (P < 0.003), but not hepatic (P > 0.9), CYP2D activity. Altering brain CYP2D did not affect analgesia from oral oxymorphone (P > 0.9 for AUC0-60 across all groups), which is not a CYP2D substrate. Thus, brain CYP2D metabolism alters local oxycodone levels and response, suggesting that people with increased brain CYP2D activity may have reduced oxycodone response. Factors that alter individual oxycodone response may be useful for optimizing treatment and minimizing abuse liability.


Assuntos
Analgésicos Opioides/metabolismo , Encéfalo/fisiologia , Família 2 do Citocromo P450/metabolismo , Oxicodona/metabolismo , Dor/fisiopatologia , Administração Oral , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/farmacologia , Análise de Variância , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Masculino , Nociceptividade/efeitos dos fármacos , Oxicodona/administração & dosagem , Oxicodona/farmacologia , Medição da Dor , Ratos Wistar
14.
J Pharmacol Exp Ther ; 365(2): 346-353, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29535156

RESUMO

Heroin and oxycodone abuse occurs over a wide range of drug doses and by various routes of administration characterized by differing rates of drug absorption. The current study addressed the efficacy of a heroin vaccine [morphine hapten conjugated to keyhole limpet hemocyanin (M-KLH)] or oxycodone vaccine [oxycodone hapten conjugated to keyhole limpet hemocyanin (OXY-KLH)] for reducing drug distribution to brain after intravenous heroin or oxycodone, or subcutaneous oxycodone. Rats immunized with M-KLH or keyhole limpet hemocyanin (KLH) control received an intravenous bolus dose of 0.26 or 2.6 mg/kg heroin. Vaccination with M-KLH increased retention of heroin and its active metabolites 6-acetylmorphine (6-AM) and morphine in plasma compared with KLH controls, and reduced total opioid (heroin + 6-AM + morphine) distribution to brain but only at the lower heroin dose. Immunization also protected against respiratory depression at the lower heroin dose. Rats immunized with OXY-KLH or KLH control received 0.22 or 2.2 mg/kg oxycodone intravenously, the molar equivalent of the heroin doses. Immunization with OXY-KLH significantly reduced oxycodone distribution to brain after either oxycodone dose, although the magnitude of effect of immunization at the higher oxycodone dose was small (12%). By contrast, vaccination with OXY-KLH was more effective when oxycodone was administered subcutaneously rather than intravenously, reducing oxycodone distribution to brain by 44% after an oxycodone dose of 2.3 mg/kg. Vaccination also reduced oxycodone-induced antinociception. These data suggest that the efficacy of OXY-KLH and M-KLH opioid vaccines is highly dependent upon opioid dose and route of administration.


Assuntos
Heroína/administração & dosagem , Transtornos Relacionados ao Uso de Opioides/prevenção & controle , Oxicodona/administração & dosagem , Vacinas/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Vias de Administração de Medicamentos , Heroína/metabolismo , Heroína/farmacologia , Masculino , Oxicodona/metabolismo , Oxicodona/farmacologia , Ratos
15.
J Am Chem Soc ; 139(42): 14954-14960, 2017 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-28820934

RESUMO

The present study highlights a sensing approach for opiates using acyclic cucurbituril (aCBs) sensors comprising four glycouril units terminated on both ends with naphthalene fluorophore walls. The connectivity between the glycourils and naphthalene rings largely defines the opening size of the cucurbituril cavity and its diameter. The large hydrophobic binding cavity is flexible and is able to adapt to guests of various size and topology. The recognition event between the aCBs and guests results in modification of the fluorescence of the terminal walls, a fluorescence response that can be used to sense the drugs of abuse morphine, heroin, and oxycodone as well as their metabolites. Molecular dynamics is employed to understand the nature of the binding interactions. A simple three sensor cross-reactive array enables the determination of drugs and their metabolites in water with high fidelity and low error. Quantitative experiments performed in urine using a new three-way calibration model allows for determination of drugs and their metabolites using one sensor from a single fluorescence reading.


Assuntos
Técnicas de Química Analítica , Alcaloides Opiáceos/análise , Alcaloides Opiáceos/metabolismo , Calibragem , Fluorescência , Heroína/análise , Heroína/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Morfina/análise , Morfina/metabolismo , Alcaloides Opiáceos/química , Oxicodona/análise , Oxicodona/metabolismo
16.
Clin Chem Lab Med ; 55(9): 1324-1331, 2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28080998

RESUMO

BACKGROUND: Oxycodone is a narcotic drug widely used to alleviate moderate and severe acute and chronic pain. Variability in analgesic efficacy could be explained by inter-subject variations in plasma concentrations of parent drug and its active metabolite, oxymorphone. To evaluate patient compliance and to set up therapeutic drug monitoring (TDM), an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) assay was developed and validated for the parent drug and its major metabolites noroxycodone and oxymorphone. METHODS: Extraction of analytes from plasma and urine samples was obtained by simple liquid-liquid extraction. The chromatographic separation was achieved with a reversed phase column using a linear gradient elution with two solvents: acetic acid 1% in water and methanol. The separated analytes were detected with a triple quadrupole mass spectrometer operated in multiple reaction monitoring (MRM) mode via positive electrospray ionization (ESI). RESULTS: Separation of analytes was obtained in less than 5 min. Linear calibration curves for all the analytes under investigation in urine and plasma samples showed determination coefficients (r2) equal or higher than 0.990. Mean absolute analytical recoveries were always above 86%. Intra- and inter-assay precision (measured as coefficient of variation, CV%) and accuracy (measured as % error) values were always better than 13%. Limit of detection at 0.06 and 0.15 ng/mL and limit of quantification at 0.2 and 0.5 ng/mL for plasma and urine samples, respectively, were adequate for the purpose of the present study. CONCLUSIONS: Rapid extraction, identification and quantification of oxycodone and its metabolites both in urine and plasma by UHPLC-MS/MS assay was tested for its feasibility in clinical samples and provided excellent results for rapid and effective drug testing in patients under oxycodone treatment.


Assuntos
Morfinanos/sangue , Morfinanos/urina , Oxicodona/sangue , Oxicodona/urina , Oximorfona/sangue , Oximorfona/urina , Espectrometria de Massas em Tandem , Idoso , Idoso de 80 Anos ou mais , Cromatografia Líquida de Alta Pressão , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Morfinanos/metabolismo , Oxicodona/metabolismo , Oximorfona/metabolismo
17.
Nat Chem Biol ; 10(10): 837-44, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25151135

RESUMO

Opiates and related molecules are medically essential, but their production via field cultivation of opium poppy Papaver somniferum leads to supply inefficiencies and insecurity. As an alternative production strategy, we developed baker's yeast Saccharomyces cerevisiae as a microbial host for the transformation of opiates. Yeast strains engineered to express heterologous genes from P. somniferum and bacterium Pseudomonas putida M10 convert thebaine to codeine, morphine, hydromorphone, hydrocodone and oxycodone. We discovered a new biosynthetic branch to neopine and neomorphine, which diverted pathway flux from morphine and other target products. We optimized strain titer and specificity by titrating gene copy number, enhancing cosubstrate supply, applying a spatial engineering strategy and performing high-density fermentation, which resulted in total opioid titers up to 131 mg/l. This work is an important step toward total biosynthesis of valuable benzylisoquinoline alkaloid drug molecules and demonstrates the potential for developing a sustainable and secure yeast biomanufacturing platform for opioids.


Assuntos
Proteínas de Bactérias/metabolismo , Codeína/biossíntese , Morfina/biossíntese , Papaver/metabolismo , Proteínas de Plantas/metabolismo , Pseudomonas putida/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Bactérias/genética , Dosagem de Genes , Expressão Gênica , Hidrocodona/análogos & derivados , Hidrocodona/metabolismo , Hidromorfona/metabolismo , Engenharia Metabólica/métodos , Redes e Vias Metabólicas , Oxicodona/metabolismo , Papaver/genética , Proteínas de Plantas/genética , Pseudomonas putida/genética , Saccharomyces cerevisiae/genética , Tebaína/metabolismo
18.
Pharmacol Res ; 108: 31-38, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27107788

RESUMO

Several data gathered in the last decade indicate an increase of abuse of prescription opioid drugs oxycodone (OXY) and hydrocodone (HYDRO) in women. However, to date there are no conclusive evidences investigating the gender-dependent abuse liability of prescription opioids. This study aims to supply a specific focus on women's data through a selective summary of the literature analyzing gender differences in the pharmacokinetic and pharmacodynamic dimension of OXY and HYDRO. Findings from this study suggest that the majority of OXY and HYDRO pharmacokinetic and pharmacodynamic effects do not differ according to gender, though confirming a significant difference in the incidence of adverse effects as demonstrated by the increased gastrointestinal adverse reactions in female subjects. Although the majority of recent clinical studies include an equal number of female and male subjects, the main outcome parameters do not relate specifically to gender differences. Due to the gender influence in activity of CYP3A4 and its crucial role in metabolism of both OXY than HYDRO, we suggest that assessing pharmacokinetic and pharmacodynamic interactions in clinical studies may be useful to clarify the effect of the higher CYP3A4 activity in female in relation to CYP2D6 genotype. Overall, considering the paucity of data regarding gender differences in European Union, this work highlights that impact of new abuse deterrent formulations should be assessed with a special focus on data concerning female subjects.


Assuntos
Analgésicos Opioides/farmacologia , Analgésicos Opioides/farmacocinética , Hidrocodona/farmacologia , Hidrocodona/farmacocinética , Transtornos Relacionados ao Uso de Opioides/etiologia , Oxicodona/farmacologia , Oxicodona/farmacocinética , Analgésicos Opioides/efeitos adversos , Analgésicos Opioides/metabolismo , Citocromo P-450 CYP2D6/metabolismo , Citocromo P-450 CYP3A/metabolismo , Feminino , Humanos , Hidrocodona/efeitos adversos , Hidrocodona/metabolismo , Masculino , Transtornos Relacionados ao Uso de Opioides/metabolismo , Oxicodona/efeitos adversos , Oxicodona/metabolismo , Caracteres Sexuais , Fatores Sexuais
19.
Artigo em Inglês | MEDLINE | ID: mdl-38615430

RESUMO

Oxycodone, an opioid commonly used to treat pain in humans, has the potential to be abused in racehorses to enhance their performance. To understand the pharmacokinetics of oxycodone and its metabolites in horses, as well as to detect the illegal use of oxycodone in racehorses, a method for quantification and confirmation of oxycodone and its metabolites is needed. In this study, we developed and validated an ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method that can simultaneously quantify and confirm oxycodone and eight metabolites in equine urine. Samples were subjected to enzymatic hydrolysis and then liquid-liquid extraction using ethyl acetate. The analyte separation was achieved on a Hypersil Gold C18 sub-2 µm column and analytes were detected on a triple quadrupole mass spectrometer. The limit of detection (LOD) and lower limit of quantification (LLOQ) were 25-50 pg/mL and 100 pg/mL, respectively. Excellent linearity of the calibration curves was observed over a range of 100-10000 pg/mL for all nine analytes. Retention time, signal-to-noise ratio, and product ion ratios were utilized as confirmation criteria, with the limits of confirmation (LOC) ranging from 100 to 250 pg/mL. The data from a pilot pharmacokinetic (PK) study suggested that oxycodone metabolites have longer detection periods in equine urine compared to oxycodone itself; thus, the detection of metabolites in equine urine extends the ability to detect oxycodone exposure in racehorses.


Assuntos
Limite de Detecção , Oxicodona , Espectrometria de Massas em Tandem , Animais , Cavalos , Espectrometria de Massas em Tandem/métodos , Oxicodona/urina , Oxicodona/farmacocinética , Oxicodona/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Reprodutibilidade dos Testes , Modelos Lineares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA