Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 706, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030489

RESUMO

BACKGROUND: According to Chinese ancient books, both fruits and rhizomes of Polygonatum cyrtonema Hua have medicinal and edible values. Up to now, there is no report about the metabolite profiles and regulatory network in fruits and different year-old rhizomes of P. cyrtonema. RESULTS: In this study, we performed integrative analyses of metabolome and transcriptome to reveal the dynamic accumulation and regulatory network of fruits and different year-old rhizomes in P. cyrtonema. The relative content of phenolic acids, lignans and coumarins, flavonoids and alkaloids increased with growth years, while steroids and lipids decreased with it. In addition, the relative content of nucleotides and derivatives, flavonoids, organic acids, steroids and lipids in fruits were higher than rhizomes. Genes that might relate to the biosynthesis of polysaccharides, flavonoids, triterpene saponins and alkaloids biosynthesis were further analyzed by transcriptome analysis, including sacA, GMPP, PMM, CCoAOMT, CHI, ANR, CHS, DXS, GGPS, ZEP, CYP72A219 and so on, for their expressions were positively correlated with the relative content of the metabolites. Additionally, the correlation network in sugar and aromatic amino acids metabolites were constructed to further illustrate the biosynthesis of polysaccharides, flavonoids and alkaloids in P. cyrtonema, and some transcription factors (TFs) were screened, such as C2C2, MYB, bZIP, GRAS and NAC. CONCLUSIONS: This study can deepen our understanding of the accumulation patterns and molecular mechanism of the main compounds in P. cyrtonema, and provide reference for the standardize production of P. cyrtonema.


Assuntos
Frutas , Redes Reguladoras de Genes , Metaboloma , Polygonatum , Rizoma , Transcriptoma , Rizoma/metabolismo , Rizoma/genética , Polygonatum/genética , Polygonatum/metabolismo , Frutas/metabolismo , Frutas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Flavonoides/metabolismo
2.
BMC Plant Biol ; 24(1): 173, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38443808

RESUMO

Polygonatum cyrtonema Hua is a traditional Chinese medicinal plant acclaimed for its therapeutic potential in diabetes and various chronic diseases. Its rhizomes are the main functional parts rich in secondary metabolites, such as flavonoids and saponins. But their quality varies by region, posing challenges for industrial and medicinal application of P. cyrtonema. In this study, 482 metabolites were identified in P. cyrtonema rhizome from Qingyuan and Xiushui counties. Cluster analysis showed that samples between these two regions had distinct secondary metabolite profiles. Machine learning methods, specifically support vector machine-recursive feature elimination and random forest, were utilized to further identify metabolite markers including flavonoids, phenolic acids, and lignans. Comparative transcriptomics and weighted gene co-expression analysis were performed to uncover potential candidate genes including CHI, UGT1, and PcOMT10/11/12/13 associated with these compounds. Functional assays using tobacco transient expression system revealed that PcOMT10/11/12/13 indeed impacted metabolic fluxes of the phenylpropanoid pathway and phenylpropanoid-related metabolites such as chrysoeriol-6,8-di-C-glucoside, syringaresinol-4'-O-glucopyranosid, and 1-O-Sinapoyl-D-glucose. These findings identified metabolite markers between these two regions and provided valuable genetic insights for engineering the biosynthesis of these compounds.


Assuntos
Polygonatum , Polygonatum/genética , Análise por Conglomerados , Flavonoides , Perfilação da Expressão Gênica , Aprendizado de Máquina
3.
Mol Biol Rep ; 51(1): 648, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727802

RESUMO

BACKGROUND: Polygonatum kingianum holds significant importance in Traditional Chinese Medicine due to its medicinal properties, characterized by its diverse chemical constituents including polysaccharides, terpenoids, flavonoids, phenols, and phenylpropanoids. The Auxin Response Factor (ARF) is a pivotal transcription factor known for its regulatory role in both primary and secondary metabolite synthesis. However, our understanding of the ARF gene family in P. kingianum remains limited. METHODS AND RESULTS: We employed RNA-Seq to sequence three distinct tissues (leaf, root, and stem) of P. kingianum. The analysis revealed a total of 31,558 differentially expressed genes (DEGs), with 43 species of transcription factors annotated among them. Analyses via gene ontology and the Kyoto Encyclopedia of Genes and Genomes demonstrated that these DEGs were predominantly enriched in metabolic pathways and secondary metabolite biosynthesis. The proposed temporal expression analysis categorized the DEGs into nine clusters, suggesting the same expression trends that may be coordinated in multiple biological processes across the three tissues. Additionally, we conducted screening and expression pattern analysis of the ARF gene family, identifying 12 significantly expressed PkARF genes in P. kingianum roots. This discovery lays the groundwork for investigations into the role of PkARF genes in root growth, development, and secondary metabolism regulation. CONCLUSION: The obtained data and insights serve as a focal point for further research studies, centred on genetic manipulation of growth and secondary metabolism in P. kingianum. Furthermore, these findings contribute to the understanding of functional genomics in P. kingianum, offering valuable genetic resources.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Família Multigênica , Proteínas de Plantas , Plantas Medicinais , Polygonatum , Transcriptoma , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Polygonatum/genética , Polygonatum/metabolismo , Transcriptoma/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica/métodos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ontologia Genética , Folhas de Planta/genética , Folhas de Planta/metabolismo
4.
Curr Microbiol ; 81(11): 368, 2024 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-39305346

RESUMO

In the present study, using genome mining, Streptomyces sp. JL1001, which possesses a leinamycin-type gene cluster, was identified from 14 strains of Streptomyces originating from the rhizosphere soil of Polygonatum cyrtonema Hua. The complete genome of Streptomyces sp. JL1001 was sequenced and analyzed. The genome of Streptomyces sp. JL1001 consists of a 7,943,495 bp chromosome with a 71.71% G+C content and 7315 protein-coding genes. We also identified 36 biosynthetic gene clusters (BGCs) for secondary metabolites in Streptomyces sp. JL1001. Twenty-seven BGCs had low (< 50%) or moderate (50-80%) similarity to other known secondary metabolite BGCs. In addition, a comparative analysis was conducted between the leinamycin-type gene cluster in Streptomyces sp. JL1001 and the biosynthetic gene clusters of leinamycin and largimycin. This study aims to provide a comprehensive analysis of the genomic features of rhizosphere Streptomyces sp. JL1001. It establishes the foundation for further investigation into experimental trials involving novel bioactive metabolites such as AT-less type I polyketides that have important potential applications in medicine and agriculture.


Assuntos
Genoma Bacteriano , Família Multigênica , Polygonatum , Rizosfera , Microbiologia do Solo , Streptomyces , Streptomyces/genética , Streptomyces/classificação , Streptomyces/metabolismo , Streptomyces/isolamento & purificação , Polygonatum/genética , Polygonatum/microbiologia , Composição de Bases , Metabolismo Secundário , Filogenia , Genômica
5.
Molecules ; 29(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38792110

RESUMO

Flavonoids, a class of phenolic compounds, are one of the main functional components and have a wide range of molecular structures and biological activities in Polygonatum. A few of them, including homoisoflavonoids, chalcones, isoflavones, and flavones, were identified in Polygonatum and displayed a wide range of powerful biological activities, such as anti-cancer, anti-viral, and blood sugar regulation. However, few studies have systematically been published on the flavonoid biosynthesis pathway in Polygonatum cyrtonema Hua. Therefore, in the present study, a combined transcriptome and metabolome analysis was performed on the leaf, stem, rhizome, and root tissues of P. cyrtonema to uncover the synthesis pathway of flavonoids and to identify key regulatory genes. Flavonoid-targeted metabolomics detected a total of 65 active substances from four different tissues, among which 49 substances were first study to identify in Polygonatum, and 38 substances were flavonoids. A total of 19 differentially accumulated metabolites (DAMs) (five flavonols, three flavones, two dihydrochalcones, two flavanones, one flavanol, five phenylpropanoids, and one coumarin) were finally screened by KEGG enrichment analysis. Transcriptome analysis indicated that a total of 222 unigenes encoding 28 enzymes were annotated into three flavonoid biosynthesis pathways, which were "phenylpropanoid biosynthesis", "flavonoid biosynthesis", and "flavone and flavonol biosynthesis". The combined analysis of the metabolome and transcriptome revealed that 37 differentially expressed genes (DEGs) encoding 11 enzymes (C4H, PAL, 4CL, CHS, CHI, F3H, DFR, LAR, ANR, FNS, FLS) and 19 DAMs were more likely to be regulated in the flavonoid biosynthesis pathway. The expression of 11 DEGs was validated by qRT-PCR, resulting in good agreement with the RNA-Seq. Our studies provide a theoretical basis for further elucidating the flavonoid biosynthesis pathway in Polygonatum.


Assuntos
Vias Biossintéticas , Flavonoides , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Metabolômica , Polygonatum , Transcriptoma , Flavonoides/biossíntese , Flavonoides/metabolismo , Flavonoides/genética , Polygonatum/genética , Polygonatum/metabolismo , Polygonatum/química , Metabolômica/métodos , Vias Biossintéticas/genética , Perfilação da Expressão Gênica/métodos , Metaboloma
6.
Genome ; 66(4): 80-90, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36763968

RESUMO

Polygonatum cyrtonema Hua is a traditional Chinese herb medicine, and it is widely distributed in China. The intrageneric taxonomy and phylogenetic relationships within Polygonatum have long been controversial due to their morphological similarity and lacking special DNA barcodes. In this paper, the complete chloroplast genome is a relatively conserved quadripartite structure including a large single copy region of 84 711 bp, a small single copy region of 18 210 bp, and a pair of inverted repeats region of 26 142 bp. A total of 342 simple sequence repeats were identified, and most of them were found to be composed of A/T, including 126 mono-nucleotides and 179 di-nucleotides. Nucleotide diversity was analyzed and eight highly variable regions (psbl∼trnT-CGU, atpF∼atpH, trnT-GGU∼psbD, psaJ∼rps20, trnL-UAG∼ndhD, ndhG∼ndhl, ndhA, and rpl32∼ccsA) were identified as potential molecular markers. Phylogenetic analysis based on the whole chloroplast genome showed that P. cyrtonema, within the family Asparagaceae, is closely related to Polygonatum sibiricum and Polygonatum kingianum. The sequence matK, trnT-GGU & ccsA, and ndhG∼ndhA were identified as three DNA barcodes. The assembly and comparative analysis of P. cyrtonema complete chloroplast genome will provide essential molecular information about the evolution and molecular biology for further study.


Assuntos
Genoma de Cloroplastos , Plantas Medicinais , Polygonatum , Filogenia , Polygonatum/genética , Plantas Medicinais/genética , China
7.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629123

RESUMO

Polygonatum cyrtonema (P. cyrtonema) is a valuable rhizome-propagating traditional Chinese medical herb. Polysaccharides (PCPs) are the major bioactive constituents in P. cyrtonema. However, the molecular basis of PCP biosynthesis in P. cyrtonema remains unknown. In this study, we measured the PCP contents of 11 wild P. cyrtonema germplasms. The results showed that PCP content was the highest in Lishui Qingyuan (LSQY, 11.84%) and the lowest in Hangzhou Lin'an (HZLA, 7.18%). We next analyzed the transcriptome profiles of LSQY and HZLA. Through a qRT-PCR analysis of five differential expression genes from the PCP biosynthesis pathway, phosphomannomutase, UDP-glucose 4-epimerase (galE), and GDP-mannose 4,6-dehydratase were determined as the key enzymes. A protein of a key gene, galE1, was localized in the chloroplast. The PCP content in the transiently overexpressed galE1 tobacco leaves was higher than in the wild type. Moreover, luciferase and Y1H assays indicated that PcWRKY31 and PcWRKY34 could activate galE1 by binding to its promoter. Our research uncovers the novel regulatory mechanism of PCP biosynthesis in P. cyrtonema and is critical to molecular-assisted breeding.


Assuntos
Polygonatum , Polygonatum/genética , Metabolismo dos Carboidratos , Perfilação da Expressão Gênica , Bioensaio , Cloroplastos
8.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835208

RESUMO

Polygonatum cyrtonema Hua is a traditional Chinese herb propagated using rhizomes, and excessive demand for seedlings and quality deterioration caused by rhizome propagation has highlighted that seed propagation may be an ideal solution to address these issues. However, the molecular mechanisms involved in P. cyrtonema Hua seed germination and emergence stages are not well understood. Therefore, in the present study, we performed transcriptomics combined with hormone dynamics during different seed germination stages, and 54,178 unigenes with an average length of 1390.38 bp (N50 = 1847 bp) were generated. Significant transcriptomic changes were related to plant hormone signal transduction and the starch and carbohydrate pathways. Genes related to ABA(abscisic acid), IAA(Indole acetic acid), and JA(Jasmonic acid) signaling, were downregulated, whereas genes related to ethylene, BR(brassinolide), CTK(Cytokinin), and SA(salicylic acid) biosynthesis and signaling were activated during the germination process. Interestingly, GA biosynthesis- and signaling-related genes were induced during the germination stage but decreased in the emergence stage. In addition, seed germination significantly upregulated the expression of genes associated with starch and sucrose metabolism. Notably, raffinose biosynthesis-related genes were induced, especially during the emergence stage. In total, 1171 transcription factor (TF) genes were found to be differentially expressed. Our results provide new insights into the mechanisms underlying P. cyrtonema Hua seed germination and emergence processes and further research for molecular breeding.


Assuntos
Polygonatum , Transcriptoma , Germinação/genética , Polygonatum/genética , Sementes/metabolismo , Ácido Abscísico/metabolismo , Hormônios/metabolismo , Amido/metabolismo , Regulação da Expressão Gênica de Plantas
9.
BMC Genomics ; 23(1): 195, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35272619

RESUMO

BACKGROUND: The investigation of molecular mechanisms involved in polysaccharides and saponin metabolism is critical for genetic engineering of Polygonatum cyrtonema Hua to raise major active ingredient content. Up to now, the transcript sequences are available for different tissues of P. cyrtonema, a wide range scanning about temporal transcript at different ages' rhizomes was still absent in P. cyrtonema. RESULTS: Transcriptome sequencing for rhizomes at different ages was performed. Sixty-two thousand six hundred thirty-five unigenes were generated by assembling transcripts from all samples. A total of 89 unigenes encoding key enzymes involved in polysaccharide biosynthesis and 56 unigenes encoding key enzymes involved in saponin biosynthesis. The content of total polysaccharide and total saponin was positively correlated with the expression patterns of mannose-6-phosphate isomerase (MPI), GDP-L-fucose synthase (TSTA3), UDP-apiose/xylose synthase (AXS), UDP-glucose 6-dehydrogenase (UGDH), Hydroxymethylglutaryl CoA synthase (HMGS), Mevalonate kinase (MVK), 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (ispF), (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase (ispG), 4-hydroxy-3-methylbut-2-enyl diphosphate reductase (ispH), Farnesyl diphosphate synthase (FPPS). Finally, a number of key genes were selected and quantitative real-time PCR were performed to validate the transcriptome analysis results. CONCLUSIONS: These results create the link between polysaccharides and saponin biosynthesis and gene expression, provide insight for underlying key active substances, and reveal novel candidate genes including TFs that are worth further exploration for their functions and values.


Assuntos
Polygonatum , Saponinas , Perfilação da Expressão Gênica , Genes de Plantas , Polygonatum/genética , Polissacarídeos , Saponinas/genética
10.
BMC Plant Biol ; 22(1): 163, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365083

RESUMO

BACKGROUND: The rhizome of Polygonatum kingianum Coll. et Hemsl (P. kingianum) is a crucial traditional Chinese medicine, but severe bud dormancy occurs during early rhizome development. Low temperature is a positive factor affecting dormancy release, whereas the variation in carbohydrates during dormancy release has not been investigated systematically. Therefore, the sugar content, related metabolic pathways and gene co-expression were analysed to elucidate the regulatory mechanism of carbohydrates during dormancy release in the P. kingianum rhizome bud. RESULTS: During dormancy transition, starch and sucrose (Suc) exhibited opposing trends in the P. kingianum rhizome bud, representing a critical indicator of dormancy release. Galactose (Gal) and raffinose (Raf) were increased in content and synthesis. Glucose (Glc), cellulose (Cel), mannose (Man), arabinose (Ara), rhamnose (Rha) and stachyose (Sta) showed various changes, indicating their different roles in breaking rhizome bud dormancy in P. kingianum. At the beginning of dormancy release, Glc metabolism may be dominated by anaerobic oxidation (glycolysis followed by ethanol fermentation). After entering the S3 stage, the tricarboxylic acid cycle (TCA) and pentose phosphate pathway (PPP) were may be more active possibly. In the gene co-expression network comprising carbohydrates and hormones, HYD1 was identified as a hub gene, and numerous interactions centred on STS/SUS were also observed, suggesting the essential role of brassinosteroids (BRs), Raf and Suc in the regulatory network. CONCLUSION: We revealed cold-responsive genes related to carbohydrate metabolism, suggesting regulatory mechanisms of sugar during dormancy release in the P. kingianum rhizome bud. Additionally, gene co-expression analysis revealed possible interactions between sugar and hormone signalling, providing new insight into the dormancy release mechanism in P. kingianum rhizome buds.


Assuntos
Polygonatum , Regulação da Expressão Gênica de Plantas , Humanos , Dormência de Plantas/genética , Proteínas de Plantas/genética , Polygonatum/genética , Polygonatum/metabolismo , Rizoma/metabolismo , Açúcares
11.
Biochem Genet ; 60(5): 1547-1566, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35059935

RESUMO

As a traditional Chinese herb, the rhizomes of Polygonatum sibiricum Red. are rich in various compounds which have plenty of pharmacological applications and biological activities. Among them, Polygonatum sibiricum polysaccharides (PSP) are the main active ingredients and exhibit a broad range of pharmacological. Based on previous researches, identifying genes involved in PSP biosynthesis will help delineate such pathway at the molecular level. In that case, we performed RNA sequencing analysis for two sections of P. sibiricum Red.'s rhizomes significantly different in PSP content. A total of 435,858 unigenes were obtained by assembling transcripts from both sections and 29,548 (6.77%) ones were annotated in all seven public databases. Analyzing count data of RNA-seq, 13,460 differential expression genes (DEGs) between two sections of rhizomes were acquired. After DEGs were mapped to KEGG databases, twelve represented KEGG pathways related to PSP biosynthesis were summed up. And most DEGs were assigned to the pathway of "Starch and sucrose metabolism". Finally, seventeen candidate genes whose expression levels were related to the polysaccharide content, were considered involving PSP biosynthesis in P. sibiricum Red. The present study lays a foundation of researching the molecular mechanisms of PSP biosynthesis.


Assuntos
Polygonatum , Perfilação da Expressão Gênica , Genes de Plantas , Polygonatum/genética , Polissacarídeos/genética , Polissacarídeos/farmacologia , Rizoma/genética
12.
BMC Plant Biol ; 21(1): 370, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34384392

RESUMO

BACKGROUND: To adapt seasonal climate changes under natural environments, Polygonatum sibiricum seeds have a long period of epicotyl morphophysiological dormancy, which limits their wide-utilization in the large-scale plant progeny propagation. It has been proven that the controlled consecutive warm and cold temperature treatments can effectively break and shorten this seed dormancy status to promote its successful underdeveloped embryo growth, radicle emergence and shoot emergence. To uncover the molecular basis of seed dormancy release and seedling establishment, a SMRT full-length sequencing analysis and an Illumina sequencing-based comparison of P. sibiricum seed transcriptomes were combined to investigate transcriptional changes during warm and cold stratifications. RESULTS: A total of 87,251 unigenes, including 46,255 complete sequences, were obtained and 77,148 unigenes (88.42%) were annotated. Gene expression analyses at four stratification stages identified a total of 27,059 DEGs in six pairwise comparisons and revealed that more differentially expressed genes were altered at the Corm stage than at the other stages, especially Str_S and Eme. The expression of 475 hormone metabolism genes and 510 hormone signaling genes was modulated during P. sibiricum seed dormancy release and seedling emergence. One thousand eighteen transcription factors and five hundred nineteen transcription regulators were detected differentially expressed during stratification and germination especially at Corm and Str_S stages. Of 1246 seed dormancy/germination known DEGs, 378, 790, and 199 DEGs were associated with P. sibiricum MD release (Corm vs Seed), epicotyl dormancy release (Str_S vs Corm), and the seedling establishment after the MPD release (Eme vs Str_S). CONCLUSIONS: A comparison with dormancy- and germination-related genes in Arabidopsis thaliana seeds revealed that genes related to multiple plant hormones, chromatin modifiers and remodelers, DNA methylation, mRNA degradation, endosperm weakening, and cell wall structures coordinately mediate P. sibiricum seed germination, epicotyl dormancy release, and seedling establishment. These results provided the first insights into molecular regulation of P. sibiricum seed epicotyl morphophysiological dormancy release and seedling emergence. They may form the foundation of future studies regarding gene interaction and the specific roles of individual tissues (endosperm, newly-formed corm) in P. sibiricum bulk seed dormancy.


Assuntos
Dormência de Plantas/genética , Polygonatum/crescimento & desenvolvimento , Polygonatum/genética , Temperatura , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação/genética , Anotação de Sequência Molecular , Reguladores de Crescimento de Plantas/genética , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Transcriptoma
13.
BMC Plant Biol ; 21(1): 537, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34781887

RESUMO

BACKGROUND: Polygonatum kingianum Coll. et Hemsl. is an important plant in Traditional Chinese Medicine. The extracts from its tubers are rich in polysaccharides and other metabolites such as saponins. It is a well-known concept that growing medicinal plants in semi-arid (or drought stress) increases their natural compounds concentrations. This study was conducted to explore the morpho-physiological responses of P. kingianum plants and transcriptomic signatures of P. kingianum tubers exposed to mild, moderate, and severe drought and rewatering. RESULTS: The stress effects on the morpho-physiological parameters were dependent on the intensity of the drought stress. The leaf area, relative water content, chlorophyll content, and shoot fresh weight decreased whereas electrolyte leakage increased with increase in drought stress intensity. A total of 53,081 unigenes were obtained; 59% of which were annotated. We observed that 1352 and 350 core genes were differentially expressed in drought and rewatering, respectively. Drought stress driven differentially expressed genes (DEGs) were enriched in phenylpropanoid biosynthesis, flavonoid biosynthesis, starch and sucrose metabolism, and stilbenoid diarylheptanoid and gingerol biosynthesis, and carotenoid biosynthesis pathways. Pathways such as plant-pathogen interaction and galactose metabolism were differentially regulated between severe drought and rewatering. Drought reduced the expression of lignin, gingerol, and flavonoid biosynthesis related genes and rewatering recovered the tubers from stress by increasing the expression of the genes. Increased expression of carotenoid biosynthesis pathway related genes under drought suggested their important role in stress endurance. An increase in starch and sucrose biosynthesis was evident from transcriptomic changes under drought stress. Rewatering recovered the drought affected tubers as evident from the contrasting expression profiles of genes related to these pathways. P. kingianum tuber experiences an increased biosynthesis of sucrose, starch, and carotenoid under drought stress. Drought decreases the flavonoids, phenylpropanoids, gingerol, and lignin biosynthesis. These changes can be reversed by rewatering the P. kingianum plants. CONCLUSIONS: These results provide a transcriptome resource for P. kingianum and expands the knowledge on the effect of drought and rewatering on important pathways. This study also provides a large number of candidate genes that could be manipulated for drought stress tolerance and managing the polysaccharide and secondary metabolites' contents in P. kingianum.


Assuntos
Polygonatum/metabolismo , Transcriptoma/genética , Carotenoides/metabolismo , Catecóis/metabolismo , Secas , Álcoois Graxos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Polygonatum/genética
14.
BMC Plant Biol ; 21(1): 362, 2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34364388

RESUMO

BACKGROUND: The root rot of fragrant solomonseal (Polygonatum odoratum) has occurred frequently in the traditional P. odoratum cultivating areas in recent years, causing a heavy loss in yield and quality. The phenolic acids in soil, which are the exudates from the P. odoratum root, act as allelochemicals that contribute to the consecutive monoculture problem (CMP) of the medicinal plant. The aim of this study was to get a better understanding of P. odoratum CMP. RESULTS: The phenolic acid contents, the nutrient chemical contents, and the enzyme activities related to the soil nutrient metabolism in the first cropping (FC) soil and continuous cropping (CC) soil were determined, and the differentially expressed genes (DEGs) related to the regulation of the phenolic acids in roots were analyzed. The results showed that five low-molecule-weight phenolic acids were detected both in the CC soil and FC soil, but the phenolic acid contents in the CC soil were significantly higher than those in the FC soil except vanillic acid. The contents of the available nitrogen, available phosphorus, and available potassium in the CC soil were significantly decreased, and the activities of urease and sucrase in the CC soil were significantly decreased. The genomic analysis showed that the phenolic acid anabolism in P. odoratum in the CC soil was promoted. These results indicated that the phenolic acids were accumulated in the CC soil, the nutrient condition in the CC soil deteriorated, and the nitrogen metabolism and sugar catabolism of the CC soil were lowered. Meantime, the anabolism of phenolic acids was increased in the CC plant. CONCLUSIONS: The CC system promoted the phenolic acid anabolism in P. odoratum and made phenolic acids accumulate in the soil.


Assuntos
Agricultura/métodos , Hidroxibenzoatos/análise , Polygonatum/genética , Solo/química , Enzimas/análise , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hidroxibenzoatos/metabolismo , Nitrogênio/análise , Fósforo/análise , Proteínas de Plantas/genética , Plantas Medicinais , Polygonatum/metabolismo , Rizosfera , Análise de Sequência de RNA
15.
Cell Mol Biol (Noisy-le-grand) ; 66(2): 47-52, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415926

RESUMO

Polygonatum odoratum is a historically traditional Chinese medicine plant. However, the consecutive monoculture problem (CMP) widespread in other Chinese medicine limiting their cultivation on a large scale. In this study, the physiological data showed the adverse effect of CMP on the growth of P. odoratum under the consecutive cropping (CC) compared with the first cropping (FC). Then the high-throughput sequencing of miRNA and mRNA libraries of leaves and roots from FC and CC P. odoratum plants identified 671 differentially expressed genes (DEGs) and 184 differentially expressed miRNAs and revealed that the DEGs and target genes of the miRNAs were mainly involved in starch and sucrose metabolism, phenylpropanoid and brassinosteroid biosynthesis. The KEGG analysis revealed that the DEGs between CC and FC roots were enriched in the plant-pathogen interaction pathway. This study provided the expression regulation of genes related to CMP of P. odoratum but also suggested that CMP may result in the serious damage of pathogens to roots and cause the slow growth in the consecutive cropping plants.


Assuntos
MicroRNAs/metabolismo , Polygonatum/genética , Transcriptoma , Regulação da Expressão Gênica de Plantas , Medicina Tradicional Chinesa , Células Vegetais/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Polygonatum/citologia , Polygonatum/metabolismo , RNA de Plantas/metabolismo
16.
Zhongguo Zhong Yao Za Zhi ; 45(1): 85-91, 2020 Jan.
Artigo em Zh | MEDLINE | ID: mdl-32237415

RESUMO

Polygonatum cyrtonema belongs to the plant family Liliaceae, and its dried rhizome is one of the sources of Chinese traditional medicine of Polygonati Rhizoma. It possesses the dual function as both medicine and food. Its main chemical components are polysaccharides and saponins. In order to understand the biosynthesis pathway of polysaccharides and diosgenin in P. cyrtonema, the corresponding transcriptomic data were obtained by extracting and sequencing the RNA of four parts of P. cyrtonema, namely, leaves, stems, rhizomes and roots. By adopting BGISEQ-500 sequencing platform, 42.03 Gb data were retrieved. Subsequently, the de novo assembly was carried out by Trinity software to obtain 137 233 transcripts, of which 68.13% of unigenes were annotated in seven databases including KEGG, GO, NR, NT, SwissProt, Pfam and KOG. Transcripts that may be involved in the biosynthesis of polysaccharides and diosgenin were analyzed by data mining. With help of qPCR, we validated expression data of four genes that were possibly involved in the biosynthesis of target metabolites. This experiment provides data for the study of biosynthetic pathways of P. cyrtonema secondary metabolites and the clarification of related structural gene functions.


Assuntos
Diosgenina/metabolismo , Polygonatum/metabolismo , Polissacarídeos/biossíntese , Transcriptoma , Vias Biossintéticas , Perfilação da Expressão Gênica , Compostos Fitoquímicos/biossíntese , Polygonatum/genética
17.
Plant Mol Biol ; 99(3): 205-217, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30627860

RESUMO

KEY MESSAGE: We identified three dormant stages of Polygonatum kingianum and changes that occurred during dormancy transition in the following aspects including cell wall and hormones, as well as interaction among them. Polygonatum kingianum Coll.et Hemsl (P. kingianum) is an important traditional Chinese medicine, but the mechanism of its rhizome bud dormancy has not yet been studied systematically. In this study, three dormancy phases were induced under controlled conditions, and changes occurring during the transition were examined, focusing on phytohormones and the cell wall. As revealed by HPLC-MS (High Performance Liquid Chromatography-Mass Spectrometry) analysis, the endo- to non-dormancy transition was association with a reduced abscisic acid (ABA)/gibberellin (GA3) ratio, a decreased level of auxin (IAA) and an increased level of trans-zeatin (tZR). Transmission electron microscopy showed that plasmodesmata (PDs) and the cell wall of the bud underwent significant changes between endo- and eco-dormancy. A total of 95,462 differentially expressed genes (DEGs) were identified based on transcriptomics, and clustering and principal component analysis confirmed the different physiological statuses of the three types of bud samples. Changes in the abundance of transcripts associated with IAA, cytokinins (CTKs), GA, ABA, brassinolide (BR), jasmonic acid (JA), ethylene, salicylic acid (SA), PDs and cell wall-loosening factors were analysed during the bud dormancy transition in P. kingianum. Furthermore, nitrilase 4 (NIT4) and tryptophan synthase alpha chain (TSA1), which are related to IAA synthesis, were identified as hub genes of the co-expression network, and strong interactions between hormones and cell wall-related factors were observed. This research will provide a good model for chilling-treated rhizome bud dormancy in P. kingianum and cultivation of this plant.


Assuntos
Parede Celular/genética , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Dormência de Plantas/genética , Reguladores de Crescimento de Plantas/genética , Polygonatum/genética , Rizoma/genética , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Brassinosteroides/metabolismo , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Análise por Conglomerados , Ciclopentanos/metabolismo , Citocininas/metabolismo , Etilenos/metabolismo , Perfilação da Expressão Gênica , Giberelinas/genética , Giberelinas/metabolismo , Medicina Tradicional Chinesa , Oxilipinas/metabolismo , Dormência de Plantas/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polygonatum/metabolismo , Rizoma/metabolismo , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Esteroides Heterocíclicos/metabolismo , Triptofano Sintase/metabolismo
18.
Mol Phylogenet Evol ; 129: 202-213, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30195040

RESUMO

Polygonatum is a widespread temperate genus with approximately 75 species centered in the Eastern Himalaya and Indo-Burma biodiversity hotspots. A complete assessment of the remarkable diversity of Polygonatum in these areas requires an accurate circumscription of the genus, as well as a clear understanding of generic and infrageneric relationships, both of which have been problematic in the past. In this study, we reconstruct phylogenetic relationships within Polygonatum and test its monophyly using a phylogenomic approach. For that, we built a comprehensive dataset that includes complete or nearly-complete plastid genomes of 19 species of Polygonatum, one of Disporopsis, and four of Heteropolygonatum. Their plastid genomes do not present any major structural differences and range from 153,821 to 155,580 bp in length. Molecular phylogenetic analyses of the chloroplast coding regions indicate that Polygonatum and Heteropolygonatum are monophyletic, providing support for their recognition as distinct genera and corroborating recent adjustments of their circumscriptions. An expanded analysis with higher species sampling using the petA-psbJ plastid gene region combined with the nuclear ribosomal ITS provided support for the recognition of three distinct sections within Polygonatum. These same sections are further supported by chromosome data: Polygonatum sect. Sibirica (x = 12); Polygonatum sect. Polygonatum (x = 9-11); and, Polygonatum sect. Verticillata (x = 13-15). Populations of P. multiflorum from northwestern Himalaya are here shown to be best treated as a separate taxon, P. govanianum. Furthermore, P. verticillatum is shown to be polyphyletic, indicating that it represents a species-complex that includes multiple Asiatic species. Despite that, additional studies are still needed until the proper nomenclatural adjustments can be made.


Assuntos
Genômica , Filogenia , Polygonatum/classificação , Polygonatum/genética , Teorema de Bayes , Núcleo Celular/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Genomas de Plastídeos/genética , Funções Verossimilhança
19.
Int J Mol Sci ; 18(9)2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28895881

RESUMO

Polygonatum sibiricum polysaccharides (PSPs) are used to improve immunity, alleviate dryness, promote the secretion of fluids, and quench thirst. However, the PSP biosynthetic pathway is largely unknown. Understanding the genetic background will help delineate that pathway at the molecular level so that researchers can develop better conservation strategies. After comparing the PSP contents among several different P. sibiricum germplasms, we selected two groups with the largest contrasts in contents and subjected them to HiSeq2500 transcriptome sequencing to identify the candidate genes involved in PSP biosynthesis. In all, 20 kinds of enzyme-encoding genes were related to PSP biosynthesis. The polysaccharide content was positively correlated with the expression patterns of ß-fructofuranosidase (sacA), fructokinase (scrK), UDP-glucose 4-epimerase (GALE), Mannose-1-phosphate guanylyltransferase (GMPP), and UDP-glucose 6-dehydrogenase (UGDH), but negatively correlated with the expression of Hexokinase (HK). Through qRT-PCR validation and comprehensive analysis, we determined that sacA, HK, and GMPP are key genes for enzymes within the PSP metabolic pathway in P. sibiricum. Our results provide a public transcriptome dataset for this species and an outline of pathways for the production of polysaccharides in medicinal plants. They also present more information about the PSP biosynthesis pathway at the molecular level in P. sibiricum and lay the foundation for subsequent research of gene functions.


Assuntos
Metabolismo dos Carboidratos/genética , Polygonatum/enzimologia , Polygonatum/genética , Polygonatum/metabolismo , Polissacarídeos/biossíntese , Polissacarídeos/genética , Transcriptoma/genética , Sequência de Bases , China , Frutoquinases/genética , Frutoquinases/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Hexoquinase/genética , Hexoquinase/metabolismo , Redes e Vias Metabólicas/genética , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Medicinais/enzimologia , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Polygonatum/classificação , Polissacarídeos/isolamento & purificação , UDPglucose 4-Epimerase/genética , UDPglucose 4-Epimerase/metabolismo , beta-Frutofuranosidase/genética , beta-Frutofuranosidase/metabolismo
20.
J Hered ; 105(5): 690-701, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25124813

RESUMO

Comparative studies on clonal and genetic structure between ecologically contrasting congeners may provide valuable insights into the mechanisms promoting the maintenance of genetic diversity in clonal plant species. Polygonatum stenophyllum has long rhizomes (ca. 30-40 cm long) and largely occurs on sandy soils in open river banks, whereas its congener Polygonatum inflatum has short ones (ca. 5-10 cm long) and occurs on humic soils under deciduous forests. Using 21 allozyme loci, we comparatively assessed levels of clonal and genetic diversity in the 2 clonal species. Seven populations of P. stenophyllum consisted of single clones, and levels of within-population clonal and genetic variation were considerably lower than those of P. inflatum. However, when samples were pooled, P. stenophyllum harbored higher genetic variation than P. inflatum, which is due to higher among-population genetic differentiation in the former species compared with the latter (FST=0.636 vs. FST=0.165). Our data suggest that populations of P. stenophyllum have been mainly founded by a single seed or rhizome (through river water) or by a few seeds, whereas populations of P. inflatum would have been established through multiple, repeated seedling recruitment. Moderate levels of genetic diversity in a population of P. stenophyllum located at the foot of the Baekdudaegan Mountains and in all the populations of P. inflatum are consistent with the previous hypothesis that these mountains served as a glacial refugium for many boreal species of the Korean Peninsula.


Assuntos
Evolução Biológica , Variação Genética , Genética Populacional , Polygonatum/genética , Conservação dos Recursos Naturais , Loci Gênicos , Genótipo , Filogeografia , Polygonatum/classificação , República da Coreia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA