RESUMO
Repair of damaged DNA is essential for maintaining genome integrity and for preventing genome-instability-associated diseases, such as cancer. By combining proximity labeling with quantitative mass spectrometry, we generated high-resolution interaction neighborhood maps of the endogenously expressed DNA repair factors 53BP1, BRCA1, and MDC1. Our spatially resolved interaction maps reveal rich network intricacies, identify shared and bait-specific interaction modules, and implicate previously concealed regulators in this process. We identified a novel vertebrate-specific protein complex, shieldin, comprising REV7 plus three previously uncharacterized proteins, RINN1 (CTC-534A2.2), RINN2 (FAM35A), and RINN3 (C20ORF196). Recruitment of shieldin to DSBs, via the ATM-RNF8-RNF168-53BP1-RIF1 axis, promotes NHEJ-dependent repair of intrachromosomal breaks, immunoglobulin class-switch recombination (CSR), and fusion of unprotected telomeres. Shieldin functions as a downstream effector of 53BP1-RIF1 in restraining DNA end resection and in sensitizing BRCA1-deficient cells to PARP inhibitors. These findings have implications for understanding cancer-associated PARPi resistance and the evolution of antibody CSR in higher vertebrates.
Assuntos
Reparo do DNA por Junção de Extremidades/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Proteína BRCA1/antagonistas & inibidores , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Humanos , Switching de Imunoglobulina/efeitos dos fármacos , Proteínas Mad2/antagonistas & inibidores , Proteínas Mad2/genética , Proteínas Mad2/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Transativadores/genética , Transativadores/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismoRESUMO
BLM, the helicase defective in Bloom syndrome, is part of a multiprotein complex that protects genome stability. Here, we show that Rif1 is a novel component of the BLM complex and works with BLM to promote recovery of stalled replication forks. First, Rif1 physically interacts with the BLM complex through a conserved C-terminal domain, and the stability of Rif1 depends on the presence of the BLM complex. Second, Rif1 and BLM are recruited with similar kinetics to stalled replication forks, and the Rif1 recruitment is delayed in BLM-deficient cells. Third, genetic analyses in vertebrate DT40 cells suggest that BLM and Rif1 work in a common pathway to resist replication stress and promote recovery of stalled forks. Importantly, vertebrate Rif1 contains a DNA-binding domain that resembles the αCTD domain of bacterial RNA polymerase α; and this domain preferentially binds fork and Holliday junction (HJ) DNA in vitro and is required for Rif1 to resist replication stress in vivo. Our data suggest that Rif1 provides a new DNA-binding interface for the BLM complex to restart stalled replication forks.
Assuntos
Proteínas de Transporte/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteínas Nucleares/metabolismo , RecQ Helicases/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Linhagem Celular , Galinhas , DNA/genética , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Células HeLa , Humanos , Imunoprecipitação , Rim/citologia , Rim/metabolismo , Dados de Sequência Molecular , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , RNA Interferente Pequeno/farmacologia , RecQ Helicases/antagonistas & inibidores , RecQ Helicases/genética , Homologia de Sequência de Aminoácidos , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Proteínas de Ligação a Telômeros/genéticaRESUMO
Chromosome ends are complex structures, consisting of repetitive DNA sequence terminating in an ssDNA overhang with many associated proteins. Because alteration of the regulation of these ends is a hallmark of cancer, telomeres and telomere maintenance have been prime drug targets. The universally conserved ssDNA overhang is sequence-specifically bound and regulated by Pot1 (protection of telomeres 1), and perturbation of Pot1 function has deleterious effects for proliferating cells. The specificity of the Pot1/ssDNA interaction and the key involvement of this protein in telomere maintenance have suggested directed inhibition of Pot1/ssDNA binding as an efficient means of disrupting telomere function. To explore this idea, we developed a high-throughput time-resolved fluorescence resonance energy transfer (TR-FRET) screen for inhibitors of Pot1/ssDNA interaction. We conducted this screen with the DNA-binding subdomain of Schizosaccharomyces pombe Pot1 (Pot1pN), which confers the vast majority of Pot1 sequence-specificity and is highly similar to the first domain of human Pot1 (hPOT1). Screening a library of â¼20 000 compounds yielded a single inhibitor, which we found interacted tightly with sub-micromolar affinity. Furthermore, this compound, subsequently identified as the bis-azo dye Congo red (CR), was able to competitively inhibit hPOT1 binding to telomeric DNA. Isothermal titration calorimetry and NMR chemical shift analysis suggest that CR interacts specifically with the ssDNA-binding cleft of Pot1, and that alteration of this surface disrupts CR binding. The identification of a specific inhibitor of ssDNA interaction establishes a new pathway for targeted telomere disruption.
Assuntos
Vermelho Congo/química , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Telômero/metabolismo , Motivos de Aminoácidos , Domínio Catalítico , Técnicas de Química Combinatória , Vermelho Congo/metabolismo , Vermelho Congo/farmacologia , Avaliação Pré-Clínica de Medicamentos , Modelos Moleculares , Fragmentos de Peptídeos , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Complexo Shelterina , Bibliotecas de Moléculas PequenasRESUMO
SHARPIN, as a tumor-associated gene, is involved in the metastatic process of many kinds of tumors. Herein, we studied the function of Shank-associated RH domain interacting protein (SHARPIN) in melanoma metastasis and the relevant molecular mechanisms. We found that SHARPIN expression was increased in melanoma tissues and activated the process of proliferation, migration, and invasion in vitro and in vivo, resulting in a poor prognosis of the disease. Functional analysis demonstrated that SHARPIN promoted melanoma migration and invasion by regulating Ras-associated protein-1(Rap1) and its downstream pathways, including p38 and JNK/c-Jun. Rap1 activator (8-pCPT-2'-O-Me-cAMP) and inhibitor (ESI-09 and farnesylthiosalicylic acid-amide) treatments could partially rescue invasion and migration of tumor cells. Additionally, SHARPIN expression in cell lines and public datasets also indicated that molecules other than BRAF and N-RAS may contribute to SHARPIN activation. In conclusion, our broad-in-depth work suggests that SHARPIN promotes melanoma development via p38 and JNK/c-Jun pathways through upregulation of Rap1 expression.
Assuntos
Melanoma/patologia , Neoplasias Cutâneas/patologia , Proteínas de Ligação a Telômeros/metabolismo , Ubiquitinas/metabolismo , Adulto , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Conjuntos de Dados como Assunto , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Estimativa de Kaplan-Meier , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Melanoma/mortalidade , Camundongos , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Prognóstico , Complexo Shelterina , Pele/patologia , Neoplasias Cutâneas/mortalidade , Proteínas de Ligação a Telômeros/agonistas , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Ubiquitinas/genética , Regulação para Cima , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Human chromosomes terminate with telomeres, which contain double-stranded G-rich, repetitive DNA followed by a single-stranded overhang of the G-rich sequence. Single-stranded oligonucleotides containing G-rich telomeric repeats have been observed in vitro to fold into a variety of G-quadruplex topologies depending on the solution conditions. G-quadruplex structures are notable in part because G-quadruplex ligands inhibit both the enzyme telomerase and other telomere-binding proteins. Because telomerase is required for growth by the majority of cancers, G-quadruplex-stabilizing ligands have become an attractive platform for anticancer drug discovery. Here, we present the preparation and biochemical activities of a novel series of 3,6-disubstituted acridine dimers modeled after the known G-quadruplex ligand BRACO19. These BRACO19 Analog Dimer (BAD) ligands were shown to bind to human telomeric DNA and promote the formation of intramolecular G-quadruplexes in the absence of monovalent cations. As expected, the BAD ligands bound to telomeric DNA with a 1:1 stoichiometry, whereas the parent compound BRACO19, a monomer, bound with a 2:1 stoichiometry. The BAD ligands exhibited potent inhibition of human telomerase with IC(50) values similar to or lower than those of BRACO19. Furthermore, the BAD ligands displayed greater potency in the inhibition of hPot1 and increased selectivity for G-quadruplex DNA when compared to BRACO19. Collectively, these experiments support the hypothesis that there is an increased potency and selectivity to be gained in the design of G-quadruplex-stabilizing agents that incorporate multiple interactions.
Assuntos
Acridinas/química , Acridinas/farmacologia , Quadruplex G , Telomerase/antagonistas & inibidores , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Acridinas/síntese química , Dicroísmo Circular , Dimerização , Humanos , Concentração Inibidora 50 , Complexo Shelterina , Telomerase/metabolismo , Telômero/química , Proteínas de Ligação a Telômeros/metabolismoRESUMO
Telomerase-negative cancer cells can maintain their telomeres by a recombination-mediated alternative lengthening of telomeres (ALT) process. We reported previously that sequestration of MRE11/RAD50/NBS1 complexes represses ALT-mediated telomere length maintenance, and suppresses formation of ALT-associated promyelocytic leukemia (PML) bodies (APBs). APBs are PML bodies containing telomeric DNA and telomere-binding proteins, and are observed only in a small fraction of cells within asynchronously dividing ALT-positive cell populations. Here, we report that methionine restriction caused a reversible arrest in G0/G1 phase of the cell cycle and reversible induction of APB formation in most cells within an ALT-positive population. We combined methionine restriction with RNA interference to test whether the following proteins are required for APB formation: PML body-associated proteins, PML and Sp100; telomere-associated proteins, TRF1, TRF2, TIN2 and RAP1; and DNA repair proteins, MRE11, RAD50, NBS1 and 53BP1. APB formation was not decreased by depletion of Sp100 (as reported previously) or of 53BP1, although 53BP1 partially colocalizes with APBs. Depletion of the other proteins suppressed APB formation. Because of the close linkage between ALT-mediated telomere maintenance and ability to form APBs, the eight proteins identified by this screen as being required for APB formation are also likely to be required for the ALT mechanism.
Assuntos
Técnicas Genéticas , Telômero/genética , Telômero/metabolismo , Hidrolases Anidrido Ácido , Antígenos Nucleares/genética , Antígenos Nucleares/fisiologia , Autoantígenos/genética , Autoantígenos/fisiologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Enzimas Reparadoras do DNA/antagonistas & inibidores , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/fisiologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Fase G1 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteína Homóloga a MRE11 , Metionina/deficiência , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/fisiologia , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Proteína da Leucemia Promielocítica , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Fase de Repouso do Ciclo Celular , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/fisiologia , Proteína 1 de Ligação a Repetições Teloméricas/antagonistas & inibidores , Proteína 1 de Ligação a Repetições Teloméricas/genética , Proteína 1 de Ligação a Repetições Teloméricas/fisiologia , Proteína 2 de Ligação a Repetições Teloméricas/antagonistas & inibidores , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/fisiologia , Proteína 1 de Ligação à Proteína Supressora de Tumor p53RESUMO
We describe a novel synthetic small molecule which shows an unprecedented stabilization of the human telomeric G-quadruplex with high selectivity relative to double-stranded DNA. We report that this compound can be used in vitro to inhibit telomerase activity and to uncap human POT1 (protection of telomeres 1) from the telomeric G-overhang. We also show that the small molecule G-quadruplex binder induces a partial alteration of shelterin through POT1 uncapping from telomeres in human HT1080 cancer cells and the presence of gammaH2AX foci colocalized at telomeres.
Assuntos
Dano ao DNA/genética , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/metabolismo , Telômero/química , Telômero/metabolismo , Linhagem Celular Tumoral , Humanos , Estrutura Molecular , Complexo Shelterina , Telômero/genética , Proteínas de Ligação a Telômeros/antagonistas & inibidoresRESUMO
Telomestatin is a potent G-quadruplex ligand that specifically interacts with the 3' telomeric overhang, leading to its degradation and that induces a delayed senescence and apoptosis of cancer cells. Protection of Telomere 1 (POT1) was recently identified as a specific single-stranded telomere-binding protein involved in telomere capping and T-loop maintenance. We showed here that a telomestatin treatment inhibits POT1 binding to the telomeric overhang in vitro. The treatment of human EcR293 cells by telomestatin induces a dramatic and rapid delocalization of POT1 from its normal telomere sites but does not affect the telomere localization of the double-stranded telomere-binding protein TRF2. Thus, we propose that G-quadruplex stabilization at telomeric G-overhang inactivates POT1 telomeric function, generating a telomere dysfunction in which chromosome ends are no longer properly protected.
Assuntos
DNA/metabolismo , Oxazóis/farmacologia , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Telômero/metabolismo , Linhagem Celular , DNA/biossíntese , DNA/efeitos dos fármacos , DNA/genética , Quadruplex G , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Rim/citologia , Rim/efeitos dos fármacos , Rim/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Complexo Shelterina , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo , Telômero/genética , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas , TransfecçãoRESUMO
BRCA2-deficient cells exhibit gross genomic instability, but the underlying mechanisms are not fully understood. Here we report that inactivation of BRCA2 but not RAD51 destabilizes RPA-coated single-stranded DNA (ssDNA) structures at resected DNA double-strand breaks (DSBs) and greatly enhances the frequency of nuclear fragmentation following cell exposure to DNA damage. Importantly, these BRCA2-associated deficits are fueled by the aberrant activation of classical (c)- and alternative (alt)- nonhomologous end-joining (NHEJ), and rely on the well-defined DNA damage signaling pathway involving the pro-c-NHEJ factor 53BP1 and its downstream effector RIF1. We further show that the 53BP1-RIF1 axis promotes toxic end-joining events via the retention of Artemis at DNA damage sites. Accordingly, loss of 53BP1, RIF1, or Artemis prolongs the stability of RPA-coated DSB intermediates in BRCA2-deficient cells and restores nuclear integrity. We propose that BRCA2 antagonizes 53BP1, RIF1, and Artemis-dependent c-NHEJ and alt-NHEJ to prevent gross genomic instability in a RAD51-independent manner.
Assuntos
Proteína BRCA2/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Endonucleases/antagonistas & inibidores , Instabilidade Genômica/genética , Proteínas Nucleares/antagonistas & inibidores , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/antagonistas & inibidores , Animais , Células CHO , Linhagem Celular Tumoral , Cricetulus , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA , Endonucleases/metabolismo , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética , Rad51 Recombinase/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/metabolismoRESUMO
Platelets are critical for hemostasis, i.e., the body's ability to prevent blood loss at sites of vascular injury. They patrol the vasculature in a quiescent, non-adhesive state for approximately 10 days, after which they are removed from circulation by phagocytic cells of the reticulo-endothelial system. At sites of vascular injury, they promptly shift to an activated, adhesive state required for the formation of a hemostatic plug. The small GTPase RAP1 is a critical regulator of platelet adhesiveness. Our recent studies demonstrate that the antagonistic balance between the RAP1 regulators, CalDAG-GEFI and RASA3, is critical for the modulation of platelet adhesiveness, both in circulation and at sites of vascular injury. The RAP1 activator CalDAG-GEFI responds to small changes in the cytoplasmic calcium concentration and thus provides sensitivity and speed to the activation response, essential for efficient platelet adhesion under conditions of hemodynamic shear stress. The RAP1 inhibitor RASA3 ensures that circulating platelets remain quiescent by restraining CalDAG-GEFI-dependent RAP1 activation. Upon cellular stimulation, it is turned off by P2Y12 signaling to enable sustained RAP1 activation, required for the formation of a stable hemostatic plug. This review will summarize important studies that elucidated the signaling pathways that control RAP1 activation in platelets.
Assuntos
Plaquetas/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ativação Plaquetária/fisiologia , Adesividade Plaquetária/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Cálcio/metabolismo , Fatores de Troca do Nucleotídeo Guanina/antagonistas & inibidores , Humanos , Camundongos , Camundongos Knockout , Fosfatidilinositol 4,5-Difosfato/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/genética , Receptores Purinérgicos P2Y12/metabolismo , Complexo Shelterina , Transdução de Sinais , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Lesões do Sistema Vascular/fisiopatologia , Proteínas rap1 de Ligação ao GTP/antagonistas & inibidoresRESUMO
Repressor activator protein 1 (Rap1) is essential for maintaining telomere length and structural integrity, but it also exerts other non-telomeric functions. The present study tested the hypothesis that Rap1 is released into the cytoplasm and induces production of pro-inflammatory cytokines via nuclear factor kappa B (NFκB) signaling in macrophages, a cell type involved in the development and progression of atherosclerotic lesions. Western blotting analysis confirmed that Rap1 was present in the cytoplasm of differentiated human monocytic leukemia cells (THP-1, a macrophage-like cell line). Co-immunoprecipitation assay revealed a direct interaction between Rap1 and I kappa B kinase (IKK). Knockdown of Rap1 suppressed lipopolysaccharide-mediated activation of NFκB, and phosphorylation of inhibitor of kappa B α (IκBα) and p65 in THP-1 macrophages. The reduction of NFκB activity was paralleled by a decreased production of NFκB-dependent pro-inflammatory cytokines and an increased expression of IκBα (native NFκB inhibitor) in various macrophage models with pro-inflammatory phenotype, including THP-1, mouse peritoneal macrophages and bone marrow-derived M1 macrophages. These changes were observed selectively in pro-inflammatory macrophages but not in bone marrow-derived M2 macrophages (with an anti-inflammatory phenotype), mouse lung endothelial cells, human umbilical vein endothelial cells or human aortic smooth muscle cells. Immunostaining revealed that Rap1 was localized mainly in macrophage-rich areas in human atherosclerotic plaques and that the presence of Rap1 was positively correlated with the advancement of the disease process. In pro-inflammatory macrophages, Rap1 promotes cytokine production via NFκB activation favoring a pro-inflammatory environment which may contribute to the development and progression of atherosclerosis.
Assuntos
Macrófagos/metabolismo , NF-kappa B/genética , Placa Aterosclerótica/genética , Proteínas de Ligação a Telômeros/genética , Animais , Aorta/citologia , Aorta/efeitos dos fármacos , Aorta/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Inibidor de NF-kappaB alfa , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Complexo Shelterina , Transdução de Sinais , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Proteínas de Ligação a Telômeros/metabolismoRESUMO
We previously identified and characterized TELO2 as a human protein that facilitates efficient DNA damage response (DDR) signaling. A subsequent yeast 2-hybrid screen identified LARG; Leukemia-Associated Rho Guanine Nucleotide Exchange Factor (also known as Arhgef12), as a potential novel TELO2 interactor. LARG was previously shown to interact with Pericentrin (PCNT), which, like TELO2, is required for efficient replication stress signaling. Here we confirm interactions between LARG, TELO2 and PCNT and show that a sub-set of LARG co-localizes with PCNT at the centrosome. LARG-deficient cells exhibit replication stress signaling defects as evidenced by; supernumerary centrosomes, reduced replication stress-induced γH2AX and RPA nuclear foci formation, and reduced activation of the replication stress signaling effector kinase Chk1 in response to hydroxyurea. As such, LARG-deficient cells are sensitive to replication stress-inducing agents such as hydroxyurea and mitomycin C. Conversely we also show that depletion of TELO2 and the replication stress signaling kinase ATR leads to RhoA signaling defects. These data therefore reveal a level of crosstalk between the RhoA and DDR signaling pathways. Given that mutations in both ATR and PCNT can give rise to the related primordial dwarfism disorders of Seckel Syndrome and Microcephalic osteodysplastic primordial dwarfism type II (MOPDII) respectively, which both exhibit defects in ATR-dependent checkpoint signaling, these data also raise the possibility that mutations in LARG or disruption to RhoA signaling may be contributory factors to the etiology of a sub-set of primordial dwarfism disorders.
Assuntos
Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Antígenos/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Centrossomo/metabolismo , Quinase 1 do Ponto de Checagem , Reparo do DNA , Replicação do DNA/efeitos dos fármacos , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Hidroxiureia/farmacologia , Mitomicina/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/antagonistas & inibidores , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismoRESUMO
The ends of chromosomes in mammals are composed of telomeric DNA containing TTAGGG repeats, which bind specific proteins called shelterins. This telomeric DNA together with shelterins form a cap that protects the ends of chromosomes from being recognized as sites of DNA damage and from chromosomal fusions. Many very successful antitumor drugs used in the treatment of cancer patients bind to DNA, some of them with a prominent sequence specificity leads to changes in DNA structure and integrity. We propose a new target for antitumor drugs where small molecule ligands can bind to telomeric DNA and induce specific structural changes. These changes would lead to a selective interference with the formation of telomeric DNA-shelterin complexes, especially involving TRF1 and TRF2 proteins, as these proteins bind double-stranded telomeric DNA in a sequence- and structure-dependent manner. The rationale of the proposed therapeutic strategy is further justified by the fact that tumor cells have relatively short telomeres and frequently de-regulated shelterin expression and/or functionality. Thus uncapping of chromosome ends by DNA binding compounds which disrupt DNA-shelterin complexes can ultimately induce selective cytotoxic effect in tumor cells. Possible implications for rational design of new antitumor drugs which interfere with telomeric DNA structure and formation of DNA-shelterin complexes are discussed.
Assuntos
Antineoplásicos/uso terapêutico , DNA/efeitos dos fármacos , Desenho de Fármacos , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Telômero/efeitos dos fármacos , Animais , Antineoplásicos/química , Sítios de Ligação , DNA/química , DNA/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Conformação de Ácido Nucleico , Complexo Shelterina , Relação Estrutura-Atividade , Telômero/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismoRESUMO
Reorganization of the actin cytoskeleton is responsible for dynamic regulation of endothelial cell (EC) barrier function. Circumferential actin bundles (CAB) promote formation of linear adherens junctions (AJs) and tightening of EC junctions, whereas formation of radial stress fibers (RSF) connected to punctate AJs occurs during junction remodeling. The small GTPase Rap1 induces CAB formation to potentiate EC junctions; however, the mechanism underlying Rap1-induced CAB formation remains unknown. Here, we show that myotonic dystrophy kinase-related CDC42-binding kinase (MRCK)-mediated activation of non-muscle myosin II (NM-II) at cell-cell contacts is essential for Rap1-induced CAB formation. Our data suggest that Rap1 induces FGD5-dependent Cdc42 activation at cell-cell junctions to locally activate the NM-II through MRCK, thereby inducing CAB formation. We further reveal that Rap1 suppresses the NM-II activity stimulated by the Rho-ROCK pathway, leading to dissolution of RSF. These findings imply that Rap1 potentiates EC junctions by spatially controlling NM-II activity through activation of the Cdc42-MRCK pathway and suppression of the Rho-ROCK pathway.
Assuntos
Actinas/metabolismo , Membrana Celular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Junções Intercelulares/metabolismo , Miosina Tipo II/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Western Blotting , Adesão Celular , Movimento Celular , Proliferação de Células , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Técnicas Imunoenzimáticas , Miosina Tipo II/genética , Miotonina Proteína Quinase , Fosforilação , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , RNA Interferente Pequeno/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Proteínas de Ligação a Telômeros/genética , Proteína cdc42 de Ligação ao GTP/antagonistas & inibidores , Proteína cdc42 de Ligação ao GTP/genética , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/antagonistas & inibidores , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/genética , Quinases Associadas a rho/metabolismoRESUMO
Chromosome pairing is an essential meiotic event that ensures faithful haploidization and recombination of the genome. Pairing of homologous chromosomes is facilitated by telomere-led chromosome movements and formation of a meiotic bouquet, where telomeres cluster to one pole of the nucleus. In metazoans, telomere clustering is dynein and microtubule dependent and requires Sun1, an inner nuclear membrane protein. Here we provide a functional analysis of KASH5, a mammalian dynein-binding protein of the outer nuclear membrane that forms a meiotic complex with Sun1. This protein is related to zebrafish futile cycle (Fue), a nuclear envelope (NE) constituent required for pronuclear migration. Mice deficient in this Fue homologue are infertile. Males display meiotic arrest in which pairing of homologous chromosomes fails. These findings demonstrate that telomere attachment to the NE is insufficient to promote pairing and that telomere attachment sites must be coupled to cytoplasmic dynein and the microtubule system to ensure meiotic progression.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Pareamento Cromossômico , Dineínas do Citoplasma/metabolismo , Citoesqueleto/metabolismo , Meiose/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Dineínas do Citoplasma/genética , Proteínas do Citoesqueleto , Feminino , Células HEK293 , Células HeLa , Humanos , Técnicas Imunoenzimáticas , Hibridização in Situ Fluorescente , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Proteínas Associadas aos Microtúbulos/antagonistas & inibidores , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/metabolismo , Dados de Sequência Molecular , Membrana Nuclear/metabolismo , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Estrutura Terciária de Proteína , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Espermatócitos/citologia , Espermatócitos/metabolismo , Telômero/genética , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Proteínas de Ligação a Telômeros/genéticaRESUMO
Telomere maintenance is critical for genome stability. The newly-identified Ctc1/Stn1/Ten1 complex is important for telomere maintenance, though its precise role is unclear. We report here that depletion of hStn1 induces catastrophic telomere shortening, DNA damage response, and early senescence in human somatic cells. These phenotypes are likely due to the essential role of hStn1 in promoting efficient replication of lagging-strand telomeric DNA. Downregulation of hStn1 accumulates single-stranded G-rich DNA specifically at lagging-strand telomeres, increases telomere fragility, hinders telomere DNA synthesis, as well as delays and compromises telomeric C-strand synthesis. We further show that hStn1 deficiency leads to persistent and elevated association of DNA polymerase α (polα) to telomeres, suggesting that hStn1 may modulate the DNA synthesis activity of polα rather than controlling the loading of polα to telomeres. Additionally, our data suggest that hStn1 is unlikely to be part of the telomere capping complex. We propose that the hStn1 assists DNA polymerases to efficiently duplicate lagging-strand telomeres in order to achieve complete synthesis of telomeric DNA, therefore preventing rapid telomere loss.
Assuntos
Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Linhagem Celular , Senescência Celular , DNA Polimerase I/metabolismo , DNA de Cadeia Simples/metabolismo , Regulação para Baixo , Fase G2 , Células HeLa , Humanos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fase S , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Proteínas de Ligação a Telômeros/genéticaRESUMO
Human CST (CTC1-STN1-TEN1) is an RPA-like complex that is needed for efficient replication through the telomere duplex and genome-wide replication restart after fork stalling. Here, we show that STN1/CST has a second function in telomere replication during G-overhang maturation. Analysis of overhang structure after STN1 depletion revealed normal kinetics for telomerase-mediated extension in S phase but a delay in subsequent overhang shortening. This delay resulted from a defect in C-strand fill-in. Short telomeres exhibited the fill-in defect but normal telomere duplex replication, indicating that STN1/CST functions independently in these processes. Our work also indicates that the requirement for STN1/CST in telomere duplex replication correlates with increasing telomere length and replication stress. Our results provide direct evidence that STN1/CST participates in C-strand fill-in. They also demonstrate that STN1/CST participates in two mechanistically separate steps during telomere replication and identify CST as a replication factor that solves diverse replication-associated problems.
Assuntos
Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , DNA/metabolismo , DNA Polimerase I/metabolismo , Replicação do DNA , Fase G2 , Células HCT116 , Células HeLa , Humanos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fase S , Telomerase/metabolismo , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Proteínas de Ligação a Telômeros/genéticaRESUMO
Tyrosine kinase receptors have an essential role in various aspects of tumor progression. In particular, epidermal growth factor receptor (EGFR) and its ligands have been implicated in the growth and dissemination of a wide array of human carcinomas. Here, we describe an EGFR-mediated signaling pathway that regulates human pancreatic carcinoma cell invasion and metastasis, yet does not influence the growth of primary tumors. In fact, ligation/activation of EGFR induces Src-dependent phosphorylation of two critical tyrosine residues of p130CAS, leading to the assembly of a Crk-associated substrate (CAS)/Nck1 complex that promotes Ras-associated protein-1 (Rap1) signaling. Importantly, GTP loading of Rap1 is specifically required for pancreatic carcinoma cell migration on vitronectin but not on collagen. Furthermore, Rap1 activation is required for EGFR-mediated metastasis in vivo without impacting primary tumor growth. These findings identify a molecular pathway that promotes the invasive/metastatic properties of human pancreatic carcinomas driven by EGFR.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Movimento Celular , Receptores ErbB/metabolismo , Proteínas Oncogênicas/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/secundário , Proteínas de Ligação a Telômeros/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Western Blotting , Proliferação de Células , Células Cultivadas , Embrião de Galinha , Humanos , Técnicas Imunoenzimáticas , Imunoprecipitação , Metástase Neoplásica , Proteínas Oncogênicas/antagonistas & inibidores , Proteínas Oncogênicas/genética , RNA Interferente Pequeno/genética , Complexo Shelterina , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Proteínas de Ligação a Telômeros/genéticaRESUMO
Rap1GAP which regulates the GTP-GDP form switch of Rap1 is a member of the GTPase-activating protein (GAP) family and has recently received substantial attention. Rap1GAP is thought of as a putative tumor suppressor gene and plays an important role in human tumor progression including pancreatic cancer, thyroid cancer and melanoma. In the current study, we found that the expression of Rap1GAP was lower in acute myeloid leukemia (AML) patients compared to non-malignant blood disease patients. The expression of Rap1GAP was also low in HL-60, NB4, U937 and SHI-1 myeloid leukemia cell lines. Upregulated Rap1GAP in NB4 and HL-60 cells promoted cell differentiation induced by ATRA or TPA compared to the empty vector control cells. Furthermore, Rap1GAP-transfected cells also showed a higher rate of apoptosis in response to arsenic trioxide compared to the control counterpart cells. In addition, we found that increased expression of Rap1GAP promoted leukemia cell invasion may be due to matrix metalloproteinase 9 (MMP9). In conclusion, these results demonstrated that Rap1GAP promoted leukemia cell differentiation and apoptosis, but increased leukemia cell invasion in vitro.
Assuntos
Proteínas Ativadoras de GTPase/biossíntese , Leucemia Megacarioblástica Aguda/metabolismo , Leucemia Mieloide Aguda/metabolismo , Leucemia Promielocítica Aguda/metabolismo , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Regulação para Baixo , Proteínas Ativadoras de GTPase/genética , Células HeLa , Humanos , Leucemia Megacarioblástica Aguda/genética , Leucemia Megacarioblástica Aguda/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/patologia , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Complexo Shelterina , Proteínas de Ligação a Telômeros/antagonistas & inibidores , Proteínas de Ligação a Telômeros/biossíntese , Proteínas de Ligação a Telômeros/genética , Transdução Genética , Células U937 , Regulação para CimaRESUMO
Fission yeast cells survive loss of the telomerase catalytic subunit Trt1 (TERT) through recombination-based telomere maintenance or through chromosome circularization. Although trt1Delta survivors with linear chromosomes can be obtained, they often spontaneously circularize their chromosomes. Therefore, it was difficult to establish genetic requirements for telomerase-independent telomere maintenance. In contrast, when the telomere-binding protein Taz1 is also deleted, taz1Delta trt1Delta cells are able to stably maintain telomeres. Thus, taz1Delta trt1Delta cells can serve as a valuable tool in understanding the regulation of telomerase-independent telomere maintenance. In this study, we show that the checkpoint kinase Tel1 (ATM) and the DNA repair complex Rad32-Rad50-Nbs1 (MRN) are required for telomere maintenance in taz1Delta trt1Delta cells. Surprisingly, Rap1 is also essential for telomere maintenance in taz1Delta trt1Delta cells, even though recruitment of Rap1 to telomeres depends on Taz1. Expression of catalytically inactive Trt1 can efficiently inhibit recombination-based telomere maintenance, but the inhibition requires both Est1 and Ku70. While Est1 is essential for recruitment of Trt1 to telomeres, Ku70 is dispensable. Thus, we conclude that Taz1, TERT-Est1, and Ku70-Ku80 prevent telomere recombination, whereas MRN-Tel1 and Rap1 promote recombination-based telomere maintenance. Evolutionarily conserved proteins in higher eukaryotic cells might similarly contribute to telomere recombination.