Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.120
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34446549

RESUMO

The RhopH complex is implicated in malaria parasites' ability to invade and create new permeability pathways in host erythrocytes, but its mechanisms remain poorly understood. Here, we enrich the endogenous RhopH complex in a native soluble form, comprising RhopH2, CLAG3.1, and RhopH3, directly from parasite cell lysates and determine its atomic structure using cryo-electron microscopy (cryo-EM), mass spectrometry, and the cryoID program. CLAG3.1 is positioned between RhopH2 and RhopH3, which both share substantial binding interfaces with CLAG3.1 but make minimal contacts with each other. The forces stabilizing individual subunits include 13 intramolecular disulfide bonds. Notably, CLAG3.1 residues 1210 to 1223, previously predicted to constitute a transmembrane helix, are embedded within a helical bundle formed by residues 979 to 1289 near the C terminus of CLAG3.1. Buried in the core of the RhopH complex and largely shielded from solvent, insertion of this putative transmembrane helix into the erythrocyte membrane would likely require a large conformational rearrangement. Given the unusually high disulfide content of the complex, it is possible that such a rearrangement could be initiated by the breakage of allosteric disulfide bonds, potentially triggered by interactions at the erythrocyte membrane. This first direct observation of an exported Plasmodium falciparum transmembrane protein-in a soluble, trafficking state and with atomic details of buried putative membrane-insertion helices-offers insights into the assembly and trafficking of RhopH and other parasite-derived complexes to the erythrocyte membrane. Our study demonstrates the potential the endogenous structural proteomics approach holds for elucidating the molecular mechanisms of hard-to-isolate complexes in their native, functional forms.


Assuntos
Membrana Eritrocítica/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/química , Permeabilidade da Membrana Celular , Microscopia Crioeletrônica , Membrana Eritrocítica/parasitologia , Humanos , Modelos Moleculares , Nutrientes/metabolismo , Conformação Proteica , Proteômica , Proteínas de Protozoários/fisiologia , Proteínas de Protozoários/ultraestrutura , Relação Estrutura-Atividade
2.
Nucleic Acids Res ; 49(3): 1436-1454, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33450001

RESUMO

Homologous recombination dominates as the major form of DNA repair in Trypanosoma brucei, and is especially important for recombination of the subtelomeric variant surface glycoprotein during antigenic variation. RAD50, a component of the MRN complex (MRE11, RAD50, NBS1), is central to homologous recombination through facilitating resection and governing the DNA damage response. The function of RAD50 in trypanosomes is untested. Here we report that RAD50 and MRE11 are required for RAD51-dependent homologous recombination and phosphorylation of histone H2A following a DNA double strand break (DSB), but neither MRE11 nor RAD50 substantially influence DSB resection at a chromosome-internal locus. In addition, we reveal intrinsic separation-of-function between T. brucei RAD50 and MRE11, with only RAD50 suppressing DSB repair using donors with short stretches of homology at a subtelomeric locus, and only MRE11 directing DSB resection at the same locus. Finally, we show that loss of either MRE11 or RAD50 causes a greater diversity of expressed VSG variants following DSB repair. We conclude that MRN promotes stringent homologous recombination at subtelomeric loci and restrains antigenic variation.


Assuntos
Variação Antigênica , Proteínas de Ligação a DNA/fisiologia , Proteína Homóloga a MRE11/fisiologia , Proteínas de Protozoários/fisiologia , Reparo de DNA por Recombinação , Trypanosoma brucei brucei/genética , Quebras de DNA de Cadeia Dupla , Trypanosoma brucei brucei/imunologia
3.
Nucleic Acids Res ; 49(6): 3557-3572, 2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33677542

RESUMO

Uridine insertion/deletion editing of mitochondrial mRNAs is a characteristic feature of kinetoplastids, including Trypanosoma brucei. Editing is directed by trans-acting gRNAs and catalyzed by related RNA Editing Core Complexes (RECCs). The non-catalytic RNA Editing Substrate Binding Complex (RESC) coordinates interactions between RECC, gRNA and mRNA. RESC is a dynamic complex comprising GRBC (Guide RNA Binding Complex) and heterogeneous REMCs (RNA Editing Mediator Complexes). Here, we show that RESC10 is an essential, low abundance, RNA binding protein that exhibits RNase-sensitive and RNase-insensitive interactions with RESC proteins, albeit its minimal in vivo interaction with RESC13. RESC10 RNAi causes extensive RESC disorganization, including disruption of intra-GRBC protein-protein interactions, as well as mRNA depletion from GRBC and accumulation on REMCs. Analysis of mitochondrial RNAs at single nucleotide resolution reveals transcript-specific effects: RESC10 dramatically impacts editing progression in pan-edited RPS12 mRNA, but is critical for editing initiation in mRNAs with internally initiating gRNAs, pointing to distinct initiation mechanisms for these RNA classes. Correlations between sites at which editing pauses in RESC10 depleted cells and those in knockdowns of previously studied RESC proteins suggest that RESC10 acts upstream of these factors and that RESC is particularly important in promoting transitions between uridine insertion and deletion RECCs.


Assuntos
Proteínas de Protozoários/fisiologia , Edição de RNA , RNA Mensageiro/metabolismo , RNA Mitocondrial/metabolismo , Proteínas de Ligação a RNA/fisiologia , Trypanosoma brucei brucei/genética , RNA Guia de Cinetoplastídeos/metabolismo , RNA Mensageiro/química , RNA Mitocondrial/química , Proteínas de Ligação a RNA/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Uridina/metabolismo
4.
Nucleic Acids Res ; 49(11): 6196-6212, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34086947

RESUMO

Retinoblastoma-binding proteins 4 and 7 (RBBP4 and RBBP7) are two highly homologous human histone chaperones. They function in epigenetic regulation as subunits of multiple chromatin-related complexes and have been implicated in numerous cancers. Due to their overlapping functions, our understanding of RBBP4 and 7, particularly outside of Opisthokonts, has remained limited. Here, we report that in the ciliate protozoan Tetrahymena thermophila a single orthologue of human RBBP4 and 7 proteins, RebL1, physically interacts with histone H4 and functions in multiple epigenetic regulatory pathways. Functional proteomics identified conserved functional links for Tetrahymena RebL1 protein as well as human RBBP4 and 7. We found that putative subunits of multiple chromatin-related complexes including CAF1, Hat1, Rpd3, and MuvB, co-purified with RebL1 during Tetrahymena growth and conjugation. Iterative proteomics analyses revealed that the cell cycle regulatory MuvB-complex in Tetrahymena is composed of at least five subunits including evolutionarily conserved Lin54, Lin9 and RebL1 proteins. Genome-wide analyses indicated that RebL1 and Lin54 (Anqa1) bind within genic and intergenic regions. Moreover, Anqa1 targets primarily promoter regions suggesting a role for Tetrahymena MuvB in transcription regulation. RebL1 depletion inhibited cellular growth and reduced the expression levels of Anqa1 and Lin9. Consistent with observations in glioblastoma tumors, RebL1 depletion suppressed DNA repair protein Rad51 in Tetrahymena, thus underscoring the evolutionarily conserved functions of RBBP4/7 proteins. Our results suggest the essentiality of RebL1 functions in multiple epigenetic regulatory complexes in which it impacts transcription regulation and cellular viability.


Assuntos
Chaperonas de Histonas/metabolismo , Proteínas de Protozoários/metabolismo , Tetrahymena thermophila/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Evolução Biológica , Sequência Conservada , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Epigênese Genética , Expressão Gênica , Células HEK293 , Chaperonas de Histonas/química , Chaperonas de Histonas/fisiologia , Histonas/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/mortalidade , Oncogenes , Proteínas de Protozoários/química , Proteínas de Protozoários/fisiologia , Proteína 4 de Ligação ao Retinoblastoma/metabolismo , Proteína 7 de Ligação ao Retinoblastoma/metabolismo , Tetrahymena thermophila/genética , Tetrahymena thermophila/crescimento & desenvolvimento
5.
Cell Microbiol ; 23(2): e13277, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33040440

RESUMO

About half the world's population is at risk of malaria, with Plasmodium falciparum malaria being responsible for the most malaria related deaths globally. Antimalarial drugs such as chloroquine and artemisinin are directed towards the proliferating intra-erythrocytic stages of the parasite, which is responsible for all the clinical symptoms of the disease. These antimalarial drugs have been reported to function via multiple pathways, one of which induces DNA damage via the generation of free radicals and reactive oxygen species. An urgent need to understand the mechanistic details of drug response and resistance is highlighted by the decreasing clinical efficacy of the front line drug, Artemisinin. The replication factor C subunit 1 is an important component of the DNA replication machinery and DNA damage response mechanism. Here we show the translocation of PfRFC1 from an intranuclear localisation to the nuclear periphery, indicating an orchestrated progression of distinct patterns of replication in the developing parasites. PfRFC1 responds to genotoxic stress via elevated protein levels in soluble and chromatin bound fractions. Reduction of PfRFC1 protein levels upon treatment with antimalarials suggests an interplay of replication, apoptosis and DNA repair pathways leading to cell death. Additionally, mislocalisation of the endogenously tagged protein confirmed its essential role in parasites' replication and DNA repair. This study provides key insights into DNA replication, DNA damage response and cell death in P. falciparum.


Assuntos
Antimaláricos/farmacologia , Dano ao DNA , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/fisiologia , Proteína de Replicação C/fisiologia , Artesunato/farmacologia , Morte Celular , Cloroquina/farmacologia , Reparo do DNA , Replicação do DNA , DNA de Protozoário , Eritrócitos/parasitologia , Regulação da Expressão Gênica , Interações Hospedeiro-Parasita , Humanos , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Proteínas de Protozoários/fisiologia , Espécies Reativas de Oxigênio/metabolismo
6.
Biol Cell ; 113(1): 39-57, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33084070

RESUMO

BACKGROUND: The translocase of the mitochondrial inner membrane (TIM) imports most of the nucleus-encoded proteins that are destined for the matrix, inner membrane (IM) and the intermembrane space (IMS). Trypanosoma brucei, the infectious agent for African trypanosomiasis, possesses a unique TIM complex consisting of several novel proteins in association with a relatively conserved protein TbTim17. Tandem affinity purification of the TbTim17 protein complex revealed TbTim54 as a potential component of this complex. RESULTS: TbTim54, a trypanosome-specific IMS protein, is peripherally associated with the IM and is present in a protein complex slightly larger than the TbTim17 complex. TbTim54 knockdown (KD) reduced the import of TbTim17 and compromised the integrity of the TbTim17 complex. TbTim54 KD inhibited the in vitro mitochondrial import and assembly of the internal signal-containing mitochondrial carrier proteins MCP3, MCP5 and MCP11 to a greater extent than TbTim17 KD. Furthermore, TbTim54 KD, but not TbTim17 KD, significantly hampered the mitochondrial targeting of ectopically expressed MCP3 and MCP11. These observations along with our previous finding that the mitochondrial import of N-terminal signal-containing proteins like cytochrome oxidase subunit 4 and MRP2 was affected to a greater extent by TbTim17 KD than TbTim54 KD indicating a substrate-specificity of TbTim54 for internal-signal containing mitochondrial proteins. In other organisms, small Tim chaperones in the IMS are known to participate in the translocation of MCPs. We found that TbTim54 can directly interact with at least two of the six known small TbTim proteins, TbTim11 and TbTim13, as well as with the N-terminal domain of TbTim17. CONCLUSION: TbTim54 interacts with TbTim17. It also plays a crucial role in the mitochondrial import and complex assembly of internal signal-containing IM proteins in T. brucei. SIGNIFICANCE: We are the first to characterise TbTim54, a novel TbTim that is involved primarily in the mitochondrial import of MCPs and TbTim17 in T. brucei.


Assuntos
Proteínas de Membrana Transportadoras/fisiologia , Proteínas Mitocondriais/fisiologia , Proteínas de Protozoários/fisiologia , Trypanosoma brucei brucei/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Transporte Proteico
7.
Proc Natl Acad Sci U S A ; 116(10): 4291-4296, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30782791

RESUMO

Despite their central role in multicellular organization, navigation rules that dictate cell rearrangement remain largely undefined. Contact between neighboring cells and diffusive attractant molecules are two of the major determinants of tissue-level patterning; however, in most cases, molecular and developmental complexity hinders one from decoding the exact governing rules of individual cell movement. A primordial example of tissue patterning by cell rearrangement is found in the social amoeba Dictyostelium discoideum where the organizing center or the "tip" self-organizes as a result of sorting of differentiating prestalk and prespore cells. By employing microfluidics and microsphere-based manipulation of navigational cues at the single-cell level, here we uncovered a previously overlooked mode of Dictyostelium cell migration that is strictly directed by cell-cell contact. The cell-cell contact signal is mediated by E-set Ig-like domain-containing heterophilic adhesion molecules TgrB1/TgrC1 that act in trans to induce plasma membrane recruitment of the SCAR complex and formation of dendritic actin networks, and the resulting cell protrusion competes with those induced by chemoattractant cAMP. Furthermore, we demonstrate that both prestalk and prespore cells can protrude toward the contact signal as well as to chemotax toward cAMP; however, when given both signals, prestalk cells orient toward the chemoattractant, whereas prespore cells choose the contact signal. These data suggest a model of cell sorting by competing juxtacrine and diffusive cues, each with potential to drive its own mode of collective cell migration.


Assuntos
Movimento Celular/fisiologia , Quimiotaxia/fisiologia , Locomoção/fisiologia , Actinas , Agregação Celular , Diferenciação Celular , AMP Cíclico/metabolismo , Dictyostelium/fisiologia , Difusão , Microfluídica , Proteínas de Protozoários/fisiologia , Transdução de Sinais
8.
Mol Microbiol ; 113(1): 208-221, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31670849

RESUMO

Post-Golgi vesicle trafficking is indispensable for precise movement of proteins to the pellicle, the sub-pellicle network and apical secretory organelles in Apicomplexa. However, only a small number of molecular complexes involved in trafficking, tethering and fusion of vesicles have been identified in Toxoplasma gondii. Consequently, it is unclear how complicated vesicle trafficking is accomplished in this parasite. Sec1/Munc18-like (SM) proteins are essential components of protein complexes involved in vesicle fusion. Here, we found that depletion of the SM protein TgSec1 using an auxin-inducible degron-based conditional knockout strategy led to mislocalization of plasma membrane proteins. By contrast, conditional depletion of the SM protein TgVps45 led to morphological changes, asymmetrical loss of the inner membrane complex and defects in nucleation of sub-pellicular microtubules, polarization and symmetrical assembly of daughter parasites during repeated endodyogeny. TgVps45 interacts with the SNARE protein TgStx16 and TgVAMP4-1. Conditional ablation of TgStx16 causes the similar growth defect like TgVps45 deficiency suggested they work together for the vesicle fusion at TGN. These findings indicate that these two SM proteins are crucial for assembly of pellicle and sub-pellicle network in T. gondii respectively.


Assuntos
Proteínas Munc18/fisiologia , Organelas/metabolismo , Proteínas de Protozoários/fisiologia , Toxoplasma/metabolismo , Fibroblastos , Células HEK293 , Humanos
9.
Mol Microbiol ; 113(4): 766-782, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31863491

RESUMO

Plasmodium falciparum has a limited repertoire of autophagy-related genes (ATGs), and the functions of various proteins of the autophagy-like pathway are not fully established in this protozoan parasite. Studies suggest that some of the autophagy proteins are crucial for parasite growth. PfATG18, for example, is essential for parasite replication and has a noncanonical role in apicoplast biogenesis. In this study, we demonstrate the conserved functions of PfATG18 in food vacuole (FV) dynamics and autophagy. Intriguingly, the P. falciparum FV is found to undergo fission and fusion and PfATG18 gets enriched at the interfaces of the newly generated multilobed FV during the process. In addition, expression of PfATG18 is induced upon starvation, both at the mRNA and protein level indicating its participation in the autophagy-like pathway, which is independent of its role in apicoplast biogenesis. The study also shows that PfATG18 is transported to the FV via the haemoglobin trafficking pathway. Overall, this study establishes the conserved functions of Atg18 in this important apicomplexan.


Assuntos
Proteínas Relacionadas à Autofagia/fisiologia , Proteínas de Membrana/fisiologia , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/fisiologia , Vacúolos/metabolismo , Autofagia
10.
Mol Microbiol ; 113(5): 983-1002, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31975452

RESUMO

Although the multiplicative and growth-arrested states play key roles in Leishmania development, the regulators of these transitions are largely unknown. In an attempt to gain a better understanding of these processes, we characterised one member of a family of protein kinases with dual specificity, LinDYRK1, which acts as a stasis regulator in other organisms. LinDYRK1 overexpressing parasites displayed a decrease in proliferation and in cell cycle re-entry of arrested cells. Parasites lacking LinDYRK1 displayed distinct fitness phenotypes in logarithmic and stationary growth phases. In logarithmic growth phase, LinDYRK1-/- parasites proliferated better than control lines, supporting a role of this kinase in stasis, while in stationary growth phase, LinDYRK1-/- parasites had important defects as they rounded up, accumulated vacuoles and lipid bodies and displayed subtle but consistent differences in lipid composition. Moreover, they expressed less metacyclic-enriched transcripts, displayed increased sensitivity to complement lysis and a significant reduction in survival within peritoneal macrophages. The distinct LinDYRK1-/- growth phase phenotypes were mirrored by the distinct LinDYRK1 localisations in logarithmic (mainly in flagellar pocket area and endosomes) and late stationary phase (mitochondrion). Overall, this work provides first evidence for the role of a DYRK family member in sustaining promastigote stationary phase phenotype and infectivity.


Assuntos
Ciclo Celular , Leishmania infantum/crescimento & desenvolvimento , Leishmania infantum/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/fisiologia , Proteínas de Protozoários/fisiologia , Animais , DNA de Protozoário/genética , Feminino , Deleção de Genes , Técnicas de Inativação de Genes , Aptidão Genética , Gotículas Lipídicas/metabolismo , Macrófagos/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Morfogênese , Quinases Dyrk
11.
PLoS Pathog ; 15(7): e1007946, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31348812

RESUMO

By binding to the adaptor protein SKP1 and serving as substrate receptors for the SKP1 Cullin, F-box E3 ubiquitin ligase complex, F-box proteins regulate critical cellular processes including cell cycle progression and membrane trafficking. While F-box proteins are conserved throughout eukaryotes and are well studied in yeast, plants, and animals, studies in parasitic protozoa are lagging. We have identified eighteen putative F-box proteins in the Toxoplasma genome of which four have predicted homologs in Plasmodium. Two of the conserved F-box proteins were demonstrated to be important for Toxoplasma fitness and here we focus on an F-box protein, named TgFBXO1, because it is the most highly expressed by replicative tachyzoites and was also identified in an interactome screen as a Toxoplasma SKP1 binding protein. TgFBXO1 interacts with Toxoplasma SKP1 confirming it as a bona fide F-box protein. In interphase parasites, TgFBXO1 is a component of the Inner Membrane Complex (IMC), which is an organelle that underlies the plasma membrane. Early during replication, TgFBXO1 localizes to the developing daughter cell scaffold, which is the site where the daughter cell IMC and microtubules form and extend from. TgFBXO1 localization to the daughter cell scaffold required centrosome duplication but before kinetochore separation was completed. Daughter cell scaffold localization required TgFBXO1 N-myristoylation and was dependent on the small molecular weight GTPase, TgRab11b. Finally, we demonstrate that TgFBXO1 is required for parasite growth due to its function as a daughter cell scaffold effector. TgFBXO1 is the first F-box protein to be studied in apicomplexan parasites and represents the first protein demonstrated to be important for daughter cell scaffold function.


Assuntos
Proteínas F-Box/fisiologia , Proteínas de Protozoários/fisiologia , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/patogenicidade , Animais , Proteínas F-Box/antagonistas & inibidores , Proteínas F-Box/genética , Técnicas de Silenciamento de Genes , Genes de Protozoários , Humanos , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Proteínas Quinases Associadas a Fase S/fisiologia , Toxoplasma/genética
12.
PLoS Pathog ; 15(7): e1007982, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31356625

RESUMO

To colonize phagocytes, Leishmania subverts microbicidal processes through components of its surface coat that include lipophosphoglycan and the GP63 metalloprotease. How these virulence glycoconjugates are shed, exit the parasitophorous vacuole (PV), and traffic within host cells is poorly understood. Here, we show that lipophosphoglycan and GP63 are released from the parasite surface following phagocytosis and redistribute to the endoplasmic reticulum (ER) of macrophages. Pharmacological disruption of the trafficking between the ER and the Golgi hindered the exit of these molecules from the PV and dampened the cleavage of host proteins by GP63. Silencing by RNA interference of the soluble N-ethylmaleimide-sensitive-factor attachment protein receptors Sec22b and syntaxin-5, which regulate ER-Golgi trafficking, identified these host proteins as components of the machinery that mediates the spreading of Leishmania effectors within host cells. Our findings unveil a mechanism whereby a vacuolar pathogen takes advantage of the host cell's secretory pathway to promote egress of virulence factors beyond the PV.


Assuntos
Interações Hospedeiro-Parasita/fisiologia , Leishmania/fisiologia , Leishmania/patogenicidade , Proteínas de Protozoários/fisiologia , Fatores de Virulência/fisiologia , Animais , Retículo Endoplasmático/parasitologia , Feminino , Glicoesfingolipídeos/fisiologia , Humanos , Leishmania/crescimento & desenvolvimento , Leishmaniose/parasitologia , Metaloendopeptidases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Fagócitos/parasitologia , Fagocitose , Fagossomos/parasitologia , Proteínas Qa-SNARE/fisiologia , Proteínas R-SNARE/fisiologia , Via Secretória , Vacúolos/parasitologia , Virulência
13.
PLoS Pathog ; 15(7): e1007973, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31348803

RESUMO

The essential and distinct functions of Protein Phosphatase type 1 (PP1) catalytic subunit in eukaryotes are exclusively achieved through its interaction with a myriad of regulatory partners. In this work, we report the molecular and functional characterization of Gametocyte EXported Protein 15 (GEXP15), a Plasmodium specific protein, as a regulator of PP1. In vitro interaction studies demonstrated that GEXP15 physically interacts with PP1 through the RVxF binding motif in P. berghei. Functional assays showed that GEXP15 was able to increase PP1 activity and the mutation of the RVxF motif completely abolished this regulation. Immunoprecipitation assays of tagged GEXP15 or PP1 in P. berghei followed by immunoblot or mass spectrometry analyses confirmed their interaction and showed that they are present both in schizont and gametocyte stages in shared protein complexes involved in the spliceosome and proteasome pathways and known to play essential role in parasite development. Phenotypic analysis of viable GEXP15 deficient P. berghei blood parasites showed that they were unable to develop lethal infection in BALB/c mice or to establish experimental cerebral malaria in C57BL/6 mice. Further, although deficient parasites produced gametocytes they did not produce any oocysts/sporozoites indicating a high fitness cost in the mosquito. Global proteomic and phosphoproteomic analyses of GEXP15 deficient schizonts revealed a profound defect with a significant decrease in the abundance and an impact on phosphorylation status of proteins involved in regulation of gene expression or invasion. Moreover, depletion of GEXP15 seemed to impact mainly the abundance of some specific proteins of female gametocytes. Our study provides the first insight into the contribution of a PP1 regulator to Plasmodium virulence and suggests that GEXP15 affects both the asexual and sexual life cycle.


Assuntos
Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/fisiologia , Proteína Fosfatase 1/fisiologia , Proteínas de Protozoários/fisiologia , Animais , Anopheles/parasitologia , Eritrócitos/parasitologia , Feminino , Genes de Protozoários , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/fisiologia , Humanos , Malária/parasitologia , Malária/transmissão , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mosquitos Vetores/parasitologia , Plasmodium berghei/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteômica , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Cell Microbiol ; 22(2): e13123, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31652487

RESUMO

A hallmark of the biology of Plasmodium falciparum blood stage parasites is their extensive host cell remodelling, facilitated by parasite proteins that are exported into the erythrocyte. Although this area has received extensive attention, only a few exported parasite proteins have been analysed in detail, and much of this remodelling process remains unknown, particularly for gametocyte development. Recent advances to induce high rates of sexual commitment enable the production of large numbers of gametocytes. We used this approach to study the Plasmodium helical interspersed subtelomeric (PHIST) protein GEXP02, which is expressed during sexual development. We show by immunofluorescence that GEXP02 is exported to the gametocyte-infected host cell periphery. Co-immunoprecipitation revealed potential interactions between GEXP02 and components of the erythrocyte cytoskeleton as well as other exported parasite proteins. This indicates that GEXP02 targets the erythrocyte cytoskeleton and is likely involved in its remodelling. GEXP02 knock-out parasites show no obvious phenotype during gametocyte maturation, transmission through mosquitoes, and hepatocyte infection, suggesting auxiliary or redundant functions for this protein. In summary, we performed a detailed cellular and biochemical analysis of a sexual stage-specific exported parasite protein using a novel experimental approach that is broadly applicable to study the biology of P. falciparum gametocytes.


Assuntos
Membrana Eritrocítica/metabolismo , Células Germinativas/citologia , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/fisiologia , Interações Hospedeiro-Parasita , Humanos
15.
Cell Microbiol ; 22(3): e13146, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31734953

RESUMO

Patatin-like phospholipases (PNPLAs) are highly conserved enzymes of prokaryotic and eukaryotic organisms with major roles in lipid homeostasis. The genome of the malaria parasite Plasmodium falciparum encodes four putative PNPLAs with predicted functions during phospholipid degradation. We here investigated the role of one of the plasmodial PNPLAs, a putative PLA2 termed PNPLA1, during blood stage replication and gametocyte development. PNPLA1 is present in the asexual and sexual blood stages and here localizes to the cytoplasm. PNPLA1-deficiency due to gene disruption or conditional gene-knockdown had no effect on intraerythrocytic growth, gametocyte development and gametogenesis. However, parasites lacking PNPLA1 were impaired in gametocyte induction, while PNPLA1 overexpression promotes gametocyte formation. The loss of PNPLA1 further leads to transcriptional down-regulation of genes related to gametocytogenesis, including the gene encoding the sexual commitment regulator AP2-G. Additionally, lipidomics of PNPLA1-deficient asexual blood stage parasites revealed overall increased levels of major phospholipids, including phosphatidylcholine (PC), which is a substrate of PLA2 . PC synthesis is known to be pivotal for erythrocytic replication, while the reduced availability of PC precursors drives the parasite into gametocytogenesis; we thus hypothesize that the higher PC levels due to PNPLA1-deficiency prevent the blood stage parasites from entering the sexual pathway.


Assuntos
Fosfolipases/fisiologia , Plasmodium falciparum/fisiologia , Proteínas de Protozoários/fisiologia , Animais , Citoplasma/genética , Citoplasma/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genoma de Protozoário , Estágios do Ciclo de Vida , Metabolismo dos Lipídeos , Camundongos , Fosfolipases/genética , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Cell Microbiol ; 22(3): e13121, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31634979

RESUMO

Sexual development is an essential phase in the Plasmodium life cycle, where male gametogenesis is an unusual and extraordinarily rapid process. It produces 8 haploid motile microgametes, from a microgametocyte within 15 minutes. Its unique achievement lies in linking the assembly of 8 axonemes in the cytoplasm to the three rounds of intranuclear genome replication, forming motile microgametes, which are expelled in a process called exflagellation. Surprisingly little is known about the actors involved in these processes. We are interested in kinesins, molecular motors that could play potential roles in male gametogenesis. We have undertaken a functional characterization in Plasmodium berghei of kinesin-8B (PbKIN8B) expressed specifically in male gametocytes and gametes. By generating Pbkin8B-gfp parasites, we show that PbKIN8B is specifically expressed during male gametogenesis and is associated with the axoneme. We created a ΔPbkin8B knockout cell line and analysed the consequences of the absence of PbKIN8B on male gametogenesis. We show that the ability to produce sexually differentiated gametocytes is not affected in ΔPbkin8B parasites and that the 3 rounds of genome replication occur normally. Nevertheless, the development to free motile microgametes is halted and the life cycle is interrupted in vivo. Ultrastructural analysis revealed that intranuclear mitoses are unaffected whereas cytoplasmic microtubules, although assembled in doublets and elongated, fail to assemble in the normal axonemal '9+2' structure and become motile. Absence of a functional axoneme prevented microgamete assembly and release from the microgametocyte, severely reducing infection of the mosquito vector. This is the first functional study of a kinesin involved in male gametogenesis. These results reveal a previously unknown role for PbKIN8B in male gametogenesis, providing new insights into Plasmodium flagellar formation.


Assuntos
Axonema/fisiologia , Cinesinas/genética , Cinesinas/fisiologia , Plasmodium berghei/fisiologia , Proteínas de Protozoários/fisiologia , Animais , Culicidae/parasitologia , Feminino , Técnicas de Inativação de Genes , Genes de Protozoários , Estágios do Ciclo de Vida , Malária/parasitologia , Camundongos , Mitose , Modelos Animais , Mosquitos Vetores/parasitologia , Organismos Geneticamente Modificados , Proteínas de Protozoários/genética
17.
Parasite Immunol ; 43(2): e12763, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32497249

RESUMO

Human malarial infection occurs after an infectious Anopheles mosquito bites. Following the initial liver-stage infection, parasites transform into merozoites, infecting red blood cells (RBCs). Repeated RBC infection then occurs during the blood-stage infection, while patients experience various malarial symptoms. Protective immune responses are elicited by this systemic infection, but excessive responses are sometimes harmful for hosts. As parasites infect only RBCs and their immediate precursors during this stage, direct parasite-host interactions occur primarily in the environment surrounded by endothelial lining of blood vessels. The spleen is the major organ where the immune system encounters infected RBCs, causing immunological responses. Its tissue structure is markedly altered during malarial infection in mice and humans. Plasmodium falciparum parasites inside RBCs express proteins, such as PfEMP-1 and RIFIN, transported to the RBC surfaces in order to evade immunological attack by sequestering themselves in the peripheral vasculature avoiding spleen or by direct immune cell inhibition through inhibitory receptors. Host cell production of regulatory cytokines IL-10 and IL-27 limits excessive immune responses, avoiding tissue damage. The regulation of the protective and inhibitory immune responses through host-parasite interactions allows chronic Plasmodium infection. In this review, we discuss underlying interaction mechanisms relevant for developing effective strategies against malaria.


Assuntos
Citocinas/imunologia , Interações Hospedeiro-Parasita , Malária/imunologia , Plasmodium falciparum/fisiologia , Baço/imunologia , Animais , Anopheles/parasitologia , Eritrócitos/parasitologia , Humanos , Proteínas de Membrana/fisiologia , Camundongos , Proteínas de Protozoários/fisiologia
18.
EMBO Rep ; 20(12): e48896, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31584242

RESUMO

The obligate intracellular parasites Toxoplasma gondii and Plasmodium spp. invade host cells by injecting a protein complex into the membrane of the targeted cell that bridges the two cells through the assembly of a ring-like junction. This circular junction stretches while the parasites apply a traction force to pass through, a step that typically concurs with transient constriction of the parasite body. Here we analyse F-actin dynamics during host cell invasion. Super-resolution microscopy and real-time imaging highlighted an F-actin pool at the apex of pre-invading parasite, an F-actin ring at the junction area during invasion but also networks of perinuclear and posteriorly localised F-actin. Mutant parasites with dysfunctional acto-myosin showed significant decrease of junctional and perinuclear F-actin and are coincidently affected in nuclear passage through the junction. We propose that the F-actin machinery eases nuclear passage by stabilising the junction and pushing the nucleus through the constriction. Our analysis suggests that the junction opposes resistance to the passage of the parasite's nucleus and provides the first evidence for a dual contribution of actin-forces during host cell invasion by apicomplexan parasites.


Assuntos
Actinas/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Plasmodium falciparum/fisiologia , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/fisiologia , Toxoplasma/parasitologia , Toxoplasma/patogenicidade , Actinas/genética , Transporte Ativo do Núcleo Celular/fisiologia , Animais , Núcleo Celular/parasitologia , Núcleo Celular/fisiologia , Células Cultivadas , Técnicas de Inativação de Genes , Humanos , Merozoítos/genética , Merozoítos/patogenicidade , Merozoítos/fisiologia , Modelos Biológicos , Mutação , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Transdução de Sinais , Toxoplasma/genética , Virulência/fisiologia
19.
Nucleic Acids Res ; 47(2): 634-647, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30407533

RESUMO

In Trypanosoma brucei, genes are arranged in Polycistronic Transcription Units (PTUs), which are demarcated by transcription start and stop sites. Transcription start sites are also binding sites of Origin Recognition Complex 1 (ORC1). This spatial coincidence implies that transcription and replication in trypanosomes must occur in a highly ordered and cooperative manner. Interestingly, a previously published genetic screen identified the T. brucei MCM-BP, which interacts with subunits of MCM helicase, as a protein whose downregulation results in the loss of transcriptional silencing at subtelomeric loci. Here, I show that TbMCM-BP is required for DNA replication and transcription. TbMCM-BP depletion causes a significant reduction of replicating cells in S phase and genome-wide impairments of replication origin activation. Moreover, levels of sense and antisense transcripts increase at boundaries of PTUs in the absence of TbMCM-BP. TbMCM-BP is also important for transcriptional repression of the specialized subtelomeric PTUs, the Bloodstream-form Expression-Sites (BESs), which house the major antigenic determinant (the Variant Surface Glycoprotein, VSG gene) as well as TbORC1 binding sites. Overall, this study reveals that TbMCM-BP, a replication initiation protein, also guides the initiation, termination and directionality of transcription.


Assuntos
Replicação do DNA , Proteínas de Protozoários/fisiologia , Transcrição Gênica , Trypanosoma brucei brucei/genética , Dano ao DNA , DNA de Protozoário/biossíntese , Regulação da Expressão Gênica , Genoma de Protozoário , RNA Antissenso/biossíntese , Regiões Terminadoras Genéticas , Sítio de Iniciação de Transcrição , Trypanosoma brucei brucei/metabolismo
20.
Nucleic Acids Res ; 47(13): 7063-7077, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31127277

RESUMO

Post-transcriptional regulons coordinate the expression of groups of genes in eukaryotic cells, yet relatively few have been characterized. Parasitic trypanosomatids are particularly good models for studies on such mechanisms because they exhibit almost exclusive polycistronic, and unregulated, transcription. Here, we identify the Trypanosoma brucei ZC3H39/40 RNA-binding proteins as regulators of the respiratome; the mitochondrial electron transport chain (complexes I-IV) and the FoF1-ATP synthase (complex V). A high-throughput RNAi screen initially implicated both ZC3H proteins in variant surface glycoprotein (VSG) gene silencing. This link was confirmed and both proteins were shown to form a cytoplasmic ZC3H39/40 complex. Transcriptome and mRNA-interactome analyses indicated that the impact on VSG silencing was indirect, while the ZC3H39/40 complex specifically bound and stabilized transcripts encoding respiratome-complexes. Quantitative proteomic analyses revealed specific positive control of >20 components from complexes I, II and V. Our findings establish a link between the mitochondrial respiratome and VSG gene silencing in bloodstream form T. brucei. They also reveal a major respiratome regulon controlled by the conserved trypanosomatid ZC3H39/40 RNA-binding proteins.


Assuntos
Respiração Celular/fisiologia , Regulação da Expressão Gênica/genética , Proteínas de Protozoários/fisiologia , Proteínas de Ligação a RNA/fisiologia , Regulon/fisiologia , Trypanosoma brucei brucei/fisiologia , Adaptação Fisiológica , Sequência de Aminoácidos , Transporte de Elétrons/fisiologia , Inativação Gênica , Humanos , Mitocôndrias/metabolismo , Parasitemia/parasitologia , Mapeamento de Interação de Proteínas , Proteômica/métodos , ATPases Translocadoras de Prótons/fisiologia , Interferência de RNA , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transcriptoma , Trypanosoma brucei brucei/isolamento & purificação , Tripanossomíase Africana/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/biossíntese , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA