Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 246
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(41): e2414037121, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39356673

RESUMO

The ultrafast photochemical reaction mechanism, transient spectra, and transition kinetics of the human blue cone visual pigment have been recorded at room temperature. Ultrafast time-resolved absorption spectroscopy revealed the progressive formation and decay of several metastable photo-intermediates, corresponding to the Batho to Meta-II photo-intermediates previously observed with bovine rhodopsin and human green cone opsin, on the picosecond to millisecond timescales following pulsed excitation. The experimental data reveal several interesting similarities and differences between the photobleaching sequences of bovine rhodopsin, human green cone opsin, and human blue cone opsin. While Meta-II formation kinetics are comparable between bovine rhodopsin and blue cone opsin, the transition kinetics of earlier photo-intermediates and qualitative characteristics of the Meta-I to Meta-II transition are more similar for blue cone opsin and green cone opsin. Additionally, the blue cone photo-intermediate spectra exhibit a high degree of overlap with uniquely small spectral shifts. The observed variation in Meta-II formation kinetics between rod and cone visual pigments is explained based on key structural differences.


Assuntos
Temperatura , Humanos , Cinética , Bovinos , Animais , Opsinas dos Cones/metabolismo , Opsinas dos Cones/química , Rodopsina/química , Rodopsina/metabolismo , Células Fotorreceptoras Retinianas Cones/metabolismo , Opsinas de Bastonetes/química , Opsinas de Bastonetes/metabolismo , Pigmentos da Retina/química , Pigmentos da Retina/metabolismo , Análise Espectral/métodos
2.
Biochemistry ; 61(23): 2698-2708, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36399519

RESUMO

The proton transfer reaction belongs to one of the key triggers for the functional expression of membrane proteins. Rod and cone opsins are light-sensitive G-protein-coupled receptors (GPCRs) that undergo the cis-trans isomerization of the retinal chromophore in response to light. The isomerization event initiates a conformational change in the opsin protein moiety, which propagates the downstream effector signaling. The final step of receptor activation is the deprotonation of the retinal Schiff base, a proton transfer reaction which has been believed to be identical among the cone opsins. Here, we report an unexpected proton transfer reaction occurring in the early photoreaction process of primate blue-sensitive pigment (MB). By using low-temperature UV-visible spectroscopy, we found that the Lumi intermediate of MB formed in transition from the BL intermediate shows an absorption maximum in the UV region, indicating the deprotonation of the retinal Schiff base. Comparison of the light-induced difference FTIR spectra of Batho, BL, and Lumi showed significant α-helical backbone C=O stretching and protonated carboxylate C=O stretching vibrations only in the Lumi intermediate. The transition from BL to Lumi thus involves dramatic changes in protein environment with a proton transfer reaction between the Schiff base and the counterion resulting in an absorption maximum in the UV region.


Assuntos
Opsinas dos Cones , Pigmentos da Retina , Animais , Pigmentos da Retina/química , Prótons , Bases de Schiff/química , Primatas/metabolismo , Retinaldeído/química , Rodopsina/química
3.
Biochemistry ; 59(28): 2602-2607, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32567852

RESUMO

The visual pigments of humans contain 11-cis retinal as the chromophore of light perception, and its photoisomerization to the all-trans form initiates visual excitation in our eyes. It is well-known that three isomeric states of retinal (11-cis, all-trans, and 9-cis) are in photoequilibrium at very low temperatures such as 77 K. Here we report the lack of formation of the 9-cis form in monkey blue (MB) at 77 K, as revealed by light-induced difference Fourier transform infrared spectroscopy. This indicates that the chromophore binding pocket of MB does not accommodate the 9-cis form, even though it accommodates the all-trans form by twisting the chromophore. Mutation of the blue-specific tyrosine at position 265 to tryptophan, which is highly conserved in other animal rhodopsins, led to formation of the 9-cis form in MB, suggesting that Y265 is one of the determinants of the unique photochemistry in blue pigments. We also found that 9-cis retinal does not bind to MB opsin, implying that the chromophore binding pocket does not accommodate the 9-cis form at physiological temperature. The unique property of MB is discussed on the basis of the results presented here.


Assuntos
Diterpenos/química , Retinaldeído/química , Opsinas de Bastonetes/química , Animais , Sítios de Ligação , Bovinos , Células HEK293 , Haplorrinos , Humanos , Isomerismo , Modelos Moleculares , Pigmentos da Retina/química , Rodopsina/química
4.
Molecules ; 25(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244898

RESUMO

A2E (N-retinylidene-N-retinylethanolamine) is a major fluorophore in the RPE (retinal pigment epithelium). To identify and characterize A2E-rich RPE lipofuscin, we fractionated RPE granules from human donor eyes into five fractions (F1-F5 in ascending order of density) by discontinuous sucrose density gradient centrifugation. The dry weight of each fraction was measured and A2E was quantified by liquid chromatography/mass spectrometry (LC/MS) using a synthetic A2E homolog as a standard. Autofluorescence emission was characterized by a customer-built spectro-fluorometer system. A significant A2E level was detected in every fraction, and the highest level was found in F1, a low-density fraction that makes up half of the total weight of all RPE granules, contains 67% of all A2E, and emits 75% of projected autofluorescence by all RPE granules. This group of RPE granules, not described previously, is therefore the most abundant RPE lipofuscin granule population. A progressive decrease in autofluorescence was observed from F2 to F4, whereas no autofluorescence emission was detected from the heavily pigmented F5. The identification of a novel and major RPE lipofuscin population could have significant implications in our understanding of A2E and lipofuscin in human RPE.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Pigmentos da Retina/metabolismo , Retinoides/metabolismo , Idoso , Idoso de 80 Anos ou mais , Fracionamento Celular , Cromatografia Líquida , Feminino , Corantes Fluorescentes/metabolismo , Humanos , Lipofuscina/metabolismo , Masculino , Pigmentos da Retina/química , Retinoides/química , Análise Espectral , Espectrometria de Massas em Tandem
5.
Anal Chem ; 91(11): 7226-7235, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31074606

RESUMO

Membrane proteins, including G protein-coupled receptors (GPCRs), present a challenge in studying their structural properties under physiological conditions. Moreover, to better understand the activity of proteins requires examination of single molecule behaviors rather than ensemble averaged behaviors. Force-distance curve-based AFM (FD-AFM) was utilized to directly probe and localize the conformational states of a GPCR within the membrane at nanoscale resolution based on the mechanical properties of the receptor. FD-AFM was applied to rhodopsin, the light receptor and a prototypical GPCR, embedded in native rod outer segment disc membranes from photoreceptor cells of the retina in mice. Both FD-AFM and computational studies on coarse-grained models of rhodopsin revealed that the active state of the receptor has a higher Young's modulus compared to the inactive state of the receptor. Thus, the inactive and active states of rhodopsin could be differentiated based on the stiffness of the receptor. Differentiating the states based on the Young's modulus allowed for the mapping of the different states within the membrane. Quantifying the active states present in the membrane containing the constitutively active G90D rhodopsin mutant or apoprotein opsin revealed that most receptors adopt an active state. Traditionally, constitutive activity of GPCRs has been described in terms of two-state models where the receptor can achieve only a single active state. FD-AFM data are inconsistent with a two-state model but instead require models that incorporate multiple active states.


Assuntos
Pigmentos da Retina/química , Rodopsina/química , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia de Força Atômica , Células Fotorreceptoras/química , Células Fotorreceptoras/metabolismo , Pigmentos da Retina/genética , Pigmentos da Retina/metabolismo , Rodopsina/genética , Rodopsina/metabolismo
6.
PLoS Comput Biol ; 14(1): e1005974, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29364888

RESUMO

Vision is the dominant sensory modality in many organisms for foraging, predator avoidance, and social behaviors including mate selection. Vertebrate visual perception is initiated when light strikes rod and cone photoreceptors within the neural retina of the eye. Sensitivity to individual colors, i.e., peak spectral sensitivities (λmax) of visual pigments, are a function of the type of chromophore and the amino acid sequence of the associated opsin protein in the photoreceptors. Large differences in peak spectral sensitivities can result from minor differences in amino acid sequence of cone opsins. To determine how minor sequence differences could result in large spectral shifts we selected a spectrally-diverse group of 14 teleost Rh2 cone opsins for which sequences and λmax are experimentally known. Classical molecular dynamics simulations were carried out after embedding chromophore-associated homology structures within explicit bilayers and water. These simulations revealed structural features of visual pigments, particularly within the chromophore, that contributed to diverged spectral sensitivities. Statistical tests performed on all the observed structural parameters associated with the chromophore revealed that a two-term, first-order regression model was sufficient to accurately predict λmax over a range of 452-528 nm. The approach was accurate, efficient and simple in that site-by-site molecular modifications or complex quantum mechanics models were not required to predict λmax. These studies identify structural features associated with the chromophore that may explain diverged spectral sensitivities, and provide a platform for future, functionally predictive opsin modeling.


Assuntos
Opsinas dos Cones/química , Células Fotorreceptoras Retinianas Cones/fisiologia , Pigmentos da Retina/química , Opsinas de Bastonetes/fisiologia , Sequência de Aminoácidos , Animais , Ciclídeos , Simulação por Computador , Humanos , Bicamadas Lipídicas , Modelos Moleculares , Simulação de Dinâmica Molecular , Opsinas , Oryzias , Filogenia , Pigmentação , Poecilia , Especificidade da Espécie , Vertebrados , Água , Peixe-Zebra
7.
Biochem J ; 475(20): 3171-3188, 2018 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-30352831

RESUMO

The vitamin A derivative 11-cis-retinaldehyde plays a pivotal role in vertebrate vision by serving as the chromophore of rod and cone visual pigments. In the initial step of vision, a photon is absorbed by this chromophore resulting in its isomerization to an all-trans state and consequent activation of the visual pigment and phototransduction cascade. Spent chromophore is released from the pigments through hydrolysis. Subsequent photon detection requires the delivery of regenerated 11-cis-retinaldehyde to the visual pigment. This trans-cis conversion is achieved through a process known as the visual cycle. In this review, we will discuss the enzymes, binding proteins and transporters that enable the visual pigment renewal process with a focus on advances made during the past decade in our understanding of their structural biology.


Assuntos
Epitélio Pigmentado da Retina/metabolismo , Pigmentos da Retina/metabolismo , Retinaldeído/metabolismo , Visão Ocular/fisiologia , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Humanos , Estrutura Secundária de Proteína , Pigmentos da Retina/química , Pigmentos da Retina/genética , Retinaldeído/química , Retinaldeído/genética
8.
Proc Natl Acad Sci U S A ; 113(32): 9093-8, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27462111

RESUMO

It is a deeply engrained notion that the visual pigment rhodopsin signals light as a monomer, even though many G protein-coupled receptors are now known to exist and function as dimers. Nonetheless, recent studies (albeit all in vitro) have suggested that rhodopsin and its chromophore-free apoprotein, R-opsin, may indeed exist as a homodimer in rod disk membranes. Given the overwhelmingly strong historical context, the crucial remaining question, therefore, is whether pigment dimerization truly exists naturally and what function this dimerization may serve. We addressed this question in vivo with a unique mouse line (S-opsin(+)Lrat(-/-)) expressing, transgenically, short-wavelength-sensitive cone opsin (S-opsin) in rods and also lacking chromophore to exploit the fact that cone opsins, but not R-opsin, require chromophore for proper folding and trafficking to the photoreceptor's outer segment. In R-opsin's absence, S-opsin in these transgenic rods without chromophore was mislocalized; in R-opsin's presence, however, S-opsin trafficked normally to the rod outer segment and produced functional S-pigment upon subsequent chromophore restoration. Introducing a competing R-opsin transmembrane helix H1 or helix H8 peptide, but not helix H4 or helix H5 peptide, into these transgenic rods caused mislocalization of R-opsin and S-opsin to the perinuclear endoplasmic reticulum. Importantly, a similar peptide-competition effect was observed even in WT rods. Our work provides convincing evidence for visual pigment dimerization in vivo under physiological conditions and for its role in pigment maturation and targeting. Our work raises new questions regarding a potential mechanistic role of dimerization in rhodopsin signaling.


Assuntos
Multimerização Proteica , Pigmentos da Retina/química , Animais , Retículo Endoplasmático/metabolismo , Camundongos , Opsinas/química , Espécies Reativas de Oxigênio/metabolismo , Pigmentos da Retina/fisiologia
9.
Phys Chem Chem Phys ; 20(5): 3381-3387, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29297909

RESUMO

Long-wavelength-sensitive (LWS) pigment possesses a chloride binding site in its protein moiety. The binding of chloride alters the absorption spectra of LWS; this is known as the chloride effect. Although the two amino acid substitutions of His197 and Lys200 influence the chloride effect, the molecular mechanism of chloride binding, which underlies the spectral tuning, has yet to be clarified. In this study, we applied ATR-FTIR spectroscopy to monkey green (MG) pigment to gain structural information of the chloride binding site. The results suggest that chloride binding stabilizes the ß-sheet structure on the extracellular side loop with perturbation of the retinal polyene chain, promotes a hydrogen bonding exchange with the hydroxyl group of Tyr, and alters the protonation state of carboxylate. Combining with the results of the binding analyses of various anions (Br-, I- and NO3-), our findings suggest that the anion binding pocket is organized for only Cl- (or Br-) to stabilize conformation around the retinal chromophore, which is functionally relevant with absorbing long wavelength light.


Assuntos
Cloretos/química , Pigmentos da Retina/química , Animais , Ânions/química , Sítios de Ligação , Cloretos/metabolismo , Chlorocebus aethiops , Células HEK293 , Humanos , Ligação de Hidrogênio , Estrutura Secundária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Pigmentos da Retina/genética , Pigmentos da Retina/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
10.
J Biol Chem ; 290(45): 27176-27187, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26416885

RESUMO

Melanopsins play a key role in non-visual photoreception in mammals. Their close phylogenetic relationship to the photopigments in invertebrate visual cells suggests they have evolved to acquire molecular characteristics that are more suited for their non-visual functions. Here we set out to identify such characteristics by comparing the molecular properties of mammalian melanopsin to those of invertebrate melanopsin and visual pigment. Our data show that the Schiff base linking the chromophore retinal to the protein is more susceptive to spontaneous cleavage in mammalian melanopsins. We also find this stability is highly diversified between mammalian species, being particularly unstable for human melanopsin. Through mutagenesis analyses, we find that this diversified stability is mainly due to parallel amino acid substitutions in extracellular regions. We propose that the different stability of the retinal attachment in melanopsins may contribute to functional tuning of non-visual photoreception in mammals.


Assuntos
Mamíferos/genética , Mamíferos/metabolismo , Retinaldeído/química , Opsinas de Bastonetes/química , Opsinas de Bastonetes/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Feminino , Galago , Variação Genética , Humanos , Anfioxos , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Oócitos/metabolismo , Oócitos/efeitos da radiação , Papio anubis , Células Fotorreceptoras de Vertebrados/química , Células Fotorreceptoras de Vertebrados/efeitos da radiação , Filogenia , Conformação Proteica , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/efeitos da radiação , Células Ganglionares da Retina/química , Células Ganglionares da Retina/efeitos da radiação , Pigmentos da Retina/química , Pigmentos da Retina/genética , Pigmentos da Retina/efeitos da radiação , Opsinas de Bastonetes/efeitos da radiação , Saimiri , Bases de Schiff/química , Homologia de Sequência de Aminoácidos , Aranhas , Xenopus
11.
J Exp Biol ; 218(Pt 3): 458-65, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25524990

RESUMO

Male and female Lacertid lizards often display conspicuous coloration that is involved in intraspecific communication. However, visual systems of Lacertidae have rarely been studied and the spectral sensitivity of their retinal photoreceptors remains unknown. Here, we characterise the spectral sensitivity of two Lacertid species from contrasting habitats: the wall lizard Podarcis muralis and the common lizard Zootoca vivipara. Both species possess a pure-cone retina with one spectral class of double cones and four spectral classes of single cones. The two species differ in the spectral sensitivity of the LWS cones, the relative abundance of UVS single cones (potentially more abundant in Z. vivipara) and the coloration of oil droplets. Wall lizards have pure vitamin A1-based photopigments, whereas common lizards possess mixed vitamin A1 and A2 photopigments, extending spectral sensitivity into the near infrared, which is a rare feature in terrestrial vertebrates. We found that spectral sensitivity in the UV and near infrared improves discrimination of small variations in throat coloration among Z. vivipara. Thus, retinal specialisations optimise chromatic resolution in common lizards, indicating that the visual system and visual signals might co-evolve.


Assuntos
Lagartos/fisiologia , Raios Ultravioleta , Animais , Discriminação Psicológica , Ecossistema , Feminino , Masculino , Modelos Biológicos , Retina/citologia , Retina/fisiologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Pigmentos da Retina/química , Pigmentação da Pele , Especificidade da Espécie , Percepção Visual
12.
J Exp Biol ; 218(Pt 5): 748-56, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25573822

RESUMO

Non-visual photoreceptors with diverse photopigments allow organisms to adapt to changing light conditions. Whereas visual photoreceptors are involved in image formation, non-visual photoreceptors mainly undertake various non-image-forming tasks. They form specialised photosensory systems that measure the quality and quantity of light and enable appropriate behavioural and physiological responses. Chromatophores are dermal non-visual photoreceptors directly exposed to light and they not only receive ambient photic input but also respond to it. These specialised photosensitive pigment cells enable animals to adjust body coloration to fit environments, and play an important role in mate choice, camouflage and ultraviolet (UV) protection. However, the signalling pathway underlying chromatophore photoresponses and the physiological importance of chromatophore colour change remain under-investigated. Here, we characterised the intrinsic photosensitive system of red chromatophores (erythrophores) in tilapia. Like some non-visual photoreceptors, tilapia erythrophores showed wavelength-dependent photoresponses in two spectral regions: aggregations of inner pigment granules under UV and short-wavelengths and dispersions under middle- and long-wavelengths. The action spectra curve suggested that two primary photopigments exert opposite effects on these light-driven processes: SWS1 (short-wavelength sensitive 1) for aggregations and RH2b (rhodopsin-like) for dispersions. Both western blot and immunohistochemistry showed SWS1 expression in integumentary tissues and erythrophores. The membrane potential of erythrophores depolarised under UV illumination, suggesting that changes in membrane potential are required for photoresponses. These results suggest that SWS1 and RH2b play key roles in mediating intrinsic erythrophore photoresponses in different spectral ranges and this chromatically dependent antagonistic photosensitive mechanism may provide an advantage to detect subtle environmental photic change.


Assuntos
Cromatóforos/efeitos da radiação , Ciclídeos/fisiologia , Luz , Células Fotorreceptoras/efeitos da radiação , Animais , Cromatóforos/fisiologia , Masculino , Opsinas/fisiologia , Opsinas/efeitos da radiação , Células Fotorreceptoras/citologia , Pigmentação , Pigmentos da Retina/química , Pigmentos da Retina/fisiologia , Pigmentos da Retina/efeitos da radiação , Raios Ultravioleta
13.
Toxicol Pathol ; 43(6): 890-2, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25717081

RESUMO

Incidental findings in the rat eye are not uncommon in acute and long-term toxicological studies. These findings can be associated with a number of causes unrelated to treatment with the test article, including congenital malformation, trauma, infection, metabolic disease, genetic predisposition, and age-related changes. The occurrence of pigment deposition in the retina of Wistar Hannover (Crl:WI (Han)) rats in a 4-week toxicity study is reported in this communication. The microscopic examination of the eyes in the 4-week toxicity study revealed focal yellow-brown pigment deposits in the retina, mainly located in the ganglion cell layer. The retinal pigment deposits were randomly distributed in the control and treated groups and were considered incidental. The deposits were clearly positive for ferric iron in the Perls' stain but not for lipofuscin by the Schmorl's and Long Ziehl-Neelsen methods. The iron-containing pigment is likely to represent hemosiderin accumulation after retinal micro-hemorrhage or could be indicative of the normal intraretinal iron transport and turnover.


Assuntos
Retina/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Pigmentos da Retina/metabolismo , Animais , Corantes , Olho/patologia , Feminino , Compostos Férricos/metabolismo , Hemossiderina/análise , Lipofuscina/química , Masculino , Ratos , Ratos Wistar , Retina/química , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Hemorragia Retiniana/patologia , Epitélio Pigmentado da Retina/química , Pigmentos da Retina/química , Fixação de Tecidos
14.
Brain Behav Evol ; 85(2): 77-93, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25766394

RESUMO

Deep-sea fishes possess several adaptations to facilitate vision where light detection is pushed to its limit. Lanternfishes (Myctophidae), one of the world's most abundant groups of mesopelagic fishes, possess a novel and unique visual specialisation, a sexually dimorphic photostable yellow pigmentation, constituting the first record of a visual sexual dimorphism in any non-primate vertebrate. The topographic distribution of the yellow pigmentation across the retina is species specific, varying in location, shape and size. Spectrophotometric analyses reveal that this new retinal specialisation differs between species in terms of composition and acts as a filter, absorbing maximally between 356 and 443 nm. Microspectrophotometry and molecular analyses indicate that the species containing this pigmentation also possess at least 2 spectrally distinct rod visual pigments as a result of a duplication of the Rh1 opsin gene. After modelling the effect of the yellow pigmentation on photoreceptor spectral sensitivity, we suggest that this unique specialisation acts as a filter to enhance contrast, thereby improving the detection of bioluminescent emissions and possibly fluorescence in the extreme environment of the deep sea. The fact that this yellow pigmentation is species specific, sexually dimorphic and isolated within specific parts of the retina indicates an evolutionary pressure to visualise prey/predators/mates in a particular part of each species' visual field.


Assuntos
Peixes/fisiologia , Células Fotorreceptoras de Vertebrados/fisiologia , Retina/fisiologia , Pigmentos da Retina/fisiologia , Visão Ocular/fisiologia , Animais , Evolução Biológica , Feminino , Masculino , Modelos Biológicos , Células Fotorreceptoras de Vertebrados/química , Retina/química , Pigmentos da Retina/química , Caracteres Sexuais , Especificidade da Espécie , Campos Visuais
15.
J Am Chem Soc ; 136(7): 2723-6, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24422511

RESUMO

Retinal is the light-absorbing biochromophore responsible for the activation of vision pigments and light-driven ion pumps. Nature has evolved molecular tuning mechanisms that significantly shift the optical properties of the retinal pigments to enable their absorption of visible light. Using large-scale quantum chemical calculations at the density functional theory level combined with frozen density embedding theory, we show here how the protein environment of vision pigments tunes the absorption of retinal by electrostatically dominated interactions between the chromophore and the surrounding protein residues. The calculations accurately reproduce the experimental absorption maxima of rhodopsin and the red, green, and blue color pigments. We further identify key interactions responsible for the color-shifting effects by mutating the rhodopsin structure in silico, and we find that deprotonation of the retinyl is likely to be responsible for the blue-shifted absorption in the blue cone vision pigment.


Assuntos
Células Fotorreceptoras Retinianas Cones/metabolismo , Pigmentos da Retina/química , Pigmentos da Retina/metabolismo , Rodopsina/química , Rodopsina/metabolismo , Análise Espectral , Absorção , Simulação por Computador , Modelos Moleculares , Conformação Proteica
16.
J Exp Zool B Mol Dev Evol ; 322(7): 529-39, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24890094

RESUMO

The molecular mechanisms underlying the enormous diversity of visual pigment wavelength sensitivities found in nature have been the focus of many molecular evolutionary studies, with particular attention to the short wavelength-sensitive 1 (SWS1) visual pigments that mediate vision in the ultraviolet to violet range of the electromagnetic spectrum. Over a decade of study has revealed that the remarkable extension of SWS1 absorption maxima (λ max ) into the ultraviolet occurs through a deprotonation of the Schiff base linkage of the retinal chromophore, a mechanism unique to this visual pigment type. In studies of visual ecology, there has been mounting interest in inferring visual sensitivity at short wavelengths, given the importance of UV signaling in courtship displays and other behaviors. Since experimentally determining spectral sensitivities can be both challenging and time-consuming, alternative strategies such as estimating λ max based on amino acids at sites known to affect spectral tuning are becoming increasingly common. However, these estimates should be made with knowledge of the limitations inherent in these approaches. Here, we provide an overview of the current literature on SWS1 site-directed mutagenesis spectral tuning studies, and discuss methodological caveats specific to the SWS1-type pigments. We focus particular attention on contrasting avian and mammalian SWS1 spectral tuning mechanisms, which are the best studied among vertebrates. We find that avian SWS1 visual pigment spectral tuning mechanisms are fairly consistent, and therefore more predictable in terms of wavelength absorption maxima, whereas mammalian pigments are not well suited to predictions of λ max from sequence data alone.


Assuntos
Proteínas Aviárias/genética , Mutagênese Sítio-Dirigida , Pigmentos da Retina/química , Pigmentos da Retina/genética , Vertebrados/genética , Sequência de Aminoácidos , Animais , Aves/genética , Aves/fisiologia , Evolução Molecular , Mamíferos/genética , Mamíferos/fisiologia , Raios Ultravioleta , Vertebrados/fisiologia
17.
Biochemistry ; 52(7): 1192-7, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23350963

RESUMO

Most vertebrates have one type of rhodopsin and multiple types of cone visual pigments with different absorption maxima in their retinas. The spectral sensitivities of multiple cone visual pigments contribute to color discrimination in these animals. Vertebrate cone visual pigments are classified into four groups based on their amino acid sequences. Among these groups, many pigments in the longer wavelength-sensitive group (L-group) have a unique spectral tuning mechanism, that is, the red-shift of absorption maximum induced by the binding of chloride to His181 of the protein moiety (chloride effect). However, a few pigments such as mouse green and guinea pig green pigments in L-group have a tyrosine residue instead of a histidine at position 181. Interestingly, mouse green shows no chloride effect, whereas guinea pig green shows a significant chloride effect. In the present site-directed mutational analysis, we revealed that this difference in the chloride effect in rodent pigments is completely explained by the replacements of two residues at positions 289 and 292. In addition, mutations at positions 181, 289, and 292 abolished 80% of the chloride effect in monkey red and green. Further analysis with chimeras showed that the residual 20% of the chloride effect could be attributed to helical interactions within the pigments. Thus, we concluded that these three amino acid residues are the main determinants of the chloride-dependent spectral shift in L-group pigments.


Assuntos
Cloretos/metabolismo , Pigmentos da Retina/química , Pigmentos da Retina/metabolismo , Animais , Cloretos/química , Cor , Cobaias , Histidina/metabolismo , Camundongos , Mutação , Pigmentos da Retina/genética
18.
J Am Chem Soc ; 135(51): 19064-7, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24295328

RESUMO

Ultraviolet (UV) cone pigments can provide insights into the molecular evolution of vertebrate vision since they are nearer to ancestral pigments than the dim-light rod photoreceptor rhodopsin. While visible-absorbing pigments contain an 11-cis retinyl chromophore with a protonated Schiff-base (PSB11), UV pigments uniquely contain an unprotonated Schiff-base (USB11). Upon F86Y mutation in model UV pigments, both the USB11 and PSB11 forms of the chromophore are found to coexist at physiological pH. The origin of this intriguing equilibrium remains to be understood at the molecular level. Here, we address this phenomenon and the role of the USB11 environment in spectral tuning by combining mutagenesis studies with spectroscopic (UV-vis) and theoretical [DFT-QM/MM (SORCI+Q//B3LYP/6-31G(d): Amber96)] analysis. We compare structural models of the wild-type (WT), F86Y, S90A and S90C mutants of Siberian hamster ultraviolet (SHUV) cone pigment to explore structural rearrangements that stabilize USB11 over PSB11. We find that the PSB11 forms upon F86Y mutation and is stabilized by an "inter-helical lock" (IHL) established by hydrogen-bonding networks between transmembrane (TM) helices TM6, TM2, and TM3 (including water w2c and amino acid residues Y265, F86Y, G117, S118, A114, and E113). The findings implicate the involvement of the IHL in constraining the displacement of TM6, an essential component of the activation of rhodopsin, in the spectral tuning of UV pigments.


Assuntos
Modelos Moleculares , Pigmentos da Retina/química , Opsinas de Bastonetes/química , Raios Ultravioleta , Animais , Cricetinae , Cristalografia por Raios X , Evolução Molecular , Teoria Quântica , Bases de Schiff/química
19.
Eur J Nutr ; 52(4): 1381-91, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23052623

RESUMO

PURPOSE: Lutein and zeaxanthin are macular pigments with a protective function in the retina. These xanthophylls must be obtained from the diet or added to foods or supplements via easy-to-use, stable formulations. The technique employed to produce these formulations may affect the bioavailability of the xanthophylls. METHODS: Forty-eight healthy volunteers were randomized into this double-blind, cross-over study investigating the plasma kinetics of lutein provided as two different beadlet formulations. Subjects (n = 48) received a single dose of 20 mg of lutein as either a starch-matrix ("SMB", FloraGLO® Lutein 5 %) or as a cross-linked alginate-matrix beadlet ("AMB", Lyc-O-Lutein 20 %) formulation. Plasma concentrations of lutein and zeaxanthin were measured at 0, 1, 3, 6, 9, 12, 14, 24, 26, 28, 32, 36, 48, 72, 168, and 672 h. RESULTS: The mean plasma AUC(0-72h), AUC(0-672h), and C(max) for total lutein and zeaxanthin and their all-E-isomers were significantly increased (p < 0.001) from pre-dose concentrations in response to SMB and AMB. There was no difference in lutein T max between the two test articles. However, by 14 h post-dose, total plasma lutein increased by 7 % with AMB and by 126 % with SMB. Total lutein AUC(0-72h) and AUC(0-672h) were 1.8-fold and 1.3-fold higher, respectively, for SMB compared to AMB. Both formulations were well tolerated by subjects in this study. CONCLUSION: These findings confirm that the bioavailability of lutein and zeaxanthin critically depends on the formulation used and document a superiority of the starch-based over the alginate-based product in this study.


Assuntos
Antioxidantes/administração & dosagem , Suplementos Nutricionais , Luteína/administração & dosagem , Xantofilas/administração & dosagem , Adulto , Alginatos/química , Antioxidantes/efeitos adversos , Antioxidantes/química , Antioxidantes/metabolismo , Estudos Cross-Over , Suplementos Nutricionais/efeitos adversos , Método Duplo-Cego , Feminino , Aditivos Alimentares/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Cinética , Luteína/efeitos adversos , Luteína/análogos & derivados , Luteína/metabolismo , Masculino , Pessoa de Meia-Idade , Valor Nutritivo , Pigmentos da Retina/administração & dosagem , Pigmentos da Retina/efeitos adversos , Pigmentos da Retina/química , Pigmentos da Retina/metabolismo , Amido/química , Estereoisomerismo , Xantofilas/efeitos adversos , Xantofilas/química , Xantofilas/metabolismo , Adulto Jovem , Zeaxantinas
20.
J Phys Chem Lett ; 14(7): 1784-1793, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36762971

RESUMO

The visual pigments of the cones perceive red, green, and blue colors. The monkey green (MG) pigment possesses a unique Cl- binding site; however, its relationship to the spectral tuning in green pigments remains elusive. Recently, FTIR spectroscopy revealed the characteristic structural modifications of the retinal binding site by Cl- binding. Herein, we report the computational structural modeling of MG pigments and quantum-chemical simulation to investigate its spectral redshift and physicochemical relevance when Cl- is present. Our protein structures reflect the previously suggested structural changes. AlphaFold2 failed to predict these structural changes. Excited-state calculations successfully reproduced the experimental red-shifted absorption energies, corroborating our protein structures. Electrostatic energy decomposition revealed that the redshift results from the His197 protonation state and conformations of Glu129, Ser202, and Ala308; however, Cl- itself contributes to the blueshift. Site-directed mutagenesis supported our analysis. These modeled structures may provide a valuable foundation for studying cone pigments.


Assuntos
Cloretos , Pigmentos da Retina , Pigmentos da Retina/química , Pigmentos da Retina/metabolismo , Cloretos/química , Retina , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA