Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 328
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 96(23): 9447-9452, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38807557

RESUMO

Rapid separation and enrichment of targets in biological matrixes are of significant interest in multiple life sciences disciplines. Molecularly imprinted polymers (MIPs) have vital applications in extraction and sample cleanup owing to their excellent specificity and selectivity. However, the low mass transfer rate, caused by the heterogeneity of imprinted cavities in polymer networks and strong driving forces, significantly limits its application in high-throughput analysis. Herein, one novel metal affinity-oriented surface imprinting method was proposed to fabricate an MIP with an ultrathin imprinting layer. MIPs were prepared by immobilized template molecules on magnetic nanoparticles (NPs) with metal ions as bridges via coordination, and then polymerization was done. Under the optimized conditions, the thickness of the imprinting layer was merely 1 nm, and the adsorption toward VAL well matched the Langmuir model. Moreover, it took just 5 min to achieve adsorption equilibrium significantly faster than other reported MIPs toward VAL. Adsorption capacity still can reach 25.3 mg/g ascribed to the high imprinting efficiency of the method (the imprinting factor was as high as 5). All evidence proved that recognition sites were all external cavities and were evenly distributed on the surface of the NPs. The obtained MIP NPs exhibited excellent selectivity and specificity toward VAL, with good dispersibility and stability. Coupled with high-performance liquid chromatography, it was successfully used as a dispersed solid phase extraction material to determine VAL in serum. Average recoveries are over 90.0% with relative standard deviations less than 2.14% at three spiked levels (n = 3). All evidence testified that the MIPs fabricated with the proposed method showed a fast trans mass rate and a large rebinding capacity. The method can potentially use high-throughput separation and enrichment of target molecules in batch samples to meet practical applications.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Valsartana , Adsorção , Polímeros Molecularmente Impressos/química , Valsartana/química , Propriedades de Superfície , Nanopartículas de Magnetita/química , Cromatografia Líquida de Alta Pressão
2.
Anal Chem ; 96(36): 14706-14713, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39207941

RESUMO

Concerns regarding the hazard of the carcinogenic ethyl carbamate (EC) have driven attempts to exploit efficient, timely, straightforward, and economic assays for warning early food safety. Here, we proposed a novel molecularly imprinted polymer Co@MOF-MIP, with a high peroxidase (POD)-like activity and a bright blue fluorescence emission, to develop a versatile visual assay for colorimetric, fluorescent, and photothermal trimodal detection and logic gate outputting of EC. Briefly, the POD-like activity of Co@MOF-MIP made it to decompose H2O2 into ·OH for oxidizing colorless 3,3',5,5'-tetramethylbenzidine (TMB) into a blue oxTMB, resulting in a 660 nm irradiated photothermal effect and bursting the blue fluorescence of Co@MOF-MIP via inner filter effect, observing a decreased fluorescence signal together with an increased colorimetric and 660 nm irradiated photothermal signals. However, EC could specifically fill the imprinted cavities of Co@MOF-MIP to block the catalytic substrates TMB and H2O2 out of Co@MOF-MIP for further reacting with the inside catalytic center of Co2+, resulting in the transformation suppressing of TMB into oxTMB, yielding an EC concentration-dependent trimodal responses in fluorescence signal enhancement, colorimetric, and 660 nm irradiated photothermal signal decreases. Assisted by the portable devices such as smartphones and hand-held thermal imagers, a visual onsite portable trimodal analytical platform was proposed for EC fast and accurate detection with the low detection limits of 1.64, 1.24, and 1.78 µg/L in colorimetric, fluorescent, and photothermal modes, respectively. Interestingly, these reactive events could be programmed by the classical Boolean logic gate analysis to offer a novel promising avenue for the big data Internet of Things monitoring and warning early residual EC in a more intelligent, dynamical, fast, and accurate manner, safeguarding food safety.


Assuntos
Colorimetria , Uretana , Uretana/química , Impressão Molecular , Estruturas Metalorgânicas/química , Cobalto/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Polímeros Molecularmente Impressos/química , Benzidinas/química
3.
Anal Chem ; 96(35): 14298-14305, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39171532

RESUMO

Generally, molecularly imprinted (MIP) electrochemical sensors for amino acids operate in a "label-like" mode. That is, after an amino acid is specifically recognized by an imprinted cavity at the sensing interface, the amino acid itself provides the sensing signal for quantitative detection. However, poorly electroactive amino acids impede electron transfer at the sensing interface and require high potentials to drive the reaction; thus, more interfering reactions tend to be triggered in practical applications, causing enhanced background noise in the detection. To address these issues, a "label-free" mode of the MIP sensor based on the ferrocene (Fc)/PEDOT:PSS-polypyrrole (PPy) composite was designed for the first time. The Fc/PEDOT:PSS-PPy is drop coated on the electrode surface as a substrate, and MIP polymers with specific recognition ability are immobilized on the substrate via electrostatic adsorption. As a proof of concept, l-tyrosine (l-Tyr) was selected as a model analyte and the "label-free" mode MIP/Fc/PEDOT:PSS-PPy sensor was constructed. The limit of detection (LOD) and linearity range of the MIP/Fc/PEDOT:PSS-PPy sensor were 2.31 × 10-11 M and from 100 pM to 5 mM, respectively. Compared with the label-like mode, the LOD was three orders of magnitude lower, the linear range was increased by three orders of magnitude, and the sensitivity was improved by more than four times. This work provides a universal and effective concept for MIP electrochemical sensing of amino acids.


Assuntos
Aminoácidos , Técnicas Eletroquímicas , Compostos Ferrosos , Metalocenos , Polímeros , Pirróis , Compostos Ferrosos/química , Metalocenos/química , Técnicas Eletroquímicas/métodos , Polímeros/química , Pirróis/química , Aminoácidos/análise , Aminoácidos/química , Impressão Molecular , Limite de Detecção , Polímeros Molecularmente Impressos/química , Eletrodos
4.
Anal Chem ; 96(19): 7602-7608, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38671546

RESUMO

Molecular imprinting techniques have attracted a lot of attention as a potential biomimetic technology, but there are still challenges in protein imprinting. Herein, multifunctional nanosized molecularly imprinted polymers (nanoMIPs) for human angiotensin-converting enzyme 2 (ACE2) were prepared by epitope imprinting of magnetic nanoparticles-anchored peptide (magNP-P) templates, which were further applied to construct a competitive displacement fluorescence assay toward ACE2. A cysteine-flanked dodecapeptide sequence was elaborately selected as an epitope for ACE2, which was immobilized onto the surface of magnetic nanoparticles and served as a magNP-P template for imprinting. During polymerization, fluorescent monomers were introduced to endow fluorescence responsiveness to the prepared self-signaling nanoMIPs. A competitive displacement fluorescence assay based on the nanoMIPs was established and operated in a washing-free manner, yielding a wide range for ACE2 (0.1-6.0 pg/mL) and a low detection limit (0.081 pg/mL). This approach offers a promising avenue in the preparation of nanoMIPs for macromolecule recognition and expands potential application of an MIP in the detection of proteins as well as peptides.


Assuntos
Enzima de Conversão de Angiotensina 2 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , Enzima de Conversão de Angiotensina 2/química , Peptidil Dipeptidase A/metabolismo , Peptidil Dipeptidase A/química , Impressão Molecular , Nanopartículas de Magnetita/química , Polímeros Molecularmente Impressos/química , Limite de Detecção , Peptídeos/química , Peptídeos/metabolismo
5.
Anal Chem ; 96(21): 8641-8647, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38716697

RESUMO

Pathogenic bacterial infections, even at extremely low concentrations, pose significant threats to human health. However, the challenge persists in achieving high-sensitivity bacterial detection, particularly in complex samples. Herein, we present a novel sandwich-type electrochemical sensor utilizing bacteria-imprinted polymer (BIP) coupled with vancomycin-conjugated MnO2 nanozyme (Van@BSA-MnO2) for the ultrasensitive detection of pathogenic bacteria, exemplified by Staphylococcus aureus (S. aureus). The BIP, in situ prepared on the electrode surface, acts as a highly specific capture probe by replicating the surface features of S. aureus. Vancomycin (Van), known for its affinity to bacterial cell walls, is conjugated with a Bovine serum albumin (BSA)-templated MnO2 nanozyme through EDC/NHS chemistry. The resulting Van@BSA-MnO2 complex, serving as a detection probe, provides an efficient catalytic platform for signal amplification. Upon binding with the captured S. aureus, the Van@BSA-MnO2 complex catalyzes a substrate reaction, generating a current signal proportional to the target bacterial concentration. The sensor displays remarkable sensitivity, capable of detecting a single bacterial cell in a phosphate buffer solution. Even in complex milk matrices, it maintains outstanding performance, identifying S. aureus at concentrations as low as 10 CFU mL-1 without requiring intricate sample pretreatment. Moreover, the sensor demonstrates excellent selectivity, particularly in distinguishing target S. aureus from interfering bacteria of the same genus at concentrations 100-fold higher. This innovative method, employing entirely synthetic materials, provides a versatile and low-cost detection platform for Gram-positive bacteria. In comparison to existing nanozyme-based bacterial sensors with biological recognition materials, our assay offers distinct advantages, including enhanced sensitivity, ease of preparation, and cost-effectiveness, thereby holding significant promise for applications in food safety and environmental monitoring.


Assuntos
Compostos de Manganês , Óxidos , Polímeros , Staphylococcus aureus , Vancomicina , Staphylococcus aureus/isolamento & purificação , Compostos de Manganês/química , Óxidos/química , Vancomicina/química , Polímeros/química , Soroalbumina Bovina/química , Técnicas Eletroquímicas/métodos , Análise de Célula Única , Antibacterianos/química , Antibacterianos/farmacologia , Animais , Limite de Detecção , Polímeros Molecularmente Impressos/química , Humanos
6.
Anal Chem ; 96(23): 9370-9378, 2024 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-38683892

RESUMO

The development of sensors for detection of biomarkers exhibits an exciting potential in diagnosis of diseases. Herein, we propose a novel electrochemical sensing strategy for label-free dual-biomarker detection, which is based on the combination of stimulus-responsive molecularly imprinted polymer (MIP)-modified nanopores and a polymeric membrane chronopotentiometric sensor. The ion fluxes galvanostatically imposed on the sensing membrane surface can be blocked by the recognition reaction between the target biomarker in the sample solution and the stimulus-responsive MIP receptor in the nanopores, thus causing a potential change. By using two external stimuli (i.e., pH and temperature), the recognition abilities of the stimulus-responsive MIP receptor can be effectively modulated so that dual-biomarker label-free chronopotentiometric detection can be achieved. Using alpha fetoprotein (AFP) and prostate-specific antigen (PSA) as model biomarkers, the proposed sensor offers detection limits of 0.17 and 0.42 ng/mL for AFP and PSA, respectively.


Assuntos
Biomarcadores , Polímeros Molecularmente Impressos , Nanoporos , Antígeno Prostático Específico , alfa-Fetoproteínas , Antígeno Prostático Específico/análise , Polímeros Molecularmente Impressos/química , alfa-Fetoproteínas/análise , Humanos , Biomarcadores/análise , Limite de Detecção , Técnicas Eletroquímicas/métodos , Concentração de Íons de Hidrogênio , Técnicas Biossensoriais/métodos , Potenciometria/métodos , Polímeros/química , Impressão Molecular , Temperatura
7.
Chemistry ; 30(45): e202401232, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38848047

RESUMO

We describe a facile method to prepare water-compatible molecularly imprinted polymer nanogels (MIP NGs) as synthetic antibodies against target glycans. Three different phenylboronic acid (PBA) derivatives were explored as monomers for the synthesis of MIP NGs targeting either α2,6- or α2,3-sialyllactose, taken as oversimplified models of cancer-related sT and sTn antigens. Starting from commercially available 3-acrylamidophenylboronic acid, also its 2-substituted isomer and the 5-acrylamido-2-hydroxymethyl cyclic PBA monoester derivative were initially evaluated by NMR studies. Then, a small library of MIP NGs imprinted with the α2,6-linked template was synthesized and tested by mobility shift Affinity Capillary Electrophoresis (msACE), to rapidly assess an affinity ranking. Finally, the best monomer 2-acrylamido PBA was selected for the synthesis of polymers targeting both sialyllactoses. The resulting MIP NGs display an affinity constant≈106 M-1 and selectivity towards imprinted glycans. This general procedure could be applied to any non-modified carbohydrate template possessing a reducing end.


Assuntos
Ácidos Borônicos , Lactose , Nanogéis , Ácidos Borônicos/química , Lactose/química , Lactose/análogos & derivados , Nanogéis/química , Polímeros Molecularmente Impressos/química , Impressão Molecular , Polímeros/química , Eletroforese Capilar , Polietilenoglicóis/química , Polissacarídeos/química , Ácidos Siálicos
8.
Anal Biochem ; 694: 115616, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38996900

RESUMO

Chlorogenic acid, a phenolic compound, is prevalent across various plant species and has been known for its pharmacological advantages. Health care experts have identified chlorogenic acid as a potential biomarker for treatment of a wide range of illnesses. Therefore, achieving efficient extraction and analysis of chlorogenic acid from plants and their products has become essential. Molecularly imprinted polymers (MIPs) are highly effective adsorbent for the extraction of chlorogenic acid from complex matrices. Currently, there is a lack of comprehensive review article that consolidate the methods utilized for the purification of chlorogenic acid through molecular imprinting. In this context, we have surveyed the common approaches employed in preparing MIPs specifically designed for the analysis of chlorogenic acid, including both conventional and newly developed. This review discusses the advantages, limitations of polymerization techniques and proposed strategies to produce more efficient MIPs for chlorogenic acid enrichment in complex samples. Additionaly, we present advanced imprinting methods for designing MIPs, which improve the adsorption capacity, sensitivity and selectivity towards chlorogenic acid.


Assuntos
Ácido Clorogênico , Polímeros Molecularmente Impressos , Ácido Clorogênico/análise , Ácido Clorogênico/química , Polímeros Molecularmente Impressos/química , Impressão Molecular , Adsorção , Polimerização , Extração em Fase Sólida/métodos
9.
Anal Biochem ; 691: 115551, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38702023

RESUMO

A molecularly imprinted electrochemical sensor was facilely fabricated for the detection of thymol (THY). o-Phenylenediamine (oPD) was used as the functional monomer and electropolymerized on the surface of the glassy carbon electrode (GCE) by using THY as the templates. After the THY templates were removed with 50 % (v/v) ethanol, imprinted cavities complementary to the templates were formed within the poly(o-phenylenediamine) (PoPD) films. The resultant molecularly imprinted PoPD/GCE (MI-PoPD/GCE) was used for the detection of THY, and a wide linear range from 0.5 to 100 µM with a low limit of detection (LOD) of 0.084 µM were obtained under the optimal conditions. The developed MI-PoPD/GCE also displays high selectivity, reproducibility and stability for THY detection. Finally, the content of THY in the real samples was accurately determined by the as-fabricated MI-PoPD/GCE, demonstrating its high practicability and reliability.


Assuntos
Técnicas Eletroquímicas , Impressão Molecular , Fenilenodiaminas , Timol , Fenilenodiaminas/química , Timol/análise , Timol/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Eletrodos , Polímeros Molecularmente Impressos/química , Carbono/química , Reprodutibilidade dos Testes
10.
Anal Biochem ; 692: 115557, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38718955

RESUMO

Cytochrome c (cyt c) has been found to play a function in apoptosis in cell-free models. This work presents the creation of molecularly imprinted conducting poly(3, 4-ethylenedioxythiopene) (MIPEDOT) on the surface of a screen printed carbon electrode (SPCE) for cyt c. Cyt c was imprinted by electropolymerization due to the presence of an EDOT monomer hydrophobic functional group on SPCE, using CV to obtain highly selective materials with excellent molecular recognition ability. MIPEDOT was characterized by CV, EIS, and DPV using ferricyanide/ferrocyanide as a redox probe. Further, the characterization of the sensor was accomplished using SEM for surface morphological confirmation. Using CV, the peak current measured at the potential of +1 to -1 V (vs. Ag/AgCl) is linear in the cyt c concentration range from 1 to 1200 pM, showing a remarkably low detection limit of 0.5 pM (sensitivity:0.080 µA pM). Moreover, the applicability of the approach was successfully confirmed with the detection of cyt c in biological samples (human plasma). Similarly, our research has proven a low-cost, simple, and efficient sensing platform for cyt c detection, rendering it a viable tool for the future improvement of reliable and exact non-encroaching cell death detection.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Carbono , Citocromos c , Técnicas Eletroquímicas , Eletrodos , Polímeros , Citocromos c/análise , Citocromos c/química , Polímeros/química , Carbono/química , Técnicas Eletroquímicas/métodos , Compostos Bicíclicos Heterocíclicos com Pontes/química , Polímeros Molecularmente Impressos/química , Humanos , Limite de Detecção , Impressão Molecular , Técnicas Biossensoriais/métodos
11.
Analyst ; 149(11): 3161-3168, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38632945

RESUMO

This article presents the development of a distance-based thread analytical device (dTAD) integrated with an ion-imprinted polymer (IIP) for quantitative monitoring of zinc ions (Zn2+) in human urine samples. The IIP was easily chemically modified onto the thread channel using dithizone (DTZ) as a ligand to bind to Zn2+ with methacrylic acid (MAA) as a functional monomer and ethylene glycol dimethacrylate (EGDMA) as well as 2,2-azobisisobutyronitrile (AIBN) as cross-linking agents to enhance the selectivity for Zn2+ detection. The imprinted polymer was characterized using Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy and Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-EDS). Under optimization, the linear detection range was from 1.0 to 20.0 mg L-1 (R2 = 0.9992) with a limit of detection (LOD) of 1.0 mg L-1. Other potentially interfering metal ions and molecules did not interfere with this approach, leading to high selectivity. Furthermore, our technique exhibits a remarkable recovery ranging from 100.48% to 103.16%, with the highest relative standard deviation (% RSD) of 5.44% for monitoring Zn2+ in human control urine samples, indicating high accuracy and precision. Similarly, there is no significant statistical difference between the results obtained using our method and standards on zinc supplement sample labels. The proposed method offers several advantages in detecting trace Zn2+ for point-of-care (POC) medical diagnostics and environmental sample analysis, such as ease of use, instrument-free readout, and cost efficiency. Overall, our developed dTAD-based IIP method holds potential for simple, affordable, and rapid detection of Zn2+ levels and can be applied to other metal ions' analysis.


Assuntos
Limite de Detecção , Zinco , Humanos , Zinco/química , Zinco/urina , Impressão Molecular/métodos , Polímeros/química , Polímeros Molecularmente Impressos/química
12.
Analyst ; 149(12): 3309-3316, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38699925

RESUMO

An electrochemical microsensor for mesothelin (MSLN) based on an acupuncture needle (AN) was constructed in this work. To prepare the microsensor, MSLN was self-assembled on 4-mercaptophenylboronic acid (4-MPBA) by an interaction force between the external cis-diol and phenylboronic acid. This was followed by the gradual electropolymerization of thionine (TH) and eriochrome black T (EBT) around the anchored protein. The thickness of the surface imprinted layers influenced the sensing performance and needed to be smaller than the height of the anchored protein. The polymerized EBT was not electrically active, but the polymerized TH provided a significant electrochemical signal. Therefore, electron transfer smoothly proceeded through the eluted nanocavities. The imprinted nanocavities were highly selective toward MSLN, and the rebinding of insulating proteins reduced the electrochemical signal of the embedded pTH. The functionalized interface was characterized by SEM and electrochemical methods, and the preparation conditions were studied. After optimization, the sensor showed a linear response in the range of 0.1 to 1000 ng mL-1 with a detection limit of 10 pg mL-1, indicating good performance compared with other reported methods. This microsensor also showed high sensitivity and stability, which can be attributed to the fine complementation of the imprinted organic nanocavities. The sensitivity of this sensor was related to the nanocavities used for electron transport around the AuNPs. In the future, microsensors that can directly provide electrochemical signals are expected to play important roles especially on AN matrices.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Limite de Detecção , Mesotelina , Fenotiazinas , Fenotiazinas/química , Humanos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Polímeros Molecularmente Impressos/química , Agulhas , Ouro/química , Proteínas Ligadas por GPI/análise
13.
Analyst ; 149(12): 3363-3371, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38712505

RESUMO

Specific detection of glycoproteins such as transferrin (TRF) related to neurological diseases, hepatoma and other diseases always plays an important role in the field of disease diagnosis. We designed an antibody-free immunoassay sensing method based on molecularly imprinted polymers (MIPs) formed by the polymerization of multiple functional monomers for the sensitive and selective detection of TRF in human serum. In the sandwich surface-enhanced Raman spectroscopy (SERS) sensor, the TRF-oriented magnetic MIP nanoparticles (Fe3O4@SiO2-MIPs) served as capture units to specifically recognize TRF and 4-mercaptophenylboronic acid-functionalized gold nanorods (MPBA-Au NRs) served as SERS probes to label the targets. In order to achieve stronger interaction between the recognition cavities of the prepared MIPs and the different amino acid fragments that make up TRF, Fe3O4@SiO2-MIPs were obtained through polycondensation reactions between more silylating reagents, enhancing the specific recognition of the entire TRF protein and achieving high IF. This sensing method exhibited a good linear response to TRF within the TRF concentration range of 0.01 ng mL-1 to 1 mg mL-1 (R2 = 0.9974), and the LOD was 0.00407 ng mL-1 (S/N = 3). The good stability, reproducibility and specificity of the resulting MIP based SERS sensor were demonstrated. The determination of TRF in human serum confirmed the feasibility of the method in practical applications.


Assuntos
Polímeros Molecularmente Impressos , Análise Espectral Raman , Transferrina , Humanos , Ácidos Borônicos/química , Ouro/química , Limite de Detecção , Nanopartículas de Magnetita/química , Polímeros Molecularmente Impressos/química , Nanotubos/química , Dióxido de Silício/química , Análise Espectral Raman/métodos , Compostos de Sulfidrila , Transferrina/análise , Transferrina/química
14.
Analyst ; 149(15): 4020-4028, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38961728

RESUMO

Reagentless molecular-imprinted polymer (MIP) electrochemical biosensors can offer the next generation of biosensing platforms for the detection of biomarkers owing to their simplicity, cost-efficacy, tunability, robustness, and accuracy. In this work, a novel combination of Prussian blue (PB), coated as an embedded redox probe on a gold working electrode (GWE), and a signal-off MIP assay has been proposed in an electrochemical format for the detection of troponin I (TnI) in biofluids. TnI is a variant exclusive to heart muscles, and its elevated level in the bloodstream is indicative of acute myocardial infarction (AMI). The proposed lab-manufactured PB/MIP electrochemical biosensor, consisting of a simple signal-off MIP assay and a PB redox probe embedded on the GWE surface, is the first of its kind that allows for reagentless, label-free, and single-step electrochemical biosensing of proteins. The preparation steps of the biosensor were fully characterized by cyclic voltammetry (CV), atomic force microscopy (AFM), and Raman spectroscopy. Finally, the performance of the optimized biosensor was investigated through the determination of various concentrations of TnI, ranging from 10 to 100 pg mL-1 within 5 min, in serum and plasma with limits of detection less than 3.6 pg mL-1, and evaluation of selectivity towards TnI using some relevant proteins that exist in biofluids with higher concentrations.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Ouro , Polímeros Molecularmente Impressos , Troponina I , Humanos , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Eletrodos , Ferrocianetos/química , Ouro/química , Limite de Detecção , Polímeros Molecularmente Impressos/química , Polímeros/química , Troponina I/sangue , Troponina I/análise
15.
Analyst ; 149(14): 3765-3772, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38842353

RESUMO

Molecularly imprinted polymer (MIP)-based chromatographic separation materials, owing to their advantages of unique selectivity, low cost, suitable reproducibility, and acceptable stability, have attracted a great deal of research in different fields. In this investigation, a new type of MIP-coated silica (MIP/SiO2) separation material was developed using sulfamethoxazole as a template; the specific recognition ability of MIP and appropriate physicochemical properties (abundant Si-OH, suitable pore structure, good stability, etc.) of SiO2 microbeads were combined. The MIP/SiO2 separation materials were characterized carefully. Then, various compounds (such as sulfonamides, ginsenosides, nucleosides, and several pesticides) were used to comprehensively evaluate the chromatographic performances of the MIP/SiO2 column. Furthermore, the chromatographic performances of the MIP/SiO2 column were compared with those of other separation materials (such as non-imprinted polymer-coated silica, C18/SiO2, and bare silica) packed columns. The resolution value of all measured compounds was more than 1.51. The column efficiencies of 13 510 plates per meter (N m-1) for sulfamethoxazole, 11 600 N m-1 for ginsenoside Rd, and 10 510 N m-1 for 2'-deoxyadenosine were obtained. The acceptable results verified that the MIP/SiO2 column can be applied to separate highly polar drugs such as sulfonamides, ginsenosides, nucleosides, and pesticides.


Assuntos
Microesferas , Polímeros Molecularmente Impressos , Dióxido de Silício , Dióxido de Silício/química , Cromatografia Líquida de Alta Pressão/métodos , Polímeros Molecularmente Impressos/química , Ginsenosídeos/química , Ginsenosídeos/análise , Ginsenosídeos/isolamento & purificação , Impressão Molecular/métodos , Nucleosídeos/química , Nucleosídeos/isolamento & purificação , Nucleosídeos/análise , Praguicidas/análise , Praguicidas/química , Praguicidas/isolamento & purificação , Polímeros/química
16.
J Chem Inf Model ; 64(13): 5127-5139, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38888100

RESUMO

Molecularly imprinted polymers (MIPs) have emerged as bespoke materials with versatile molecular applications. In this study, we propose a proof of concept for a methodology employing molecular dynamics (MD) simulations to guide the selection of functional monomers for curcuminoid binding in MIPs. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin are phenolic compounds widely employed as spices, pigments, additives, and therapeutic agents, representing the three main curcuminoids of interest. Through MD simulations, we investigated prepolymerization mixtures composed of various functional monomers, including acrylamide (ACA), acrylic acid (AA), methacrylic acid (MAA), and N-vinylpyrrolidone (NVP), with ethylene glycol dimethacrylate (EGDMA) as the cross-linker and acetonitrile as the solvent. Curcumin was selected as the template molecule due to its structural similarity to the other curcuminoids. Notably, the prepolymerization mixture containing NVP as the functional monomer demonstrated superior molecular recognition capabilities toward curcumin. This observation was supported by higher functional monomer molecules surrounding the template, a lower total nonbonded energy between the template and monomer, and a greater number of hydrogen bonds in the aggregate. These findings suggest a stronger affinity between the functional monomer NVP and the template. We synthesized, characterized, and conducted binding tests on the MIPs to validate the MD simulation results. The experimental binding tests confirmed that the MIP-NVP exhibited higher binding capacity. Consequently, based on MD simulations, our computational methodology effectively guided the selection of the functional monomer, leading to MIPs with binding capacity for curcuminoids. The outcomes of this study provide a valuable reference for the rational design of MIPs through MD simulations, facilitating the selection of components for MIPs. This computational approach holds the potential for extension to other templates, establishing a robust methodology for the rational design of MIPs.


Assuntos
Curcumina , Simulação de Dinâmica Molecular , Polímeros Molecularmente Impressos , Curcumina/química , Curcumina/análogos & derivados , Curcumina/metabolismo , Polímeros Molecularmente Impressos/química , Desenho de Fármacos , Impressão Molecular , Metacrilatos/química , Diarileptanoides/química , Conformação Molecular
17.
Anal Bioanal Chem ; 416(14): 3335-3347, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38661944

RESUMO

Stanozolol, a synthetic derivative of testosterone, is one of the common doping drugs among athletes and bodybuilders. It is metabolized to a large extent and metabolites are detected in urine for a longer duration than the parent compound. In this study, a novel dummy molecularly imprinted polymer (DMIP) is developed as a sorbent for solid-phase extraction of stanozolol metabolites from spiked human urine samples. The optimized DMIP is composed of stanozolol as the dummy template, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross-linker in a ratio of 1:10:80. The extracted analytes were quantitively determined using a newly developed and validated ultrahigh-performance liquid chromatography tandem mass spectrometry method, where the limits of detection and quantitation were 0.91 and 1.81 ng mL-1, respectively, fulfilling the minimum required performance limit decided on by the World Anti-Doping Agency. The mean percentage extraction recoveries for 3'-hydroxystanozolol, 4ß-hydroxystanozolol, and 16ß-hydroxystanozolol are 97.80% ± 13.80, 83.16% ± 7.50, and 69.98% ± 2.02, respectively. As such, the developed DMISPE can serve as an efficient cost-effective tool for doping and regulatory agencies for simultaneous clean-up of the stanozolol metabolites prior to their quantification.


Assuntos
Dopagem Esportivo , Limite de Detecção , Polímeros Molecularmente Impressos , Extração em Fase Sólida , Estanozolol , Estanozolol/urina , Extração em Fase Sólida/métodos , Humanos , Polímeros Molecularmente Impressos/química , Dopagem Esportivo/prevenção & controle , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Detecção do Abuso de Substâncias/métodos , Anabolizantes/urina , Anabolizantes/metabolismo , Impressão Molecular/métodos
18.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 100-110, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38814229

RESUMO

Molecularly imprinted polymers (MIPs) are pivotal in medicine, mimicking biological receptors with enhanced specificity and affinity. Comprising templates, functional monomers, and cross-linkers, MIPs form stable three-dimensional polymer networks. Synthetic templates like glycan and aptamers improve efficiency, guiding the molecular imprinting process. Cross-linking determines MIPs' morphology and mechanical stability, with printable hydrogels offering biocompatibility and customizable properties, mimicking native extracellular matrix (ECM) microenvironments. Their versatility finds applications in tissue engineering, soft robotics, regenerative medicine, and wastewater treatment. In cancer research, MIPs excel in both detection and therapy. MIP-based detection systems exhibit superior sensitivity and selectivity for cancer biomarkers. They target nucleic acids, proteins, and exosomes, providing stability, sensitivity, and adaptability. In therapy, MIPs offer solutions to challenges like multidrug resistance, excelling in drug delivery, photodynamic therapy, photothermal therapy, and biological activity regulation. In microbiology, MIPs serve as adsorbents in solid-phase extraction (SPE), efficiently separating and enriching antibiotics during sample preparation. They contribute to bacterial identification, selectively capturing specific strains or species. MIPs aid in detecting antibiotic residues using fluorescent nanostructures and developing sensors for sulfadiazine detection in food samples. In summary, MIPs play a pivotal role in advancing medical technologies with enhanced sensitivity, selectivity, and versatility. Applications range from biomarker detection to innovative cancer therapies, making MIPs indispensable for the accurate determination and monitoring of diverse biological and environmental samples.


Assuntos
Antibacterianos , Polímeros Molecularmente Impressos , Neoplasias , Humanos , Polímeros Molecularmente Impressos/química , Neoplasias/diagnóstico , Antibacterianos/análise , Medicina de Precisão/métodos , Impressão Molecular/métodos , Biomarcadores Tumorais
19.
J Sep Sci ; 47(16): e2400353, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39164908

RESUMO

Molecularly imprinted polymers, a type of special polymer materials, are widely used in biosensing and other fields due to their ability to specifically recognize target molecules, often called "artificial receptors.". Nowadays, researchers are constantly exploring new design and synthesis methods for molecularly imprinted materials to improve the selectivity and sensitivity of molecularly imprinted materials. Among them, the selection of functional monomers has attracted great attention. This review comprehensively analyzes and discusses the selection methods of functional monomers. The most commonly used functional monomers among different types of templates are screened based on the structural properties of the template molecules, including the selection of functional monomers among ion-imprinted polymers, protein-imprinted polymers, and bacterial imprinted polymers. The rich binding sites and functional group types of multifunctional monomers are also highlighted to advance the development of molecular imprinting technology. The article further explores the current challenges and prospects in the selection of functional monomers and emphasizes multiplex experiments and computer simulations as important directions for future research. This review provides comprehensive information and constructive guidelines for researchers in selecting functional monomers in areas such as analytical chemistry and biosensors.


Assuntos
Impressão Molecular , Polímeros Molecularmente Impressos , Polímeros Molecularmente Impressos/química , Técnicas Biossensoriais , Polímeros/química
20.
J Sep Sci ; 47(14): e2400003, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39034895

RESUMO

Furosemide (FUR), banned in sports events by the World Anti-Doping Agency, is a key target in drug tests, necessitating a pretreatment material capable of selectively, rapidly, and sufficiently separating/enriching analytes from complex matrices. Herein, a metal-mediated magnetic molecularly imprinted polymer (mMIP) was rationally designed and synthesized for the specific capture of FUR. The preparations involved the utilization of chromium (III) as the binding pivot, (3-aminopropyl)triethoxysilane as functional monomer, and Fe3O4 as core, all assembled via free radical polymerization. Both the morphologies and adsorptive properties of the mMIP were characterized using multiple methods. The resulting Cr(III)-mediated mMIP (ChM-mMIP) presented excellent selectivity and specificity toward FUR. Under optimized conditions, the adsorption capacity reached 128.50 mg/g within 10 min, and the imprinting factor was 10.41. Moreover, it was also successfully applied as a dispersive solid-phase extraction material, enabling the detection of FUR concentration as low as 20 ng/mL in human urine samples when coupled with a high-performance liquid chromatography/photodiode array. Overall, this study offers a valuable strategy for the development of novel recognition material.


Assuntos
Furosemida , Polímeros Molecularmente Impressos , Humanos , Furosemida/urina , Furosemida/química , Polímeros Molecularmente Impressos/química , Adsorção , Impressão Molecular , Extração em Fase Sólida , Propriedades de Superfície , Cromatografia Líquida de Alta Pressão , Tamanho da Partícula , Dopagem Esportivo/prevenção & controle , Polímeros/química , Polímeros/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA