Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.755
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 21(12): 1517-1527, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33169013

RESUMO

CRELD1 is a pivotal factor for heart development, the function of which is unknown in adult life. We here provide evidence that CRELD1 is an important gatekeeper of immune system homeostasis. Exploiting expression variance in large human cohorts contrasting individuals with the lowest and highest CRELD1 expression levels revealed strong phenotypic, functional and transcriptional differences, including reduced CD4+ T cell numbers. These findings were validated in T cell-specific Creld1-deficient mice. Loss of Creld1 was associated with simultaneous overactivation and increased apoptosis, resulting in a net loss of T cells with age. Creld1 was transcriptionally and functionally linked to Wnt signaling. Collectively, gene expression variance in large human cohorts combined with murine genetic models, transcriptomics and functional testing defines CRELD1 as an important modulator of immune homeostasis.


Assuntos
Moléculas de Adesão Celular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Homeostase , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Imunomodulação , Animais , Moléculas de Adesão Celular/genética , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Proteínas da Matriz Extracelular/genética , Expressão Gênica , Técnicas de Inativação de Genes , Homeostase/imunologia , Humanos , Imunossenescência , Ativação Linfocitária/genética , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Via de Sinalização Wnt
2.
Nat Immunol ; 20(7): 915-927, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31110316

RESUMO

The molecular and cellular processes that lead to renal damage and to the heterogeneity of lupus nephritis (LN) are not well understood. We applied single-cell RNA sequencing (scRNA-seq) to renal biopsies from patients with LN and evaluated skin biopsies as a potential source of diagnostic and prognostic markers of renal disease. Type I interferon (IFN)-response signatures in tubular cells and keratinocytes distinguished patients with LN from healthy control subjects. Moreover, a high IFN-response signature and fibrotic signature in tubular cells were each associated with failure to respond to treatment. Analysis of tubular cells from patients with proliferative, membranous and mixed LN indicated pathways relevant to inflammation and fibrosis, which offer insight into their histologic differences. In summary, we applied scRNA-seq to LN to deconstruct its heterogeneity and identify novel targets for personalized approaches to therapy.


Assuntos
Perfilação da Expressão Gênica , Interferon Tipo I/metabolismo , Queratinócitos/metabolismo , Túbulos Renais/citologia , Túbulos Renais/metabolismo , Nefrite Lúpica/genética , Nefrite Lúpica/metabolismo , Transcriptoma , Biópsia , Linhagem da Célula/genética , Biologia Computacional/métodos , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fibrose , Perfilação da Expressão Gênica/métodos , Humanos , Nefrite Lúpica/patologia , Ligação Proteica , Transdução de Sinais , Análise de Célula Única , Pele/imunologia , Pele/metabolismo , Pele/patologia
3.
Cell ; 161(7): 1619-32, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-26091039

RESUMO

The existence of extracellular phosphoproteins has been acknowledged for over a century. However, research in this area has been undeveloped largely because the kinases that phosphorylate secreted proteins have escaped identification. Fam20C is a kinase that phosphorylates S-x-E/pS motifs on proteins in milk and in the extracellular matrix of bones and teeth. Here, we show that Fam20C generates the majority of the extracellular phosphoproteome. Using CRISPR/Cas9 genome editing, mass spectrometry, and biochemistry, we identify more than 100 secreted phosphoproteins as genuine Fam20C substrates. Further, we show that Fam20C exhibits broader substrate specificity than previously appreciated. Functional annotations of Fam20C substrates suggest roles for the kinase beyond biomineralization, including lipid homeostasis, wound healing, and cell migration and adhesion. Our results establish Fam20C as the major secretory pathway protein kinase and serve as a foundation for new areas of investigation into the role of secreted protein phosphorylation in human biology and disease.


Assuntos
Caseína Quinase I/química , Caseína Quinase I/metabolismo , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/metabolismo , Sequência de Aminoácidos , Proteínas Sanguíneas/metabolismo , Caseína Quinase I/genética , Adesão Celular , Movimento Celular , Proteínas do Líquido Cefalorraquidiano/metabolismo , Proteínas da Matriz Extracelular/genética , Técnicas de Inativação de Genes , Ontologia Genética , Humanos , Dados de Sequência Molecular , Fosfoproteínas/análise , Via Secretória , Especificidade por Substrato
4.
Cell ; 157(6): 1380-1392, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24906154

RESUMO

Bromine is ubiquitously present in animals as ionic bromide (Br(-)) yet has no known essential function. Herein, we demonstrate that Br(-) is a required cofactor for peroxidasin-catalyzed formation of sulfilimine crosslinks, a posttranslational modification essential for tissue development and architecture found within the collagen IV scaffold of basement membranes (BMs). Bromide, converted to hypobromous acid, forms a bromosulfonium-ion intermediate that energetically selects for sulfilimine formation. Dietary Br deficiency is lethal in Drosophila, whereas Br replenishment restores viability, demonstrating its physiologic requirement. Importantly, Br-deficient flies phenocopy the developmental and BM defects observed in peroxidasin mutants and indicate a functional connection between Br(-), collagen IV, and peroxidasin. We establish that Br(-) is required for sulfilimine formation within collagen IV, an event critical for BM assembly and tissue development. Thus, bromine is an essential trace element for all animals, and its deficiency may be relevant to BM alterations observed in nutritional and smoking-related disease. PAPERFLICK:


Assuntos
Membrana Basal/metabolismo , Bromo/metabolismo , Drosophila/crescimento & desenvolvimento , Oligoelementos/metabolismo , Animais , Membrana Basal/ultraestrutura , Bromo/deficiência , Linhagem Celular , Colágeno/metabolismo , Drosophila/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Humanos , Iminas/metabolismo , Larva/ultraestrutura , Camundongos , Peroxidase/genética , Peroxidase/metabolismo , Peroxidasina
5.
Cell ; 158(6): 1335-1347, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25201528

RESUMO

The apical dendrites of many neurons contain proximal and distal compartments that receive synaptic inputs from different brain regions. These compartments also contain distinct complements of ion channels that enable the differential processing of their respective synaptic inputs, making them functionally distinct. At present, the molecular mechanisms that specify dendritic compartments are not well understood. Here, we report that the extracellular matrix protein Reelin, acting through its downstream, intracellular Dab1 and Src family tyrosine kinase signaling cascade, is essential for establishing and maintaining the molecular identity of the distal dendritic compartment of cortical pyramidal neurons. We find that Reelin signaling is required for the striking enrichment of HCN1 and GIRK1 channels in the distal tuft dendrites of both hippocampal CA1 and neocortical layer 5 pyramidal neurons, where the channels actively filter inputs targeted to these dendritic domains.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Dendritos/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Serina Endopeptidases/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/metabolismo , Técnicas de Silenciamento de Genes , Hipocampo/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes Neurológicos , Proteínas do Tecido Nervoso/genética , Canais de Potássio/genética , Canais de Potássio/metabolismo , Proteína Reelina , Serina Endopeptidases/genética , Transdução de Sinais , Quinases da Família src/metabolismo
6.
Nat Rev Mol Cell Biol ; 17(2): 97-109, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26726037

RESUMO

Collective cell migration has a key role during morphogenesis and during wound healing and tissue renewal in the adult, and it is involved in cancer spreading. In addition to displaying a coordinated migratory behaviour, collectively migrating cells move more efficiently than if they migrated separately, which indicates that a cellular interplay occurs during collective cell migration. In recent years, evidence has accumulated confirming the importance of such intercellular communication and exploring the molecular mechanisms involved. These mechanisms are based both on direct physical interactions, which coordinate the cellular responses, and on the collective cell behaviour that generates an optimal environment for efficient directed migration. The recent studies have described how leader cells at the front of cell groups drive migration and have highlighted the importance of follower cells and cell-cell communication, both between followers and between follower and leader cells, to improve the efficiency of collective movement.


Assuntos
Comunicação Celular , Movimento Celular , Proteínas da Matriz Extracelular/genética , Morfogênese/genética , Invasividade Neoplásica/genética , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Junções Aderentes/metabolismo , Junções Aderentes/ultraestrutura , Animais , Polaridade Celular , Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Humanos , Transdução de Sinais , Cicatrização/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
7.
Development ; 151(13)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38856043

RESUMO

The function of medial entorhinal cortex layer II (MECII) excitatory neurons has been recently explored. MECII dysfunction underlies deficits in spatial navigation and working memory. MECII neurons comprise two major excitatory neuronal populations, pyramidal island and stellate ocean cells, in addition to the inhibitory interneurons. Ocean cells express reelin and surround clusters of island cells that lack reelin expression. The influence of reelin expression by ocean cells and interneurons on their own morphological differentiation and that of MECII island cells has remained unknown. To address this, we used a conditional reelin knockout (RelncKO) mouse to induce reelin deficiency postnatally in vitro and in vivo. Reelin deficiency caused dendritic hypertrophy of ocean cells, interneurons and only proximal dendritic compartments of island cells. Ca2+ recording showed that both cell types exhibited an elevation of calcium frequencies in RelncKO, indicating that the hypertrophic effect is related to excessive Ca2+ signalling. Moreover, pharmacological receptor blockade in RelncKO mouse revealed malfunctioning of GABAB, NMDA and AMPA receptors. Collectively, this study emphasizes the significance of reelin in neuronal growth, and its absence results in dendrite hypertrophy of MECII neurons.


Assuntos
Moléculas de Adesão Celular Neuronais , Dendritos , Córtex Entorrinal , Proteínas da Matriz Extracelular , Camundongos Knockout , Proteínas do Tecido Nervoso , Proteína Reelina , Serina Endopeptidases , Animais , Córtex Entorrinal/metabolismo , Dendritos/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Camundongos , Interneurônios/metabolismo , Neurônios/metabolismo , Sinalização do Cálcio
8.
Nature ; 588(7839): 705-711, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33299187

RESUMO

Recent studies have suggested that lymphatics help to restore heart function after cardiac injury1-6. Here we report that lymphatics promote cardiac growth, repair and cardioprotection in mice. We show that a lymphoangiocrine signal produced by lymphatic endothelial cells (LECs) controls the proliferation and survival of cardiomyocytes during heart development, improves neonatal cardiac regeneration and is cardioprotective after myocardial infarction. Embryos that lack LECs develop smaller hearts as a consequence of reduced cardiomyocyte proliferation and increased cardiomyocyte apoptosis. Culturing primary mouse cardiomyocytes in LEC-conditioned medium increases cardiomyocyte proliferation and survival, which indicates that LECs produce lymphoangiocrine signals that control cardiomyocyte homeostasis. Characterization of the LEC secretome identified the extracellular protein reelin (RELN) as a key component of this process. Moreover, we report that LEC-specific Reln-null mouse embryos develop smaller hearts, that RELN is required for efficient heart repair and function after neonatal myocardial infarction, and that cardiac delivery of RELN using collagen patches improves heart function in adult mice after myocardial infarction by a cardioprotective effect. These results highlight a lymphoangiocrine role of LECs during cardiac development and injury response, and identify RELN as an important mediator of this function.


Assuntos
Coração/embriologia , Sistema Linfático/citologia , Sistema Linfático/metabolismo , Miocárdio/citologia , Miócitos Cardíacos/citologia , Regeneração , Transdução de Sinais , Animais , Animais Recém-Nascidos , Apoptose , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , Células Endoteliais/metabolismo , Proteínas da Matriz Extracelular/deficiência , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Feminino , Humanos , Integrina beta1/metabolismo , Camundongos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Tamanho do Órgão , Organogênese , Proteína Reelina , Serina Endopeptidases/deficiência , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
9.
Mol Cell Proteomics ; 23(3): 100722, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38272115

RESUMO

Glioblastoma (GBM) is the most aggressive brain tumor and different efforts have been employed in the search for new drugs and therapeutic protocols for GBM. Epitranscriptomics has shed light on new druggable Epigenetic therapies specifically designed to modulate GBM biology and behavior such as Histone Deacetylase inhibitors (iHDAC). Although the effects of iHDAC on GBM have been largely explored, there is a lack of information on the underlaying mechanisms HDAC-dependent that modulate the repertoire of GBM secreted molecules focusing on the set of Extracellular Matrix (ECM) associated proteins, the Matrisome, that may impact the surrounding tumor microenvironment. To acquire a better comprehension of the impacts of HDAC activity on the GBM Matrisome, we studied the alterations on the Matrisome-associated ECM regulators, Core Matrisome ECM glycoproteins, ECM-affiliated proteins and Proteoglycans upon HDAC inhibition in vitro as well as their relationship with glioma pathophysiological/clinical features and angiogenesis. For this, U87MG GBM cells were treated for with iHDAC or vehicle (control) and the whole secretome was processed by Mass Spectrometry NANOLC-MS/MS. In silico analyses revealed that proteins associated to the Angiogenic Matrisome (AngioMatrix), including Decorin, ADAM10, ADAM12 and ADAM15 were differentially regulated in iHDAC versus control secretome. Interestingly, genes coding for the Matrisome proteins differentially regulated were found mutated in patients and were correlated to glioma pathophysiological/clinical features. In vitro functional assays, using HBMEC endothelial cells exposed to the secretome of control or iHDAC treated GBM cells, coupled to 2D and 3D GBM cell culture system, showed impaired migratory capacity of endothelial cells and disrupted tubulogenesis in a Fibronectin and VEGF independent fashion. Collectively, our study provides understanding of epigenetic mechanisms HDAC-dependent to key Matrisomal proteins that may contribute to identify new druggable Epigenetic therapies or gliomagenesis biomarkers with relevant implications to improve therapeutic protocols for this malignancy.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Glioblastoma/patologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Células Endoteliais/metabolismo , Espectrometria de Massas em Tandem , Matriz Extracelular/metabolismo , Glioma/metabolismo , Epigênese Genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Microambiente Tumoral , Proteínas de Membrana/metabolismo , Proteínas ADAM/metabolismo
10.
J Cell Sci ; 136(17)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37555624

RESUMO

The extracellular matrix (ECM) is a complex meshwork of proteins that forms the scaffold of all tissues in multicellular organisms. It plays crucial roles in all aspects of life - from orchestrating cell migration during development, to supporting tissue repair. It also plays critical roles in the etiology or progression of diseases. To study this compartment, we have previously defined the compendium of all genes encoding ECM and ECM-associated proteins for multiple organisms. We termed this compendium the 'matrisome' and further classified matrisome components into different structural or functional categories. This nomenclature is now largely adopted by the research community to annotate '-omics' datasets and has contributed to advance both fundamental and translational ECM research. Here, we report the development of Matrisome AnalyzeR, a suite of tools including a web-based application and an R package. The web application can be used by anyone interested in annotating, classifying and tabulating matrisome molecules in large datasets without requiring programming knowledge. The companion R package is available to more experienced users, interested in processing larger datasets or in additional data visualization options.


Assuntos
Proteínas da Matriz Extracelular , Matriz Extracelular , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Movimento Celular
11.
FASEB J ; 38(7): e23609, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593345

RESUMO

PTPRD, a well-established tumor suppressor gene, encodes the protein tyrosine phosphatase-type D. This protein consists of three immunoglobulin-like (Ig) domains, four to eight fibronectin type 3 (FN) domains, a single transmembrane segment, and two cytoplasmic tandem tyrosine phosphatase domains. PTPRD is known to harbor various cancer-associated point mutations. While it is assumed that PTPRD regulates cellular functions as a tumor suppressor through the tyrosine phosphatase activity in the intracellular region, the function of its extracellular domain (ECD) in cancer is not well understood. In this study, we systematically examined the impact of 92 cancer-associated point mutations within the ECD. We found that 69.6% (64 out of 92) of these mutations suppressed total protein expression and/or plasma membrane localization. Notably, almost all mutations (20 out of 21) within the region between the last FN domain and transmembrane segment affected protein expression and/or localization, highlighting the importance of this region for protein stability. We further found that some mutations within the Ig domains adjacent to the glycosaminoglycan-binding pocket enhanced PTPRD's binding ability to heparan sulfate proteoglycans (HSPGs). This interaction is proposed to suppress phosphatase activity. Our findings therefore suggest that HSPG-mediated attenuation of phosphatase activity may be involved in tumorigenic processes through PTPRD dysregulation.


Assuntos
Proteoglicanas de Heparan Sulfato , Neoplasias , Humanos , Proteoglicanas de Heparan Sulfato/metabolismo , Mutação Puntual , Proteínas da Matriz Extracelular/genética , Imunoglobulinas , Estabilidade Proteica , Tirosina/genética , Monoéster Fosfórico Hidrolases/genética , Heparitina Sulfato , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo
12.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38383722

RESUMO

In mammalian neocortex development, every cohort of newborn neurons is guided toward the marginal zone, leading to an "inside-out" organization of the 6 neocortical layers. This migratory pattern is regulated by the extracellular glycoprotein Reelin. The reeler mouse shows a homozygous mutation of the reelin gene. Using RNA in situ hybridization we could demonstrate that the Reelin-deficient mouse cortex (male and female) displays an increasing lamination defect along the rostro-caudal axis that is characterized by strong cellular intermingling, but roughly reproduces the "inside-out" pattern in rostral cortex, while caudal cortex shows a relative inversion of neuronal positioning ("outside-in"). We found that in development of the reeler cortex, preplate-splitting is also defective with an increasing severity along the rostro-caudal axis. This leads to a misplacement of subplate neurons that are crucial for a switch in migration mode within the cortical plate. Using Flash Tag labeling and nucleoside analog pulse-chasing, we found an according migration defect within the cortical plate, again with a progressive severity along the rostro-caudal axis. Thus, loss of one key player in neocortical development leads to highly area-specific (caudally pronounced) developmental deficiencies that result in multiple roughly opposite rostral versus caudal adult neocortical phenotypes.


Assuntos
Moléculas de Adesão Celular Neuronais , Neurônios , Humanos , Animais , Masculino , Feminino , Camundongos , Moléculas de Adesão Celular Neuronais/metabolismo , Neurônios/fisiologia , Córtex Cerebral/metabolismo , Fenótipo , Proteínas da Matriz Extracelular/genética , Movimento Celular/fisiologia , Mamíferos/metabolismo
13.
J Neurosci ; 43(43): 7226-7241, 2023 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-37699718

RESUMO

The insulin/IGF-1 signaling (IIS) regulates a wide range of biological processes, including aging and lifespan, and has also been implicated in the pathogenesis of Alzheimer's disease (AD). We and others have reported that reduced signaling by genetic ablation of the molecules involved in IIS (e.g., insulin receptor substrate 2 [IRS-2]) markedly mitigates amyloid plaque formation in the brains of mouse models of AD, although the molecular underpinnings of the amelioration remain unsolved. Here, we revealed, by a transcriptomic analysis of the male murine cerebral cortices, that the expression of genes encoding extracellular matrix (ECM) was significantly upregulated by the loss of IRS-2. Insulin signaling activity negatively regulated the phosphorylation of Smad2 and Smad3 in the brain, and suppressed TGF-ß/Smad-dependent expression of a subset of ECM genes in brain-derived cells. The ECM proteins inhibited Aß fibril formation in vitro, and IRS-2 deficiency suppressed the aggregation process of Aß in the brains of male APP transgenic mice as revealed by injection of aggregation seeds in vivo Our results propose a novel mechanism in AD pathophysiology whereby IIS modifies Aß aggregation and amyloid pathology by altering the expression of ECM genes in the brain.SIGNIFICANCE STATEMENT The insulin/IGF-1 signaling (IIS) has been recognized as a regulator of aging, a leading risk factor for the onset of Alzheimer's disease (AD). In AD mouse models, genetic deletion of key IIS molecules markedly reduces the amyloid plaque formation in the brain, although the molecular underpinnings of this amelioration remain elusive. We found that the deficiency of insulin receptor substrate 2 leads to an increase in the expression of various extracellular matrices (ECMs) in the brain, potentially through TGF-ß/Smad signaling. Furthermore, some of those ECMs exhibited the potential to inhibit amyloid plaque accumulation by disrupting the formation of Aß fibrils. This study presents a novel mechanism by which IIS regulates Aß accumulation, which may involve altered brain ECM expression.


Assuntos
Doença de Alzheimer , Masculino , Camundongos , Animais , Doença de Alzheimer/metabolismo , Insulina , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas Substratos do Receptor de Insulina/genética , Proteínas Substratos do Receptor de Insulina/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Placa Amiloide/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Fator de Crescimento Transformador beta/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo
14.
Am J Physiol Cell Physiol ; 326(6): C1659-C1668, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38646784

RESUMO

Idiopathic pulmonary fibrosis (IPF) is marked by the activation of fibroblasts, leading to excessive production and deposition of extracellular matrix (ECM) within the lung parenchyma. Despite the pivotal role of ECM overexpression in IPF, potential negative regulators of ECM production in fibroblasts have yet to be identified. Semaphorin class 3B (SEMA3B), a secreted protein highly expressed in lung tissues, has established roles in axonal guidance and tumor suppression. However, the role of SEMA3B in ECM production by fibroblasts in the pathogenesis of IPF remains unexplored. Here, we show the downregulation of SEMA3B and its cognate binding receptor, neuropilin 1 (NRP1), in IPF lungs compared with healthy controls. Notably, the reduced expression of SEMA3B and NRP1 is associated with a decline in lung function in IPF. The downregulation of SEMA3B and NRP1 transcripts was validated in the lung tissues of patients with IPF, and two alternative mouse models of pulmonary fibrosis. In addition, we show that transforming growth factor-ß (TGFß) functions as a negative regulator of SEMA3B and NRP1 expression in lung fibroblasts. Furthermore, we demonstrate the antifibrotic effects of SEMA3B against TGFß-induced ECM production in IPF lung fibroblasts. Overall, our findings uncovered a novel role of SEMA3B in the pathogenesis of pulmonary fibrosis and provided novel insights into modulating the SEMA3B-NRP1 axis to attenuate pulmonary fibrosis.NEW & NOTEWORTHY The excessive production and secretion of collagens and other extracellular matrix proteins by fibroblasts lead to the scarring of the lung in severe fibrotic lung diseases. This study unveils an antifibrotic role for semaphorin class 3B (SEMA3B) in the pathogenesis of idiopathic pulmonary fibrosis. SEMA3B functions as an inhibitor of transforming growth factor-ß-driven fibroblast activation and reduced levels of SEMA3B and its receptor, neuropilin 1, are associated with decreased lung function in idiopathic pulmonary fibrosis.


Assuntos
Proteínas da Matriz Extracelular , Fibroblastos , Fibrose Pulmonar Idiopática , Pulmão , Neuropilina-1 , Semaforinas , Fator de Crescimento Transformador beta , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Células Cultivadas , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/genética , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Fibrose Pulmonar Idiopática/genética , Pulmão/metabolismo , Pulmão/patologia , Glicoproteínas de Membrana , Camundongos Endogâmicos C57BL , Neuropilina-1/metabolismo , Neuropilina-1/genética , Semaforinas/metabolismo , Semaforinas/genética , Fator de Crescimento Transformador beta/metabolismo
15.
J Biol Chem ; 299(3): 102934, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36690273

RESUMO

Fibrosis is mainly triggered by inflammation in various tissues, such as heart and liver tissues, and eventually leads to their subsequent dysfunction. Fibrosis is characterized by the excessive accumulation of extracellular matrix proteins (e.g., collagens) produced by myofibroblasts. The well-developed actin cytoskeleton of myofibroblasts, one of the main features differentiating them from resident fibroblasts in tissues under inflammatory conditions, contributes to maintaining their ability to produce excessive extracellular matrix proteins. However, the molecular mechanisms via which the actin cytoskeleton promotes the production of fibrosis-related genes in myofibroblasts remain unclear. In this study, we found, via single-cell analysis, that developmentally regulated brain protein (drebrin), an actin-binding protein, was specifically expressed in cardiac myofibroblasts with a well-developed actin cytoskeleton in fibrotic hearts. Moreover, our immunocytochemistry analysis revealed that drebrin promoted actin cytoskeleton formation and myocardin-related transcription factor-serum response factor signaling. Comprehensive single-cell analysis and RNA-Seq revealed that the expression of collagen triple helix repeat containing 1 (Cthrc1), a fibrosis-promoting secreted protein, was regulated by drebrin in cardiac myofibroblasts via myocardin-related transcription factor-serum response factor signaling. Furthermore, we observed the profibrotic effects of drebrin exerted via actin cytoskeleton formation and the Cthrc1 expression regulation by drebrin in liver myofibroblasts (hepatic stellate cells). Importantly, RNA-Seq demonstrated that drebrin expression levels increased in human fibrotic heart and liver tissues. In summary, our results indicated that the well-developed actin cytoskeleton and Cthrc1 expression due to drebrin in myofibroblasts promoted cardiac and hepatic fibrosis, suggesting that drebrin is a therapeutic target molecule for fibrosis.


Assuntos
Citoesqueleto de Actina , Proteínas da Matriz Extracelular , Fibrose , Miofibroblastos , Neuropeptídeos , Humanos , Citoesqueleto de Actina/metabolismo , Miofibroblastos/patologia , Fibrose/fisiopatologia , Análise da Expressão Gênica de Célula Única , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Diferenciação Celular/fisiologia , Transdução de Sinais , Células Estreladas do Fígado/metabolismo , Cardiopatias/fisiopatologia , Cirrose Hepática/fisiopatologia
16.
J Cell Physiol ; 239(3): e31062, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37357387

RESUMO

It has been known that periodontal ligament-associated protein-1 (PLAP-1/Asporin) not only inhibits cartilage formation in osteoarthritis, but it also influences the healing of skull defect. However, the effect and mechanism of PLAP-1/Asporin on the mutual regulation of osteoclasts and osteoblasts in periodontitis are not clear. In this study, we utilized a PLAP-1/Asporin gene knockout (KO) mouse model to research this unknown issue. We cultured mouse bone marrow mesenchymal stem cells with Porphyromonas gingivalis lipopolysaccharide (P.g. LPS) for osteogenic induction in vitro. The molecular mechanism of PLAP-1/Asporin in the regulation of osteoblasts was detected by immunoprecipitation, immunofluorescence, and inhibitors of signaling pathways. The results showed that the KO of PLAP-1/Asporin promoted osteogenic differentiation through transforming growth factor beta 1 (TGF-ß1)/Smad3 in inflammatory environments. We further found the KO of PLAP-1/Asporin inhibited osteoclast differentiation and promoted osteogenic differentiation through the TGF-ß1/Smad signaling pathway in an inflammatory coculture system. The experimental periodontitis model was established by silk ligation and the alveolar bone formation in PLAP-1/Asporin KO mice was promoted through TGF-ß1/Smad3 signaling pathway. The subcutaneous osteogenesis model in nude mice also confirmed that the KO of PLAP-1/Asporin promoted bone formation by the histochemical staining. In conclusion, PLAP-1/Asporin regulated the differentiation of osteoclasts and osteoblasts through TGF-ß1/Smad signaling pathway. The results of this study lay a theoretical foundation for the further study of the pathological mechanism underlying alveolar bone resorption, and the prevention and treatment of periodontitis.


Assuntos
Proteínas da Matriz Extracelular , Osteoblastos , Osteoclastos , Osteogênese , Periodontite , Animais , Camundongos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Camundongos Knockout , Camundongos Nus , Osteoblastos/citologia , Osteoclastos/citologia , Osteogênese/genética , Ligamento Periodontal/metabolismo , Periodontite/genética , Periodontite/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Células-Tronco Mesenquimais , Porphyromonas gingivalis , Lipopolissacarídeos
17.
J Cell Biochem ; 125(1): 45-58, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38083999

RESUMO

Primary open-angle glaucoma (POAG) is the most common type of glaucoma. Using whole-exome sequencing, we identified two independent families diagnosed as POAG from the China with a novel EFEMP1 variant (Exon3, c.175A>C p.Met59Leu); Three previously reported variants c.1160G>A p.R387Q, c.1189T>C p.Y397H, and c.1429C>T p.R477C in EFEPM1 from 55 sporadic POAG individuals were also identified. The variant c.175A>C p.Met59Leu co-segregated with the disease phenotype within the families. Immunoprecipitation and western blot assays showed that all three EFEMP1 mutants (p.Met59Leu, pArg140Trp, pArg345Trp) increased intracellular protein aggregations, and pMet59Leu and pArg140Arg also enhanced their extracellular proteins secretion, compared to WT in HEK293T. The differential regulations to endoplasmic reticulum (ER) stress markers ATF4, GPR78/94, and CHOP, and differential phosphorylation activations to CREB at Ser133, AKT at Ser473, p44/42 at Thr202/Tyr204, and STAT3 at Tyr705, were also detected among the mutants and WT. Finally, we revealed a significant increment of intraocular pressure and obvious reduction of RGC cells at the sixth week following intravitreal injection of adenovirus 5 (Ad5) expressing in pMet59Leu compared to WT and GFP controls. Together, variant c.175A>C p.Met59Leu in EFEMP1 is pathogenic and different mutants in EFEMP1 triggered distinct signaling pathways, explaining the reason of mutation-dependent disease phenotypes of EFEMP1.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , Humanos , Camundongos , Animais , Glaucoma de Ângulo Aberto/genética , Células HEK293 , Mutação , Estresse do Retículo Endoplasmático/genética , Proteínas do Olho/genética , Proteínas da Matriz Extracelular/genética
18.
Am J Physiol Renal Physiol ; 326(6): F1016-F1031, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38601985

RESUMO

Esm-1, endothelial cell-specific molecule-1, is a susceptibility gene for diabetic kidney disease (DKD) and is a secreted proteoglycan, with notable expression in kidney, which attenuates inflammation and albuminuria. However, little is known about Esm1 expression in mature tissues in the presence or absence of diabetes. We utilized publicly available single-cell RNA sequencing data to characterize Esm1 expression in 27,786 renal endothelial cells (RECs) obtained from three mouse and four human databases. We validated our findings using bulk transcriptome data from 20 healthy subjects and 41 patients with DKD and using RNAscope. In both mice and humans, Esm1 is expressed in a subset of all REC types and represents a minority of glomerular RECs. In patients, Esm1(+) cells exhibit conserved enrichment for blood vessel development genes. With diabetes, these cells are fewer in number and shift expression toward chemotaxis pathways. Esm1 correlates with a majority of genes within these pathways, delineating a glomerular transcriptional polarization reflected by the magnitude of Esm1 deficiency. Diabetes correlates with lower Esm1 expression and with changes in the functional characterization of Esm1(+) cells. Thus, Esm1 appears to be a marker for glomerular transcriptional polarization in DKD.NEW & NOTEWORTHY Esm-1 is primarily expressed in glomerular endothelium in humans. Cells expressing Esm1 exhibit a high degree of conservation in the enrichment of genes related to blood vessel development. In the context of diabetes, these cells are reduced in number and show a significant transcriptional shift toward the chemotaxis pathway. In diabetes, there is a transcriptional polarization in the glomerulus that is reflected by the degree of Esm1 deficiency.


Assuntos
Nefropatias Diabéticas , Células Endoteliais , Proteoglicanas , Humanos , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Animais , Proteoglicanas/genética , Proteoglicanas/metabolismo , Células Endoteliais/metabolismo , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Estudos de Casos e Controles , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Transcriptoma , Camundongos , Transcrição Gênica , Quimiotaxia , Proteínas de Neoplasias
19.
Neurogenetics ; 25(3): 249-262, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38775886

RESUMO

Glioblastomas (GBM) are aggressive tumors known for their heterogeneity, rapid proliferation, treatment resistance, and extensive vasculature. Angiogenesis, the formation of new vessels, involves endothelial cell (EC) migration and proliferation. Various extracellular matrix (ECM) molecules regulate EC survival, migration, and proliferation. Culturing human brain EC (HBMEC) on GBM-derived ECM revealed a decrease in EC numbers compared to controls. Through in silico analysis, we explored ECM gene expression differences between GBM and brain normal glia cells and the impact of GBM microenvironment on EC ECM transcripts. ECM molecules such as collagen alpha chains (COL4A1, COL4A2, p < 0.0001); laminin alpha (LAMA4), beta (LAMB2), and gamma (LAMC1) chains (p < 0.0005); neurocan (NCAN), brevican (BCAN) and versican (VCAN) (p < 0.0005); hyaluronan synthase (HAS) 2 and metalloprotease (MMP) 2 (p < 0.005); MMP inhibitors (TIMP1-4, p < 0.0005), transforming growth factor beta-1 (TGFB1) and integrin alpha (ITGA3/5) (p < 0.05) and beta (ITGB1, p < 0.0005) chains showed increased expression in GBM. Additionally, GBM-influenced EC exhibited elevated expression of COL5A3, COL6A1, COL22A1 and COL27A1 (p < 0.01); LAMA1, LAMB1 (p < 0.001); fibulins (FBLN1/2, p < 0.01); MMP9, HAS1, ITGA3, TGFB1, and wingless-related integration site 9B (WNT9B) (p < 0.01) compared to normal EC. Some of these molecules: COL5A1/3, COL6A1, COL22/27A1, FBLN1/2, ITGA3/5, ITGB1 and LAMA1/B1 (p < 0.01); NCAN, HAS1, MMP2/9, TIMP1/2 and TGFB1 (p < 0.05) correlated with GBM patient survival. In conclusion, this study identified both established and novel ECM molecules regulating GBM angiogenesis, suggesting NCAN and COL27A1 are new potential prognostic biomarkers for GBM.


Assuntos
Neoplasias Encefálicas , Matriz Extracelular , Glioblastoma , Neovascularização Patológica , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Matriz Extracelular/metabolismo , Prognóstico , Células Endoteliais/metabolismo , Microambiente Tumoral/genética , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Laminina/metabolismo , Laminina/genética , Angiogênese
20.
Mol Cancer ; 23(1): 1, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172877

RESUMO

This study investigates methylation patterns in circulating cell-free DNA (ccfDNA) for their potential role in colorectal cancer (CRC) detection and the monitoring of treatment response. Through methylation microarrays and quantitative PCR assays, we analyzed 440 samples from The Cancer Genome Atlas (TCGA) and an additional 949 CRC samples. We detected partial or extensive methylation in over 85% of cases within three biomarkers: EFEMP1, SFRP2, and UNC5C. A methylation score for at least one of the six candidate regions within these genes' promoters was present in over 95% of CRC cases, suggesting a viable detection method. In evaluating ccfDNA from 97 CRC patients and 62 control subjects, a difference in methylation and recovery signatures was observed. The combined score, integrating both methylation and recovery metrics, showed high diagnostic accuracy, evidenced by an area under the ROC curve of 0.90 (95% CI = 0.86 to 0.94). While correlating with tumor burden, this score gave early insight into disease progression in a small patient cohort. Our results suggest that DNA methylation in ccfDNA could serve as a sensitive biomarker for CRC, offering a less invasive and potentially more cost-effective approach to augment existing cancer detection and monitoring modalities, possibly supporting comprehensive genetic mutation profiling.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Colorretais , Humanos , Metilação de DNA , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ácidos Nucleicos Livres/genética , Resultado do Tratamento , Mutação , Proteínas da Matriz Extracelular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA