Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(25): e2401831121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38875147

RESUMO

Ovoid-shaped bacteria, such as Streptococcus pneumoniae (pneumococcus), have two spatially separated peptidoglycan (PG) synthase nanomachines that locate zonally to the midcell of dividing cells. The septal PG synthase bPBP2x:FtsW closes the septum of dividing pneumococcal cells, whereas the elongasome located on the outer edge of the septal annulus synthesizes peripheral PG outward. We showed previously by sm-TIRFm that the septal PG synthase moves circumferentially at midcell, driven by PG synthesis and not by FtsZ treadmilling. The pneumococcal elongasome consists of the PG synthase bPBP2b:RodA, regulators MreC, MreD, and RodZ, but not MreB, and genetically associated proteins Class A aPBP1a and muramidase MpgA. Given its zonal location separate from FtsZ, it was of considerable interest to determine the dynamics of proteins in the pneumococcal elongasome. We found that bPBP2b, RodA, and MreC move circumferentially with the same velocities and durations at midcell, driven by PG synthesis. However, outside of the midcell zone, the majority of these elongasome proteins move diffusively over the entire surface of cells. Depletion of MreC resulted in loss of circumferential movement of bPBP2b, and bPBP2b and RodA require each other for localization and circumferential movement. Notably, a fraction of aPBP1a molecules also moved circumferentially at midcell with velocities similar to those of components of the core elongasome, but for shorter durations. Other aPBP1a molecules were static at midcell or diffusing over cell bodies. Last, MpgA displayed nonprocessive, subdiffusive motion that was largely confined to the midcell region and less frequently detected over the cell body.


Assuntos
Proteínas de Bactérias , Proteínas de Ligação às Penicilinas , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolismo , Streptococcus pneumoniae/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação às Penicilinas/metabolismo , Proteínas de Ligação às Penicilinas/genética , Peptidoglicano/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Peptidoglicano Glicosiltransferase/genética
2.
J Struct Biol ; 216(2): 108086, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38527711

RESUMO

Staphylococcus aureus, an ESKAPE pathogen, is a major clinical concern due to its pathogenicity and manifold antimicrobial resistance mechanisms. The commonly used ß-lactam antibiotics target bacterial penicillin-binding proteins (PBPs) and inhibit crosslinking of peptidoglycan strands that comprise the bacterial cell wall mesh, initiating a cascade of effects leading to bacterial cell death. S. aureus PBP1 is involved in synthesis of the bacterial cell wall during division and its presence is essential for survival of both antibiotic susceptible and resistant S. aureus strains. Here, we present X-ray crystallographic data for S. aureus PBP1 in its apo form as well as acyl-enzyme structures with distinct classes of ß-lactam antibiotics representing the penicillins, carbapenems, and cephalosporins, respectively: oxacillin, ertapenem and cephalexin. Our structural data suggest that the PBP1 active site is readily accessible for substrate, with little conformational change in key structural elements required for its covalent acylation of ß-lactam inhibitors. Stopped-flow kinetic analysis and gel-based competition assays support the structural observations, with even the weakest performing ß-lactams still having comparatively high acylation rates and affinities for PBP1. Our structural and kinetic analysis sheds insight into the ligand-PBP interactions that drive antibiotic efficacy against these historically useful antimicrobial targets and expands on current knowledge for future drug design and treatment of S. aureus infections.


Assuntos
Proteínas de Ligação às Penicilinas , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/genética , Cristalografia por Raios X , Cinética , Antibacterianos/farmacologia , Antibacterianos/química , beta-Lactamas/farmacologia , beta-Lactamas/metabolismo , beta-Lactamas/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Domínio Catalítico , Conformação Proteica , Modelos Moleculares
3.
Antimicrob Agents Chemother ; 68(4): e0117923, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38415648

RESUMO

Streptococcus mitis/oralis group isolates with reduced carbapenem susceptibility have been reported, but its isolation rate in Japan is unknown. We collected 356 clinical α-hemolytic streptococcal isolates and identified 142 of them as S. mitis/oralis using partial sodA sequencing. The rate of meropenem non-susceptibility was 17.6% (25/142). All 25 carbapenem-non-susceptible isolates harbored amino acid substitutions in/near the conserved motifs in PBP1A, PBP2B, and PBP2X. Carbapenem non-susceptibility is common among S. mitis/oralis group isolates in Japan.


Assuntos
Carbapenêmicos , Streptococcus mitis , Proteínas de Ligação às Penicilinas/genética , Streptococcus mitis/genética , Streptococcus mitis/metabolismo , Carbapenêmicos/farmacologia , Japão , Substituição de Aminoácidos , Testes de Sensibilidade Microbiana , Streptococcus/metabolismo , Estreptococos Viridans/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
4.
Antimicrob Agents Chemother ; 68(4): e0154823, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38415988

RESUMO

The impact of penicillin-binding protein 3 (PBP3) modifications that may be identified in Escherichia coli was evaluated with respect to susceptibility to ß-lactam/ß-lactamase inhibitor combinations including ceftazidime-avibactam, imipenem-relebactam, meropenem-vaborbactam, aztreonam-avibactam, cefepime-taniborbactam, and to cefiderocol. A large series of E. coli recombinant strains producing broad-spectrum ß-lactamases was evaluated. While imipenem-relebactam showed a similar activity regardless of the PBP3 background, susceptibility to other molecules tested was affected at various levels. This was particularly the case for ceftazidime-avibactam, aztreonam-avibactam, and cefepime-taniborbactam.


Assuntos
Aztreonam , Ácidos Borínicos , Ácidos Borônicos , Ácidos Carboxílicos , Cefiderocol , Ceftazidima , Aztreonam/farmacologia , Meropeném/farmacologia , Cefepima/farmacologia , Proteínas de Ligação às Penicilinas , Escherichia coli , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/química , Combinação de Medicamentos , Imipenem/farmacologia , Imipenem/química , Testes de Sensibilidade Microbiana
5.
Biochem Biophys Res Commun ; 729: 150368, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38986258

RESUMO

Penicillin-binding protein 2 (PBP2), a vital protein involved in bacterial cell-wall synthesis, serves a target for ß-lactam antibiotics. Acinetobacter baumannii is a pathogen notorious for multidrug resistance; therefore, exploration of PBPs is pivotal in the development of new antimicrobial strategies. In this study, the tertiary structure of PBP2 from A. baumannii (abPBP2) was elucidated using X-ray crystallography. The structural analysis demonstrated notable movement in the head domain, potentially critical for its glycosyltransferase function, suggesting that abPBP2 assumes a fully closed conformation. Our findings offer valuable information for developing novel antimicrobial agents targeting abPBP2 that are applicable in combating multidrug-resistant infections.


Assuntos
Acinetobacter baumannii , Proteínas de Ligação às Penicilinas , Conformação Proteica , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/química , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Proteínas de Ligação às Penicilinas/genética , Cristalografia por Raios X , Modelos Moleculares , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Antibacterianos/química , Sequência de Aminoácidos
6.
Biochem Biophys Res Commun ; 710: 149859, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38581948

RESUMO

Penicillin-binding protein 2 (PBP2) plays a key role in the formation of peptidoglycans in bacterial cell walls by crosslinking glycan chains through transpeptidase activity. PBP2 is also found in Campylobacter jejuni, a pathogenic bacterium that causes food-borne enteritis in humans. To elucidate the essential structural features of C. jejuni PBP2 (cjPBP2) that mediate its biological function, we determined the crystal structure of cjPBP2 and assessed its protein stability under various conditions. cjPBP2 adopts an elongated two-domain structure, consisting of a transpeptidase domain and a pedestal domain, and contains typical active site residues necessary for transpeptidase activity, as observed in other PBP2 proteins. Moreover, cjPBP2 responds to ß-lactam antibiotics, including ampicillin, cefaclor, and cefmetazole, suggesting that ß-lactam antibiotics inactivate cjPBP2. In contrast to typical PBP2 proteins, cjPBP2 is a rare example of a Zn2+-binding PBP2 protein, as the terminal structure of its transpeptidase domain accommodates a Zn2+ ion via three cysteine residues and one histidine residue. Zn2+ binding helps improve the protein stability of cjPBP2, providing opportunities to develop new C. jejuni-specific antibacterial drugs that counteract the Zn2+-binding ability of cjPBP2.


Assuntos
Campylobacter jejuni , Peptidil Transferases , Humanos , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Antibacterianos/farmacologia , Ampicilina/farmacologia , Proteínas de Bactérias
7.
Small ; 20(24): e2311764, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38506607

RESUMO

The development of novel method for drug-resistant bacteria detection is imperative. A simultaneous dual-gene Test of methicillin-resistant Staphylococcus aureus (MRSA) is developed using an Argonaute-centered portable biosensor (STAR). This is the first report concerning Argonaute-based pathogenic bacteria detection. Simply, the species-specific mecA and nuc gene are isothermally amplified using loop-mediated isothermal amplification (LAMP) technique, followed by Argonaute-based detection enabled by its programmable, guided, sequence-specific recognition and cleavage. With the strategy, the targeted nucleic acid signals gene are dexterously converted into fluorescent signals. STAR is capable of detecting the nuc gene and mecA gene simultaneously in a single reaction. The limit of detection is 10 CFU/mL with a dynamic range from 10 to 107 CFU/mL. The sample-to-result time is <65 min. This method is successfully adapted to detect clinical samples, contaminated foods, and MRSA-infected animals. This work broadens the reach of Argonaute-based biosensing and presents a novel bacterial point-of-need (PON) detection platform.


Assuntos
Técnicas Biossensoriais , Staphylococcus aureus Resistente à Meticilina , Técnicas de Amplificação de Ácido Nucleico , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Técnicas Biossensoriais/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Proteínas Argonautas/metabolismo , Proteínas Argonautas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação às Penicilinas/genética , Animais , Nuclease do Micrococo/metabolismo , Nuclease do Micrococo/genética
8.
J Clin Microbiol ; 62(2): e0012023, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38284761

RESUMO

Rapid phenotypic detection assays, including Carba NP and its variants, are widely applied for clinical diagnosis of carbapenemase-producing Enterobacterales (CPE). However, these tests are based on the acidification of the pH indicator during carbapenem hydrolysis, which limits test sensitivity and speed, especially for the detection of CPE producing low-activity carbapenem (e.g., OXA-48 variants). Herein, we developed a novel rapid and sensitive CPE detection method (Carba PBP) that could measure substrate (meropenem) consumption based on penicillin-binding protein (PBP). Meropenem-specific PBP was used to develop a competitive lateral flow assay (LFA) for meropenem identification. For the detection of carbapenemase activity, meropenem concentration was optimized using a checkerboard assay. The performance of Carba PBP was evaluated and compared with that of Carba NP using a panel of 94 clinical strains characterized by whole-genome sequencing and carbapenem susceptibility test. The limit of detection of PBP-based LFA for meropenem identification was 7 ng mL-1. Using 10 ng mL-1 meropenem as the substrate, Carba PBP and Carba NP could detect 10 ng mL-1 carbapenemase within 25 min and 1,280 ng mL-1 CPE in 2 h, respectively. The sensitivity and specificity were 100% (75/75) and 100% (19/19) for Carba PBP and 85.3% (64/75) and 100% (19/19) for Carba NP, respectively. When compared with Carba NP, Carba PBP showed superior performance in detecting all the tested CPE strains (including OXA-48-like variants) within 25 min and presented two orders of magnitude higher analytical sensitivity, demonstrating potential for clinical diagnosis of CPE. IMPORTANCE This study successfully achieved the goal of carbapenemase activity detection with both high sensitivity and convenience, offering a convenient lateral flow assay for clinical diagnosis of carbapenemase-producing Enterobacterales.


Assuntos
Proteínas de Bactérias , beta-Lactamases , Humanos , Proteínas de Ligação às Penicilinas/genética , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/metabolismo , Carbapenêmicos/farmacologia , Sensibilidade e Especificidade
9.
J Antimicrob Chemother ; 79(2): 403-411, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38153239

RESUMO

BACKGROUND: Streptococcus suis is an important pig pathogen and an emerging zoonotic agent. In a previous study, we described a high proportion of penicillin-resistant serotype 9 S. suis (SS9) isolates on pig farms in Italy. OBJECTIVES: We hypothesized that resistance to penicillin emerged in some SS9 lineages characterized by substitutions at the PBPs, contributing to the successful spread of these lineages in the last 20 years. METHODS: Sixty-six SS9 isolates from cases of streptococcosis in pigs were investigated for susceptibility to penicillin, ceftiofur and ampicillin. The isolates were characterized for ST, virulence profile, and antimicrobial resistance genes through WGS. Multiple linear regression models were employed to investigate the associations between STs, year of isolation, substitutions at the PBPs and an increase in MIC values to ß-lactams. RESULTS: MIC values to penicillin increased by 4% each year in the study period. Higher MIC values for penicillin were also positively associated with ST123, ST1540 and ST1953 compared with ST16. The PBP sequences presented a mosaic organization of blocks. Within the same ST, substitutions at the PBPs were generally more frequent in recent isolates. Resistance to penicillin was driven by substitutions at PBP2b, including K479T, D512E and K513E, and PBP2x, including T551S, while reduced susceptibility to ceftiofur and ampicillin were largely dependent on substitutions at PBP2x. CONCLUSIONS: Here, we identify the STs and substitutions at the PBPs responsible for increased resistance of SS9 to penicillin on Italian pig farms. Our data highlight the need for monitoring the evolution of S. suis in the coming years.


Assuntos
Aminoaciltransferases , Cefalosporinas , Streptococcus suis , Animais , Suínos , Penicilinas/farmacologia , Proteínas de Ligação às Penicilinas/genética , Streptococcus suis/genética , Proteínas de Bactérias/genética , Streptococcus pneumoniae/genética , Sorogrupo , Aminoaciltransferases/genética , Testes de Sensibilidade Microbiana , Resistência às Penicilinas/genética , Genômica , Ampicilina , Células Clonais , Antibacterianos/farmacologia
10.
Appl Environ Microbiol ; 90(1): e0054823, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38126750

RESUMO

Penicillin-binding proteins (PBPs) play critical roles in cell wall construction, cell shape maintenance, and bacterial replication. Bacteria maintain a diversity of PBPs, indicating that despite their apparent functional redundancy, there is differentiation across the PBP family. Apparently-redundant proteins can be important for enabling an organism to cope with environmental stressors. In this study, we evaluated the consequence of environmental pH on PBP enzymatic activity in Bacillus subtilis. Our data show that a subset of PBPs in B. subtilis change activity levels during alkaline shock and that one PBP isoform is rapidly modified to generate a smaller protein (i.e., PBP1a to PBP1b). Our results indicate that a subset of the PBPs are favored for growth under alkaline conditions, while others are readily dispensable. Indeed, we found that this phenomenon could also be observed in Streptococcus pneumoniae, implying that it may be generalizable across additional bacterial species and further emphasizing the evolutionary benefit of maintaining many, seemingly-redundant periplasmic enzymes.IMPORTANCEMicrobes adapt to ever-changing environments and thrive over a vast range of conditions. While bacterial genomes are relatively small, significant portions encode for "redundant" functions. Apparent redundancy is especially pervasive in bacterial proteins that reside outside of the inner membrane. While conditions within the cytoplasm are carefully controlled, those of the periplasmic space are largely determined by the cell's exterior environment. As a result, proteins within this environmentally exposed region must be capable of functioning under a vast array of conditions, and/or there must be several similar proteins that have evolved to function under a variety of conditions. This study examines the activity of a class of enzymes that is essential in cell wall construction to determine if individual proteins might be adapted for activity under particular growth conditions. Our results indicate that a subset of these proteins are preferred for growth under alkaline conditions, while others are readily dispensable.


Assuntos
Bacillus subtilis , Proteínas de Bactérias , Proteínas de Ligação às Penicilinas , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Citoplasma/metabolismo
11.
Analyst ; 149(8): 2204-2222, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38517346

RESUMO

The cell wall is essential for bacteria to maintain structural rigidity and withstand external osmotic pressure. In bacteria, the cell wall is composed of peptidoglycan. Lipid II is the basic unit for constructing highly cross-linked peptidoglycan scaffolds. Transglycosylase (TGase) is the initiating enzyme in peptidoglycan synthesis that catalyzes the ligation of lipid II moieties into repeating GlcNAc-MurNAc polysaccharides, followed by transpeptidation to generate cross-linked structures. In addition to the transglycosylases in the class-A penicillin-binding proteins (aPBPs), SEDS (shape, elongation, division and sporulation) proteins are also present in most bacteria and play vital roles in cell wall renewal, elongation, and division. In this review, we focus on the latest analytical methods including the use of radioactive labeling, gel electrophoresis, mass spectrometry, fluorescence labeling, probing undecaprenyl pyrophosphate, fluorescence anisotropy, ligand-binding-induced tryptophan fluorescence quenching, and surface plasmon resonance to evaluate TGase activity in cell wall formation. This review also covers the discovery of TGase inhibitors as potential antibacterial agents. We hope that this review will give readers a better understanding of the chemistry and basic research for the development of novel antibiotics.


Assuntos
Bactérias , Peptidoglicano , Peptidoglicano/química , Bactérias/metabolismo , Proteínas de Ligação às Penicilinas , Parede Celular/metabolismo , Proteínas de Bactérias/metabolismo
12.
Org Biomol Chem ; 22(33): 6713-6717, 2024 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-39119636

RESUMO

Penicillin-binding protein-type thioesterases (PBP-type TEs) catalyze head-to-tail macrolactamization in bacterial nonribosomal peptide biosynthesis. Here the scope of FlkO, a new PBP-type TE in cyclofaulknamycin biosynthesis, was thoroughly evaluated. The preference for small residues at the substrate C-terminus was consistent with the decreased volume of its putative substrate-binding pocket.


Assuntos
Proteínas de Ligação às Penicilinas , Proteínas de Ligação às Penicilinas/metabolismo , Proteínas de Ligação às Penicilinas/química , Streptomyces/enzimologia , Streptomyces/metabolismo , Tioléster Hidrolases/metabolismo , Tioléster Hidrolases/química , Especificidade por Substrato
13.
Mol Biol Rep ; 51(1): 761, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874884

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) poses a great health threat to humans. Looking for compounds that could reduce the resistance of S. aureus towards methicillin is an effective way to alleviate the antimicrobial resistance crisis. METHODS AND RESULTS: Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), Time-killing growth curve, staphyloxanthin and penicillin-binding protein 2a (PBP2a) were detected. A quantitative polymerase chain reaction was used to measure the effect of BBH on the gene transcription profiles of MRSA. The MIC of MRSA-ST59-t437 towards oxacillin was 8 µg/ml, and MBC was 128 µg/ml. After adding a sub-inhibitory concentration of BBH, the MIC and MBC of MRSA-ST59-t478 towards oxacillin went down to 0.125 and 32 µg/ml respectively. The amount of PBP2a and staphyloxanthin were reduced after treatment with BBH. Moreover, the transcription levels of sarA, mecA and fni genes were downregulated. CONCLUSIONS: It is for the first time reported that BBH could inhibit staphyloxanthin synthesis by inhibiting fni gene. Moreover, fni might be the target gene of sarA, and there might be another regulatory pathway to inhibit staphyloxanthin biosynthesis. BBH could effectively reduce the methicillin resistance of MRSA-ST59-t437 by downregulating fni, sarA and mecA genes.


Assuntos
Antibacterianos , Proteínas de Bactérias , Berberina , Staphylococcus aureus Resistente à Meticilina , Testes de Sensibilidade Microbiana , Xantofilas , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Xantofilas/farmacologia , Berberina/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Antibacterianos/farmacologia , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Oxacilina/farmacologia
14.
Mol Biol Rep ; 51(1): 665, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777940

RESUMO

BACKGROUND: Staphylococcus aureus (S. aureus) associated with COVID-19 has not been well documented. This cross-sectional study evaluated the association between nasal S. aureus carriage and COVID-19. METHODS AND RESULTS: Nasopharyngeal samples were collected from 391 participants presenting for COVID-19 test in Lagos, Nigeria, and S. aureus was isolated from the samples. Antimicrobial susceptibility test was done by disc diffusion method. All S. aureus isolates were screened for the presence of mecA, panton-valentine leucocidin (PVL) and toxic shock syndrome toxin (TSST) virulence genes by polymerase chain reaction. Staphylococcal protein A (spa) typing was conducted for all the isolates. Participants with COVID-19 had double the prevalence of S. aureus (42.86%) compared to those who tested negative (20.54%). A significant association was seen between S. aureus nasal carriage and COVID-19 (p = 0.004). Antimicrobial sensitivity results showed resistance to oxacillin (100%), cefoxitin (53%), and vancomycin (98.7%). However, only 41% of the isolates harbored the mecA gene, with SCCmecV being the most common SCCmec type. There was no association between the carriage of virulence genes and COVID-19. A total of 23 Spa types were detected, with t13249 and t095 being the two most common spa types. CONCLUSION: This study examined the association between nasal S. aureus carriage and SARS-COV-2 infection. Further research is required to fully explore the implications of S. aureus co-infection with COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Infecções Estafilocócicas , Staphylococcus aureus , Humanos , COVID-19/microbiologia , COVID-19/epidemiologia , COVID-19/virologia , Infecções Estafilocócicas/epidemiologia , Infecções Estafilocócicas/microbiologia , Estudos Transversais , Masculino , Feminino , Staphylococcus aureus/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/isolamento & purificação , Adulto , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Pessoa de Meia-Idade , Toxinas Bacterianas/genética , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Comorbidade , Proteínas de Bactérias/genética , Virulência/genética , Nigéria/epidemiologia , Farmacorresistência Bacteriana Múltipla/genética , Antibacterianos/farmacologia , Portador Sadio/epidemiologia , Portador Sadio/microbiologia , Testes de Sensibilidade Microbiana , Proteínas de Ligação às Penicilinas/genética , Leucocidinas/genética , Exotoxinas/genética , Fatores de Virulência/genética , Adulto Jovem
15.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 40-47, 2024 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650157

RESUMO

The penicillin binding protein 2a (PBP2a) is a key enzyme associated with bacterial cell wall synthesis and bacterial infection. Therefore, targeting PBPa2 offers a promising approach for the therapeutics of bacterial resistance and infection. This study presents a comprehensive analysis of alpha-mangostin as a potential inhibitor of PBPa2. Molecular docking simulations revealed a strong binding affinity between alpha-mangostin and PBP2a, with an affinity score of -6.01 kcal/mol. Notably, alpha-mangostin formed a preferential hydrogen bond with THR216 of PBP2a, alongside several other polar and hydrophobic interactions. ADME and Toxicity predictions indicated that alpha-mangostin possesses favourable pharmacokinetic properties, suggesting its potential as a therapeutic agent. PASS analysis further highlighted its broad range of favourable biological properties. SwissTargetPrediction analysis reinforced these findings, indicating alpha-mangostin's association with various biological processes. Cell toxicity assays demonstrated that alpha-mangostin had no significant impact on the viability of HEK-293 cells, suggesting its potential safety for further development. The IC50 value for alpha-mangostin was found to be 33.43µM. Fluorescence-based binding assays showed that alpha-mangostin effectively inhibited PBP2a activity in a concentration-dependent manner, supporting its role as an inhibitor. In conclusion, the results suggest alpha-mangostin as a promising candidate for inhibiting PBP2a. Further,  extensive studies are warranted to explore its clinical applications.


Assuntos
Antibacterianos , Staphylococcus aureus Resistente à Meticilina , Simulação de Acoplamento Molecular , Proteínas de Ligação às Penicilinas , Xantonas , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Proteínas de Ligação às Penicilinas/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Humanos , Xantonas/química , Xantonas/farmacologia , Células HEK293 , Antibacterianos/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/metabolismo , Ligação Proteica
16.
J Enzyme Inhib Med Chem ; 39(1): 2305833, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38410950

RESUMO

Penicillin-binding proteins (PBPs) contribute to bacterial cell wall biosynthesis and are targets of antibacterial agents. Here, we investigated PBP1b inhibition by boronic acid derivatives. Chemical starting points were identified by structure-based virtual screening and aliphatic boronic acids were selected for further investigations. Structure-activity relationship studies focusing on the branching of the boron-connecting carbon and quantum mechanical/molecular mechanical simulations showed that reaction barrier free energies are compatible with fast reversible covalent binding and small or missing reaction free energies limit the inhibitory activity of the investigated boronic acid derivatives. Therefore, covalent labelling of the lysine residue of the catalytic dyad was also investigated. Compounds with a carbonyl warhead and an appropriately positioned boronic acid moiety were shown to inhibit and covalently label PBP1b. Reversible covalent labelling of the catalytic lysine by imine formation and the stabilisation of the imine by dative N-B bond is a new strategy for PBP1b inhibition.


Assuntos
Lisina , Serina , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Ácidos Borônicos/farmacologia , Antibacterianos/farmacologia , Iminas
17.
J Korean Med Sci ; 39(15): e136, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38651222

RESUMO

BACKGROUND: Haemophilus influenzae is a frequently encountered pathogen responsible for respiratory tract infections in children. Following the detection of ceftriaxone-resistant H. influenzae at our institution, we aimed to investigate the resistance mechanisms of ceftriaxone in H. influenzae, with a particular focus on alterations in penicillin-binding protein 3 (PBP3) and ß-lactamase production. METHODS: Among H. influenzae isolates collected at Asan Medical Center Children's Hospital from March 2014 to April 2019, ceftriaxone-resistant strains by the disk-diffusion test were included. Ceftriaxone minimum inhibitory concentrations (MICs) were determined using the E-test according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. The presence of ß-lactamase was assessed through cefinase test and TEM-1/ROB-1 polymerase chain reaction (PCR). PBP3 alterations were explored via ftsI gene sequencing. RESULTS: Out of the 68 collected strains, 21 exhibited resistance to ceftriaxone in disk diffusion tests. Two strains were excluded due to failed subculture. Among 19 ceftriaxone-resistant H. influenzae isolates, eighteen were non-typeable H. influenzae, and twelve were positive for TEM-1 PCR. Isolates were classified into groups II (harboring only N526K, n = 3), III (N526K+S385T, n = 2), III+ (S385T+L389F+N526K, n = 11), and III-like+ (S385T+L389F+R517H, n = 3) according to the PBP3 alteration pattern. With a median ceftriaxone MIC of 0.190 mg/L (range, 0.008-0.750), the median ceftriaxone MIC was the highest in group III-like+ (0.250 mg/L), followed by groups III+ (0.190 mg/L), III (0.158 mg/L), and II (0.012 mg/L). All three strains belonging to group II, which did not harbor the S385T substitution, had ceftriaxone MICs of ≤ 0.125 mg/L. CONCLUSION: The emergence of ceftriaxone-resistant H. influenzae with ceftriaxone MIC values of up to 0.75 mg/L was observed even in children in South Korea, with most associated with S385T and L389F substitutions. The N526K mutation alone does not significantly impact ceftriaxone resistance. Further large-scale studies are essential to investigate changes in antibiotic resistance patterns and factors influencing antibiotic resistance in H. influenzae isolated from pediatric patients in Korea.


Assuntos
Antibacterianos , Ceftriaxona , Infecções por Haemophilus , Haemophilus influenzae , Testes de Sensibilidade Microbiana , beta-Lactamases , Ceftriaxona/farmacologia , Haemophilus influenzae/efeitos dos fármacos , Haemophilus influenzae/isolamento & purificação , Haemophilus influenzae/genética , Humanos , Antibacterianos/farmacologia , República da Coreia , beta-Lactamases/genética , beta-Lactamases/metabolismo , Criança , Infecções por Haemophilus/microbiologia , Infecções por Haemophilus/tratamento farmacológico , Proteínas de Ligação às Penicilinas/genética , Pré-Escolar , Farmacorresistência Bacteriana , Lactente , Feminino , Masculino , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
18.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256057

RESUMO

Mycobacterium tuberculosis, a major cause of mortality from a single infectious agent, possesses a remarkable mycobacterial cell envelope. Penicillin-Binding Proteins (PBPs) are a family of bacterial enzymes involved in the biosynthesis of peptidoglycan. PBP4 (DacB) from M. tuberculosis (MtbPBP4) has been known to function as a carboxypeptidase, and the role and significance of carboxypeptidases as targets for anti-tuberculosis drugs or antibiotics have been extensively investigated over the past decade. However, their precise involvement remains incompletely understood. In this study, we employed predictive modeling and analyzed the three-dimensional structure of MtbPBP4. Interestingly, MtbPBP4 displayed a distinct domain structure compared to its homologs. Docking studies with meropenem verified the presence of active site residues conserved in PBPs. These findings establish a structural foundation for comprehending the molecular function of MtbPBP4 and offer a platform for the exploration of novel antibiotics.


Assuntos
Mycobacterium tuberculosis , Proteínas de Ligação às Penicilinas/genética , Antituberculosos , Membrana Celular , Parede Celular
19.
Int J Mol Sci ; 25(15)2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39125830

RESUMO

The increase in the resistance of mutant strains of Neisseria gonorrhoeae to the antibiotic ceftriaxone is pronounced in the decrease in the second-order acylation rate constant, k2/KS, by penicillin-binding protein 2 (PBP2). These changes can be caused by both the decrease in the acylation rate constant, k2, and the weakening of the binding affinity, i.e., an increase in the substrate constant, KS. A501X mutations in PBP2 affect second-order acylation rate constants. The PBP2A501V variant exhibits a higher k2/KS value, whereas for PBP2A501R and PBP2A501P variants, these values are lower. We performed molecular dynamic simulations with both classical and QM/MM potentials to model both acylation energy profiles and conformational dynamics of four PBP2 variants to explain the origin of k2/KS changes. The acylation reaction occurs in two elementary steps, specifically, a nucleophilic attack by the oxygen atom of the Ser310 residue and C-N bond cleavage in the ß-lactam ring accompanied by the elimination of the leaving group of ceftriaxone. The energy barrier of the first step increases for PBP2 variants with a decrease in the observed k2/KS value. Submicrosecond classic molecular dynamic trajectories with subsequent cluster analysis reveal that the conformation of the ß3-ß4 loop switches from open to closed and its flexibility decreases for PBP2 variants with a lower k2/KS value. Thus, the experimentally observed decrease in the k2/KS in A501X variants of PBP2 occurs due to both the decrease in the acylation rate constant, k2, and the increase in KS.


Assuntos
Ceftriaxona , Simulação de Dinâmica Molecular , Neisseria gonorrhoeae , Proteínas de Ligação às Penicilinas , Ceftriaxona/farmacologia , Neisseria gonorrhoeae/genética , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/metabolismo , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Antibacterianos/farmacologia , Mutação , Farmacorresistência Bacteriana/genética , Acilação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , D-Ala-D-Ala Carboxipeptidase Tipo Serina
20.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731965

RESUMO

Antimicrobial resistance has recently been considered an emerging catastrophe globally. The public health and environmental threats were aggravated by the injudicious use of antibiotics in animal farming, aquaculture, and croup fields, etc. Consequently, failure of antibiotic therapies is common because of the emergence of multidrug-resistant (MDR) bacteria in the environment. Thus, the reduction in antibiotic spillage in the environment could be an important step for overcoming this situation. Bear in mind, this research was focused on the green synthesis of chitosan nanoparticles (ChiNPs) using Citrus lemon (Assam lemon) extract as a cross-linker and application in controlling MDR bacteria to reduce the antibiotic spillage in that sector. For evaluating antibacterial activity, Staphylococcus aureus and Escherichia coli were isolated from environmental specimens, and their multidrug-resistant pattern were identified both phenotypically by disk diffusion and genotypically by detecting methicillin- (mecA), penicillin- (blaZ), and streptomycin (aadA1)-resistance encoding genes. The inhibitory zone's diameter was employed as a parameter for determining the antibacterial effect against MDR bacteria revealing 30 ± 0.4 mm, 34 ± 0.2 mm, and 36 ± 0.8 mm zones of inhibition against methicillin- (mecA) and penicillin (blaZ)-resistant S. aureus, and streptomycin (aadA1)-resistant E. coli, respectively. The minimum inhibitory concentration at 0.31 mg/mL and minimum bactericidal concentration at 0.62 mg/mL of yielded ChiNPs were used as the broad-spectrum application against MDR bacteria. Finally, the biocompatibility of ChiNPs was confirmed by showing a negligible decrease in BHK-21 cell viability at doses less than 2 MIC, suggesting their potential for future application in antibiotic-free farming practices.


Assuntos
Antibacterianos , Quitosana , Farmacorresistência Bacteriana Múltipla , Escherichia coli , Nanopartículas , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Quitosana/farmacologia , Quitosana/química , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Química Verde , Testes de Sensibilidade Microbiana , Nanopartículas/química , Proteínas de Ligação às Penicilinas/genética , Proteínas de Ligação às Penicilinas/metabolismo , Proteínas de Ligação às Penicilinas/antagonistas & inibidores , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA