Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Vet Res ; 55(1): 48, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594744

RESUMO

Actinobacillus pleuropneumoniae (APP) is a bacterium frequently associated with porcine pleuropneumonia. The acute form of the disease is highly contagious and often fatal, resulting in significant economic losses for pig farmers. Serotype diversity and antimicrobial resistance (AMR) of APP strains circulating in north Italian farms from 2015 to 2022 were evaluated retrospectively to investigate APP epidemiology in the area. A total of 572 strains isolated from outbreaks occurring in 337 different swine farms were analysed. The majority of isolates belonged to serotypes 9/11 (39.2%) and 2 (28.1%) and serotype diversity increased during the study period, up to nine different serotypes isolated in 2022. The most common resistances were against tetracycline (53% of isolates) and ampicillin (33%), followed by enrofloxacin, florfenicol and trimethoprim/sulfamethoxazole (23% each). Multidrug resistance (MDR) was common, with a third of isolates showing resistance to more than three antimicrobial classes. Resistance to the different classes and MDR varied significantly depending on the serotype. In particular, the widespread serotype 9/11 was strongly associated with florfenicol and enrofloxacin resistance and showed the highest proportion of MDR isolates. Serotype 5, although less common, showed instead a concerning proportion of trimethoprim/sulfamethoxazole resistance. Our results highlight how the typing of circulating serotypes and the analysis of their antimicrobial susceptibility profile are crucial to effectively manage APP infection and improve antimicrobial stewardship.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Pleuropneumonia , Doenças dos Suínos , Tianfenicol/análogos & derivados , Suínos , Animais , Sorogrupo , Testes de Sensibilidade Microbiana/veterinária , Enrofloxacina , Fazendas , Estudos Retrospectivos , Pleuropneumonia/epidemiologia , Pleuropneumonia/veterinária , Pleuropneumonia/microbiologia , Antibacterianos/farmacologia , Sulfametoxazol/farmacologia , Trimetoprima/farmacologia , Itália/epidemiologia , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/microbiologia , Infecções por Actinobacillus/epidemiologia , Infecções por Actinobacillus/veterinária , Infecções por Actinobacillus/microbiologia , Sorotipagem/veterinária
2.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511601

RESUMO

Actinobacillus pleuropneumoniae (APP) is the causative pathogen of porcine pleuropneumonia, a highly contagious respiratory disease in the pig industry. The increasingly severe antimicrobial resistance in APP urgently requires novel antibacterial alternatives for the treatment of APP infection. In this study, we investigated the effect of tea polyphenols (TP) against APP. MIC and MBC of TP showed significant inhibitory effects on bacteria growth and caused cellular damage to APP. Furthermore, TP decreased adherent activity of APP to the newborn pig tracheal epithelial cells (NPTr) and the destruction of the tight adherence junction proteins ß-catenin and occludin. Moreover, TP improved the survival rate of APP infected mice but also attenuated the release of the inflammation-related cytokines IL-6, IL-8, and TNF-α. TP inhibited activation of the TLR/MAPK/PKC-MLCK signaling for down-regulated TLR-2, TLR4, p-JNK, p-p38, p-PKC-α, and MLCK in cells triggered by APP. Collectively, our data suggest that TP represents a promising therapeutic agent in the treatment of APP infection.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Actinobacillus , Infecções por Mycoplasma , Pleuropneumonia , Doenças dos Suínos , Animais , Suínos , Camundongos , Pleuropneumonia/microbiologia , Receptor 4 Toll-Like/metabolismo , Junções Íntimas , Pulmão/microbiologia , Infecções por Actinobacillus/tratamento farmacológico , Infecções por Actinobacillus/microbiologia , Chá/metabolismo , Doenças dos Suínos/microbiologia
3.
Lett Appl Microbiol ; 75(2): 442-449, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35616177

RESUMO

Actinobacillus pleuropneumoniae is the primary aetiological agent of contagious porcine pleuropneumonia associated with serious economic impact on pig husbandry worldwide. Diagnosis of the disease by existing techniques including isolation and identification of bacteria followed by serotyping, serological techniques, conventional PCR, real-time PCR and LAMP assays are cumbersome, time-consuming, costly and not suitable for rapid field application. A novel isothermal polymerase chain reaction (PSR) technique is standardized for all the reagents, incubation time and incubation temperature against A. pleuropneumoniae. The sensitivity of the assay was determined against various dilutions of purified DNA and total bacterial count. The specificity of the assay was determined against 11 closely related bacterial isolates. The relative sensitivity and specificity were compared with bacterial isolation, conventional PCR and real-time PCR assays. The PSR assay for specific detection was standardized at 64°C for 30 min of incubation in a water bath. The result was visible by the naked eye after centrifugation of the reaction mixture or after incorporation of SYBR Green dye as yellowish-green fluorescence. The technique was found to be 100% specific and equally sensitive with real-time PCR and 10 times more sensitive than conventional PCR. The PSR assay could be applicable in the detection of the organisms in porcine nasal swabs spiked with A. pleuropneumoniae. This is the first-ever report on the development of PSR for specific detection of A. pleuropneumoniae and can be applied for early diagnosis at the field level.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Mycoplasma , Pleuropneumonia , Doenças dos Suínos , Infecções por Actinobacillus/diagnóstico , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/genética , Animais , Mycoplasma/genética , Pleuropneumonia/diagnóstico , Pleuropneumonia/microbiologia , Pleuropneumonia/veterinária , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Suínos , Doenças dos Suínos/diagnóstico , Doenças dos Suínos/microbiologia
4.
Vet Res ; 52(1): 10, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33472678

RESUMO

Serotyping is the most common method to characterize field isolates of Actinobacillus (A.) pleuropneumoniae, the etiological agent of porcine pleuropneumonia. Based on serology, many farms seem to be infected and antibodies against a wide variety of serovars are detectable, but, so far it is unknown to what degree respective serovars contribute to outbreaks of clinical manifest disease. In this study, 213 German A. pleuropneumoniae field isolates retrieved for diagnostic purposes from outbreaks of porcine pleuropneumonia between 2010 and 2019 were genetically serotyped and analyzed regarding their apx-toxin gene profile using molecular methods. Serotyping revealed a prominent role of serovar 2 in clinical cases (64% of all isolates) and an increase in the detection of this serovar since 2010 in German isolates. Serovar 9/11 followed as the second most frequent serovar with about 15% of the isolates. Furthermore, very recently described serovars 16 (n = 2) and 18 (n = 8) were detected. Most isolates (93.4%) showed apx-profiles typical for the respective serovar. However, this does not hold true for isolates of serovar 18, as 75% (n = 6) of all isolates of this serovar deviated uniformly from the "typical" apx-gene profile of the reference strain 7311555. Notably, isolates from systemic lesions such as joints or meninges did not harbor the complete apxICABD operon which is considered typical for highly virulent strains. Furthermore, the extremely low occurrence (n = 1) of NAD independent (biovar II) isolates in German A. pleuropneumoniae was evident in our collection of clinical isolates.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/genética , Pleuropneumonia/veterinária , Doenças dos Suínos/microbiologia , Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/isolamento & purificação , Animais , Genótipo , Técnicas de Genotipagem/veterinária , Alemanha , Pleuropneumonia/microbiologia , Sorogrupo , Sorotipagem/veterinária , Sus scrofa , Suínos
5.
N Z Vet J ; 69(1): 51-57, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32646323

RESUMO

Case history: In July and August 2019, 15/40, ≤48-hour-old calves became acutely ill. The calves were all born on-farm, transferred to pens soon after birth, and fed with "gold" colostrum. The hygiene, biosecurity and ventilation in the pens were poor. Of the 15 calves, 11 died or were euthanised and four calves, ≤48-hour-old, that became acutely ill later in the outbreak were treated with cefquinome, a fourth-generation cephalosporin, and recovered. Clinical findings: The affected calves presented with acute recumbency, lethargy, tachypnoea, tachycardia, increased lung sounds, inability to stand or feed, and dehydration without pyrexia. Pathological findings: Gross findings in a calf that died naturally included fibrinous pleuropneumonia, marked oedematous expansion of the interlobular septa, especially in the ventral lung lobes, fibrinous polyserositis and fibrinous polyarthritis. A second calf that was euthanised had strikingly similar lung lesions. Histologically, the pulmonary interlobular septa of both calves were prominently expanded by oedema, dilated lymphatics and the infiltration of numerous neutrophils and macrophages interspersed with small Gram-negative rod bacteria. Likewise, the visceral pleura showed fibrinopurulent inflammation with numerous small Gram-negative rods. Microbiological findings: Microbial culture and matrix-assisted laser desorption ionisation time-of-flight (MALDI-TOF) mass spectrometry identified Bibersteinia trehalosi in the lung, stifle joint and peritoneal cavity of the first calf and lung of the second. Diagnosis: B. trehalosi acute fibrinous pleuropneumonia and septicaemia. Clinical relevance: This is the first report of the clinical findings and histological lesions of B. trehalosi pleuropneumonia and septicaemia in calves in New Zealand. The pathogen is isolated with increasing frequency from cases of bovine respiratory disease in dairy cows, feedlot cattle and calves in the United Kingdom and North America. The importance of microbial culture in cases such as this with unusual lung lesions in calves <48 hours of age, cannot be over emphasised. Cefquinome was administered to all remaining heifer calves and four calves that became ill later in the outbreak recovered after cefquinome treatment.


Assuntos
Doenças dos Bovinos/microbiologia , Infecções por Pasteurellaceae/veterinária , Pasteurellaceae/isolamento & purificação , Pleuropneumonia/veterinária , Sepse/veterinária , Animais , Animais Recém-Nascidos , Bovinos , Pulmão/patologia , Nova Zelândia , Infecções por Pasteurellaceae/patologia , Pleuropneumonia/microbiologia , Pleuropneumonia/patologia , Sepse/microbiologia
6.
Mamm Genome ; 31(1-2): 54-67, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31960078

RESUMO

Actinobacillus (A.) pleuropneumoniae is one of the most important respiratory pathogens in global pig production. Antimicrobial treatment and vaccination provide only limited protection, but genetic disease resistance is a very promising alternative for sustainable prophylaxis. Previous studies have discovered multiple QTL that may explain up to 30% of phenotypic variance. Based on these findings, the aim of the present study was to use genomic sequencing to identify genetic markers for resistance to pleuropneumonia in a segregating commercial German Landrace line. 163 pigs were infected with A. pleuropneumoniae Serotype 7 through a standardized aerosol infection method. Phenotypes were accurately defined on a clinical, pathological and microbiological basis. The 58 pigs with the most extreme phenotypes were genotyped by sequencing (next-generation sequencing). SNPs were used in a genome-wide association study. The study identified genome-wide associated SNPs on three chromosomes, two of which were chromosomes of QTL which had been mapped in a recent experiment. Each variant explained up to 20% of the total phenotypic variance. Combined, the three variants explained 52.8% of the variance. The SNPs are located in genes involved in the pathomechanism of pleuropneumonia. This study confirms the genetic background for the host's resistance to pleuropneumonia and indicates a potential role of three candidates on SSC2, SSC12 and SSC15. Favorable gene variants are segregating in commercial populations. Further work is needed to verify the results in a controlled study and to identify the functional QTN.


Assuntos
Resistência à Doença/genética , Pleuropneumonia/veterinária , Locos de Características Quantitativas/genética , Doenças dos Suínos/imunologia , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/patogenicidade , Animais , Cruzamento , Mapeamento Cromossômico/veterinária , Marcadores Genéticos , Variação Genética , Estudo de Associação Genômica Ampla/veterinária , Genótipo , Fenótipo , Pleuropneumonia/imunologia , Pleuropneumonia/microbiologia , Polimorfismo de Nucleotídeo Único , Suínos , Doenças dos Suínos/microbiologia
7.
Vet Pathol ; 57(4): 476-489, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32390522

RESUMO

Contagious bovine pleuropneumonia (CBPP) is a respiratory disease of cattle that is listed as notifiable by the World Organization for Animal Health. It is endemic in sub-Saharan Africa and causes important productivity losses due to the high mortality and morbidity rates. CBPP is caused by Mycoplasma mycoides subsp. mycoides (Mmm) and is characterized by severe fibrinous bronchopneumonia and pleural effusion during the acute to subacute stages and by pulmonary sequestra in chronic cases. Additional lesions can be detected in the kidneys and in the carpal and tarsal joints of calves. Mmm infection occurs through the inhalation of infected aerosol droplets. After the colonization of bronchioles and alveoli, Mmm invades blood and lymphatic vessels and causes vasculitis. Moreover, Mmm can be occasionally demonstrated in blood and in a variety of other tissues. In the lung, Mmm antigen is commonly detected on bronchiolar and alveolar epithelial cells, in lung phagocytic cells, within the wall of blood and lymphatic vessels, inside necrotic areas, and within tertiary lymphoid follicles. Mmm antigen can also be present in the cytoplasm of macrophages within lymph node sinuses, in the germinal center of lymphoid follicles, in glomerular endothelial cells, and in renal tubules. A complete pathological examination is of great value for a rapid presumptive diagnosis, but laboratory investigations are mandatory for definitive diagnosis. The purpose of this review is to describe the main features of CBPP including the causative agent, history, geographic distribution, epidemiology, clinical course, diagnosis, and control. A special focus is placed on gross and microscopic lesions in order to familiarize veterinarians with the pathology and pathogenesis of CBPP.


Assuntos
Mycoplasma , Pneumonia por Mycoplasma/veterinária , Animais , Antígenos de Bactérias/sangue , Bovinos , Doenças dos Bovinos/diagnóstico , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/patologia , Doenças dos Bovinos/transmissão , Células Endoteliais/microbiologia , Células Endoteliais/patologia , Rim/microbiologia , Rim/patologia , Pulmão/microbiologia , Pulmão/patologia , Linfonodos/microbiologia , Macrófagos/microbiologia , Mycoplasma/imunologia , Mycoplasma/patogenicidade , Pleuropneumonia/diagnóstico , Pleuropneumonia/microbiologia , Pleuropneumonia/patologia , Pleuropneumonia/veterinária , Pleuropneumonia Contagiosa/diagnóstico , Pleuropneumonia Contagiosa/patologia , Pleuropneumonia Contagiosa/transmissão , Pneumonia por Mycoplasma/diagnóstico , Pneumonia por Mycoplasma/patologia , Pneumonia por Mycoplasma/transmissão
8.
Microb Pathog ; 128: 381-389, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30664928

RESUMO

Actinobacillus pleuropneumoniae (APP) causes porcine pleuropneumonia, a disease responsible for substantial losses in the worldwide pig industry. In this study, outbred Kunming (KM) and Institute of Cancer Research (ICR) mice were evaluated as alternative mice models for APP research. After intranasal infection of serotype 5 reference strain L20, there was less lung damage and a lower clinical sign score in ICR compared to KM mice. However, ICR mice showed more obvious changes in body weight loss, the amount of immune cells (such as neutrophils and lymphocytes) and cytokines (such as IL-6, IL-1ß and TNF-α) in blood and bronchoalveolar lavage fluid (BALF). The immunological changes observed in ICR mice closely mimicked those found in piglets infected with L20. While both ICR and KM mice are susceptible to APP and induce pathological lesions, we suggest that ICR and KM mice are more suitable for immunological and pathogenesis studies, respectively. The research lays the theoretical basis for determine that mice could replace pigs as the APP infection model and it is of significance for the study of APP infection in the laboratory.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae/patogenicidade , Modelos Animais de Doenças , Pleuropneumonia , Infecções por Actinobacillus/sangue , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/patologia , Animais , Carga Bacteriana , Peso Corporal , Líquido da Lavagem Broncoalveolar , Citocinas/sangue , Feminino , Pulmão/microbiologia , Pulmão/patologia , Lesão Pulmonar/microbiologia , Lesão Pulmonar/patologia , Linfócitos , Camundongos , Neutrófilos , Pleuropneumonia/sangue , Pleuropneumonia/imunologia , Pleuropneumonia/microbiologia , Pleuropneumonia/patologia , Sorogrupo , Taxa de Sobrevida , Suínos , Doenças dos Suínos/microbiologia
9.
Acta Vet Hung ; 67(3): 327-337, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31549548

RESUMO

Sixty-eight Actinobacillus pleuropneumoniae strains were isolated from porcine acute pleuropneumonia cases from different parts of Hungary between 2000 and 2014. A total of 41 isolates were identified as A. pleuropneumoniae bio-type I and 27 strains as biotype II based on cultural, morphological and biochemical characteristics. The aim of this study was to evaluate metabolic fingerprinting in the species-level identification of A. pleuropneumoniae isolates. Utilisation of carbon sources by these field isolates and six reference strains was characterised by the Biolog system (GN2 Microplate, MicroLog3 Version 4.20.05 software). Twenty-nine field strains were correctly identified by the Biolog system as A. pleuropneumoniae, 36 strains as A. lignieresii, two strains as H. paraphrohaemolyticus and one strain as A. equuli after 24 h of incubation. Among the six A. pleuropneumoniae reference strains the Biolog system identified one strain as A. pleuropneumoniae, four as A. lignieresii and one as H. paraphrohaemolyticus. There was no correlation between biotypes and serotypes of A. pleuropneumoniae and the carbon source utilisation pattern and species identification by the Biolog system. our data indicate that the efficacy of the Biolog system used here could be improved by including phenotypes of more A. pleuropneumoniae strains representing a wider geographical occurrence into the database.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/metabolismo , Pleuropneumonia/veterinária , Doenças dos Suínos/microbiologia , Infecções por Actinobacillus/microbiologia , Animais , Carbono/metabolismo , Hungria , Pleuropneumonia/microbiologia , Suínos
10.
Infect Immun ; 86(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29229731

RESUMO

Actinobacillus pleuropneumoniae is the causative agent of porcine contagious pleuropneumonia. Overproduction of proinflammatory cytokines, like interleukin-1ß (IL-1ß), IL-6, tumor necrosis factor alpha, and resistin, in the lung is an important feature of A. pleuropneumoniae infection. These proinflammatory cytokines enhance inflammatory and immunological responses. However, the mechanism that leads to cytokine production remains unclear. As a major virulence factor of A. pleuropneumoniae, lipopolysaccharide (LPS) may act as a potent stimulator of Toll-like receptor 4 (TLR4), triggering a number of intracellular signaling pathways that lead to the synthesis of proinflammatory cytokines. Porcine alveolar macrophages (PAMs) are the first line of defense against pathogenic microbes during pathogen invasion. The results of the present study demonstrate that A. pleuropneumoniae LPS induces PAMs to produce inflammatory cytokines in time- and dose-dependent manners. Moreover, PAMs were activated by A. pleuropneumoniae LPS, resulting in upregulation of signaling molecules, including TLR4, MyD88, TRIF-related adaptor molecule, and NF-κB. In contrast, the activation effects of A. pleuropneumoniae LPS on PAMs could be suppressed by specific inhibitors, like small interfering RNA and Bay11-7082. Taken together, our data indicate that A. pleuropneumoniae LPS can induce PAMs to produce proinflammatory cytokines via the TLR4/NF-κB-mediated pathway. These findings partially reveal the mechanism of the overproduction of proinflammatory cytokines in the lungs of swine with A. pleuropneumoniae infection and may provide targets for the prevention of A. pleuropneumoniae-induced pneumonia. All the data could be used as a reference for the pathogenesis of respiratory infection.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/fisiologia , Lipopolissacarídeos/imunologia , Macrófagos Alveolares/imunologia , Pleuropneumonia/veterinária , Doenças dos Suínos/imunologia , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/imunologia , Infecções por Actinobacillus/genética , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/imunologia , Animais , Citocinas/genética , Citocinas/imunologia , Macrófagos Alveolares/microbiologia , Pleuropneumonia/genética , Pleuropneumonia/imunologia , Pleuropneumonia/microbiologia , Transdução de Sinais , Suínos , Doenças dos Suínos/genética , Doenças dos Suínos/microbiologia , Receptor 4 Toll-Like/genética , Fator de Necrose Tumoral alfa/genética
11.
Vet Res ; 49(1): 4, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29316978

RESUMO

Actinobacillus pleuropneumoniae (A. pleuropneumoniae) is a Gram-negative bacterium that represents the main cause of porcine pleuropneumonia in pigs, causing significant economic losses to the livestock industry worldwide. A. pleuropneumoniae, as the majority of Gram-negative bacteria, excrete vesicles from its outer membrane (OM), accordingly defined as outer membrane vesicles (OMVs). Thanks to their antigenic similarity to the OM, OMVs have emerged as a promising tool in vaccinology. In this study we describe the in vivo testing of several vaccine prototypes for the prevention of infection by all known A. pleuropneumoniae serotypes. Previously identified vaccine candidates, the recombinant proteins ApfA and VacJ, administered individually or in various combinations with the OMVs, were employed as vaccination strategies. Our data show that the addition of the OMVs in the vaccine formulations significantly increased the specific IgG titer against both ApfA and VacJ in the immunized animals, confirming the previously postulated potential of the OMVs as adjuvant. Unfortunately, the antibody response raised did not translate into an effective protection against A. pleuropneumoniae infection, as none of the immunized groups following challenge showed a significantly lower degree of lesions than the controls. Interestingly, quite the opposite was true, as the animals with the highest IgG titers were also the ones bearing the most extensive lesions in their lungs. These results shed new light on A. pleuropneumoniae pathogenicity, suggesting that antibody-mediated cytotoxicity from the host immune response may play a central role in the development of the lesions typically associated with A. pleuropneumoniae infections.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/imunologia , Vacinas Bacterianas/imunologia , Pleuropneumonia/veterinária , Doenças dos Suínos/prevenção & controle , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/prevenção & controle , Actinobacillus pleuropneumoniae/genética , Animais , Pleuropneumonia/microbiologia , Pleuropneumonia/prevenção & controle , Proteínas Recombinantes/imunologia , Sorogrupo , Suínos , Doenças dos Suínos/microbiologia , Vacinação/veterinária
12.
Antonie Van Leeuwenhoek ; 111(12): 2371-2384, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30008077

RESUMO

Actinobacillus pleuropneumoniae is the cause of porcine pleuropneumonia, for which the mortality rate is high. Host peripheral blood is a body site for the immune clearance of pathogens mediated by release of inflammatory factors. However, "out of control" inflammatory factor release can contribute to host death. To further understand the changes in the transcription level of immune-related effectors, samples of peripheral blood mononuclear cells (PBMCs) collected from piglets at different stages of infection (0, 24 and 120 h) were sequenced on an Illumina HiSeq™ 4000 platform. We found 3818 differentially expressed genes (DEGs) in the 24 h-infection group compared to the 0 h-infection group (Pb24-Vs-Pb0). DEGs mainly involved in the Gene ontology and KEGG pathways that included nucleic acid metabolism regulation, cell growth, cell differentiation, and organ morphological maintenance were not significantly enriched (P > 0.05). However, DEGs associated with protein kinase activity, receptor activation, metabolism, local adhesion and immune inflammatory responses were significantly enriched in Pb120-Vs-Pb24 (P < 0.05), as were those related to the T cell receptor signalling pathway, with most being down-regulated compared to the preceding stage (Pb24-Vs-Pb0). In PBMCs there were some changes in glucose metabolism, local adhesion and the immune inflammatory response (Pb120-Vs-Pb0). In addition, up-regulated DEGs, such as IL8, IL1ß, and CCL2, and were significantly enriched in immune-inflammatory related pathways compared to the uninfected stage, although they began to decline after 24 h.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/fisiologia , Leucócitos Mononucleares/imunologia , Pleuropneumonia/veterinária , Doenças dos Suínos/genética , Infecções por Actinobacillus/genética , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/microbiologia , Animais , Feminino , Perfilação da Expressão Gênica , Leucócitos Mononucleares/microbiologia , Masculino , Pleuropneumonia/genética , Pleuropneumonia/imunologia , Pleuropneumonia/microbiologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia
13.
Acta Vet Hung ; 66(3): 343-349, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30264610

RESUMO

A total of 255 Actinobacillus pleuropneumoniae isolates were collected from 634 lung samples representing 70 swine herds in Hungary between January 2012 and June 2016. On the basis of the indirect haemagglutination test 77 independent strains were included in the evaluation after the elimination of duplicate or multiple serotypes from the same herd. In the case of 7 herds strains of two different serotypes were identified. Fourteen Hungarian A. pleuropneumoniae isolates from the culture collection of the Department of Microbiology and Infectious Diseases, isolated before 2012, were also included in the evaluation (one each from 12 herds and two each from two herds, where two serotypes occurred). Out of the altogether 91 A. pleuropneumoniae strains 72 strains belonged to biotype I and 19 strains could be allocated to biotype II. In Hungary, the most common serotypes were serotype 2 (39.5%), 13 (15.4%), 8 (8.8%) and 16 (8.8%), but serotypes 9 (5.5%), 11 (3.3%) and 12 (3.3%) were also isolated. Twelve strains (13.2%) were untypable.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/classificação , Actinobacillus pleuropneumoniae/genética , Pleuropneumonia/veterinária , Sorogrupo , Doenças dos Suínos/microbiologia , Infecções por Actinobacillus/epidemiologia , Infecções por Actinobacillus/microbiologia , Animais , Hungria/epidemiologia , Pulmão/microbiologia , Pleuropneumonia/microbiologia , Suínos , Doenças dos Suínos/epidemiologia
14.
J Clin Microbiol ; 55(3): 902-907, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28053219

RESUMO

Actinobacillus pleuropneumoniae causes pleuropneumonia, an economically significant lung disease of pigs. Recently, isolates of A. pleuropneumoniae that were serologically distinct from the previously characterized 15 serovars were described, and a proposal was put forward that they comprised a new serovar, serovar 16. Here we used whole-genome sequencing of the proposed serovar 16 reference strain A-85/14 to confirm the presence of a unique capsular polysaccharide biosynthetic locus. For molecular diagnostics, primers were designed from the capsule locus of strain A-85/14, and a PCR was formulated that differentiated serovar 16 isolates from all 15 known serovars and other common respiratory pathogenic/commensal bacteria of pigs. Analysis of the capsule locus of strain A-85/14 combined with the previous serological data show the existence of a sixteenth serovar-designated serovar 16-of A. pleuropneumoniae.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/classificação , Cápsulas Bacterianas/genética , Loci Gênicos , Reação em Cadeia da Polimerase/métodos , Sorogrupo , Doenças dos Suínos/diagnóstico , Infecções por Actinobacillus/diagnóstico , Actinobacillus pleuropneumoniae/genética , Animais , Primers do DNA/genética , DNA Bacteriano/química , DNA Bacteriano/genética , Genoma Bacteriano , Técnicas de Diagnóstico Molecular/métodos , Pleuropneumonia/microbiologia , Pleuropneumonia/veterinária , Análise de Sequência de DNA , Suínos
15.
Vet Res ; 48(1): 74, 2017 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-29122004

RESUMO

Despite numerous actions to prevent disease, Actinobacillus pleuropneumoniae (A. pleuropneumoniae) remains a major cause of porcine pleuropneumonia, resulting in economic losses to the swine industry worldwide. In this paper, we describe the utilization of a reverse vaccinology approach for the selection and in vitro testing of serovar-independent A. pleuropneumoniae immunogens. Potential immunogens were identified in the complete genomes of three A. pleuropneumoniae strains belonging to different serovars using the following parameters: predicted outer-membrane subcellular localization; ≤ 1 trans-membrane helices; presence of a signal peptide in the protein sequence; presence in all known A. pleuropneumoniae genomes; homology with other well characterized factors with relevant data regarding immunogenicity/protective potential. Using this approach, we selected the proteins ApfA and VacJ to be expressed and further characterized, both in silico and in vitro. Additionally, we analysed outer membrane vesicles (OMVs) of A. pleuropneumoniae MIDG2331 as potential immunogens, and compared deletions in degS and nlpI for increasing yields of OMVs compared to the parental strain. Our results indicated that ApfA and VacJ are highly conserved proteins, naturally expressed during infection by all A. pleuropneumoniae serovars tested. Furthermore, OMVs, ApfA and VacJ were shown to possess a high immunogenic potential in vitro. These findings favour the immunogen selection protocol used, and suggest that OMVs, along with ApfA and VacJ, could represent effective immunogens for the prevention of A. pleuropneumoniae infections in a serovar-independent manner. This hypothesis is nonetheless predictive in nature, and in vivo testing in a relevant animal model will be necessary to verify its validity.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/imunologia , Vacinas Bacterianas/imunologia , Pleuropneumonia/veterinária , Doenças dos Suínos/prevenção & controle , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/prevenção & controle , Animais , Pleuropneumonia/microbiologia , Pleuropneumonia/prevenção & controle , Suínos , Doenças dos Suínos/microbiologia , Vacinas Sintéticas/imunologia
16.
Vet Res ; 48(1): 4, 2017 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-28166835

RESUMO

Porcine contagious pleuropneumonia caused by Actinobacillus pleuropneumoniae (APP) remains one of the major causes of poor growth performance and respiratory disease in pig herds. While the role of antibodies against APP has been intensely studied, the porcine T cell response remains poorly characterized. To address this, pigs were intranasally infected with APP serotype 2 and euthanized during the acute phase [6-10 days post-infection (dpi)] or the chronic phase of APP infection (27-31 dpi). Lymphocytes isolated from blood, tonsils, lung tissue and tracheobronchial lymph nodes were analyzed by intracellular cytokine staining (ICS) for IL-17A, IL-10 and TNF-α production after in vitro stimulation with crude capsular extract (CCE) of the APP inoculation strain. This was combined with cell surface staining for the expression of CD4, CD8α and TCR-γδ. Clinical records, microbiological investigations and pathological findings confirmed the induction of a subclinical APP infection. ICS-assays revealed the presence of APP-CCE specific CD4+CD8αdim IL-17A-producing T cells in blood and lung tissue in most infected animals during the acute and chronic phase of infection and a minor fraction of these cells co-produced TNF-α. APP-CCE specific IL-17A-producing γδ T cells could not be found and APP-CCE specific IL-10-producing CD4+ T cells were present in various organs but only in a few infected animals. The frequency of identified putative Th17 cells (CD4+CD8αdimIL-17A+) in lung and blood correlated positively with lung lesion scores and APP-specific antibody titers during the chronic phase. These results suggest a potential role of Th17 cells in the immune pathogenesis of APP infection.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae , Pulmão/patologia , Pleuropneumonia/veterinária , Doenças dos Suínos/microbiologia , Células Th17/patologia , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/patologia , Actinobacillus pleuropneumoniae/imunologia , Animais , Doença Crônica , Pulmão/imunologia , Pulmão/microbiologia , Linfonodos/patologia , Masculino , Pleuropneumonia/imunologia , Pleuropneumonia/microbiologia , Pleuropneumonia/patologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/patologia
17.
BMC Vet Res ; 13(1): 64, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28245826

RESUMO

BACKGROUND: Actinobacillus (A.) pleuropneumoniae is the causative agent of porcine pleuropneumonia and causes significant losses in the pig industry worldwide. Early host immune response is crucial for further progression of the disease. A. pleuropneumoniae is either rapidly eliminated by the immune system or switches to a long-term persistent form. To gain insight into the host-pathogen interaction during the early stages of infection, pigs were inoculated intratracheally with A. pleuropneumoniae serotype 2 and humanely euthanized eight hours after infection. Gene expression studies of inflammatory cytokines and the acute phase proteins haptoglobin, serum amyloid A and C-reactive protein were carried out by RT-qPCR from the lung, liver, tonsils and salivary gland. In addition, the concentration of cytokines and acute phase proteins were measured by quantitative immunoassays in bronchoalveolar lavage fluid, serum and saliva. In parallel to the analyses of host response, the impact of the host on the bacterial pathogen was assessed on a metabolic level. For the latter, Fourier-Transform Infrared (FTIR-) spectroscopy was employed. RESULTS: Significant cytokine and acute phase protein gene expression was detected in the lung and the salivary gland however this was not observed in the tonsils. In parallel to the analyses of host response, the impact of the host on the bacterial pathogen was assessed on a metabolic level. For the latter investigations, Fourier-Transform Infrared (FTIR-) spectroscopy was employed. The bacteria isolated from the upper and lower respiratory tract showed distinct IR spectral patterns reflecting the organ-specific acute phase response of the host. CONCLUSIONS: In summary, this study implies a metabolic adaptation of A. pleuropneumoniae to the porcine upper respiratory tract already during early infection, which might indicate a first step towards the persistence of A. pleuropneumoniae. Not only in lung, but also in the salivary gland an increased inflammatory gene expression was detectable during the acute stage of infection.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae , Pleuropneumonia/veterinária , Doenças dos Suínos/microbiologia , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/metabolismo , Infecções por Actinobacillus/microbiologia , Actinobacillus pleuropneumoniae/imunologia , Actinobacillus pleuropneumoniae/isolamento & purificação , Actinobacillus pleuropneumoniae/metabolismo , Animais , Citocinas/metabolismo , Pleuropneumonia/imunologia , Pleuropneumonia/metabolismo , Pleuropneumonia/microbiologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/metabolismo , Transcriptoma
18.
Tunis Med ; 94(4): 290-297, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27704513

RESUMO

Background Community-acquired pleuropneumonia (CPP) is a common complication of pneumonia in children. It is serious given its high morbidity and significant mortality. Aim To study clinical and paraclinical features of CPP in children and to establish a common therapeutic strategy. Methods Our retrospective study included patients who were hospitalized for CPP between 2004 and 2012. All data were collected from patients' medical files. Statistical analysis was made by Epi-Info 6. Results One hundred and sixty four patients were registered. The mean age was 32 months (15 days - 14.5 years). The hospital incidence of CPP doubled between 2004 and 2012. The symptomatology was dominated by fever (93.9%), cough (56.7%) and dyspnea (48.1%). The pleural effusion was frequently moderately abundant and loculated. Pleural sample, performed in 53.6% of cases, was the most beneficial bacteriological examination (p=10-6 ). The bacteriological confirmation was attained in 44.5% of cases with the predominance of Staphylococcus aureus (59%) followed by Streptococcus pneumoniae (26%). The S. aureus occurred basically in most young infants (p=0.04) and was responsible for the most severe cases (p=0.01). The CPP management included heterogeneous intravenous antibiotics associated with a pleural drainage in 40% of cases. The quarter of our patients were transferred to an intensive care unit. Six patients died. Conclusion The bacteriological confirmation is difficult. Pleural aspiration is the key tool. S. aureus is the first microorganism followed by S. pneumoniae. A therapeutic strategy is proposed based on large spectrum intravenous antibiotics. The pleural drainage indication is limited.


Assuntos
Infecções Comunitárias Adquiridas/epidemiologia , Derrame Pleural/epidemiologia , Pleuropneumonia/epidemiologia , Adolescente , Animais , Antibacterianos/uso terapêutico , Criança , Pré-Escolar , Infecções Comunitárias Adquiridas/microbiologia , Infecções Comunitárias Adquiridas/terapia , Tosse/epidemiologia , Tosse/etiologia , Drenagem/métodos , Dispneia/epidemiologia , Dispneia/etiologia , Feminino , Febre/epidemiologia , Febre/etiologia , Humanos , Lactente , Recém-Nascido , Masculino , Derrame Pleural/microbiologia , Derrame Pleural/terapia , Pleuropneumonia/microbiologia , Pleuropneumonia/terapia , Estudos Retrospectivos
19.
BMC Genomics ; 16: 417, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26018580

RESUMO

BACKGROUND: Actinobacillus pleuropneumoniae causes pleuropneumonia in pigs, a disease which is associated with high morbidity and mortality, as well as impaired animal welfare. To obtain in-depth understanding of this infection, the interplay between virulence factors of the pathogen and defense mechanisms of the porcine host needs to be elucidated. However, research has traditionally focused on either bacteriology or immunology; an unbiased picture of the transcriptional responses can be obtained by investigating both organisms in the same biological sample. RESULTS: Host and pathogen responses in pigs experimentally infected with A. pleuropneumoniae were analyzed by high-throughput RT-qPCR. This approach allowed concurrent analysis of selected genes encoding proteins known or hypothesized to be important in the acute phase of this infection. The expression of 17 bacterial and 31 porcine genes was quantified in lung samples obtained within the first 48 hours of infection. This provided novel insight into the early time course of bacterial genes involved in synthesis of pathogen-associated molecular patterns (lipopolysaccharide, peptidoglycan, lipoprotein) and genes involved in pattern recognition (TLR4, CD14, MD2, LBP, MYD88) in response to A. pleuropneumoniae. Significant up-regulation of proinflammatory cytokines such as IL1B, IL6, and IL8 was observed, correlating with protein levels, infection status and histopathological findings. Host genes encoding proteins involved in iron metabolism, as well as bacterial genes encoding exotoxins, proteins involved in adhesion, and iron acquisition were found to be differentially expressed according to disease progression. By applying laser capture microdissection, porcine expression of selected genes could be confirmed in the immediate surroundings of the invading pathogen. CONCLUSIONS: Microbial pathogenesis is the product of interactions between host and pathogen. Our results demonstrate the applicability of high-throughput RT-qPCR for the elucidation of dual-organism gene expression analysis during infection. We showed differential expression of 12 bacterial and 24 porcine genes during infection and significant correlation of porcine and bacterial gene expression. This is the first study investigating the concurrent transcriptional response of both bacteria and host at the site of infection during porcine respiratory infection.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/genética , Interações Hospedeiro-Patógeno , Pulmão/microbiologia , Pleuropneumonia/veterinária , Doenças dos Suínos/genética , Infecções por Actinobacillus/genética , Infecções por Actinobacillus/microbiologia , Infecções por Actinobacillus/patologia , Actinobacillus pleuropneumoniae/patogenicidade , Animais , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Pleuropneumonia/genética , Pleuropneumonia/microbiologia , Pleuropneumonia/patologia , RNA Bacteriano/análise , Suínos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/patologia , Fatores de Virulência/genética
20.
Vet Clin North Am Equine Pract ; 31(1): 105-20, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25600453

RESUMO

Bacterial infections of the lower respiratory tract in adult horses occur when bacteria from the nasopharynx reach the lower airways and overwhelm normal defense mechanisms. Although Streptococcus equi subsp zooepidemicus is the most commonly isolated bacterial species, mixed infections are possible. Tracheobronchial aspiration for microbiologic culture and sensitivity is suggested in cases presenting with severe clinical signs or not responding to treatment. Early intervention and appropriate antimicrobial selection results in a good prognosis for both survival and return to athletic function in most horses.


Assuntos
Doenças dos Cavalos/microbiologia , Pleuropneumonia/veterinária , Pneumonia Bacteriana/veterinária , Infecções Estreptocócicas/veterinária , Animais , Doenças dos Cavalos/terapia , Cavalos , Pleuropneumonia/microbiologia , Pleuropneumonia/terapia , Pneumonia Bacteriana/microbiologia , Pneumonia Bacteriana/terapia , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/terapia , Streptococcus equi/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA