Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RNA ; 27(9): 981-990, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34117118

RESUMO

Many antibiotics that bind to the ribosome inhibit translation by blocking the movement of tRNAs and mRNA or interfering with ribosome dynamics, which impairs the formation of essential translocation intermediates. Here we show how translocation inhibitors viomycin (Vio), neomycin (Neo), paromomycin (Par), kanamycin (Kan), spectinomycin (Spc), hygromycin B (HygB), and streptomycin (Str, an antibiotic that does not inhibit tRNA movement), affect principal motions of the small ribosomal subunits (SSU) during EF-G-promoted translocation. Using ensemble kinetics, we studied the SSU body domain rotation and SSU head domain swiveling in real time. We show that although antibiotics binding to the ribosome can favor a particular ribosome conformation in the absence of EF-G, their kinetic effect on the EF-G-induced transition to the rotated/swiveled state of the SSU is moderate. The antibiotics mostly inhibit backward movements of the SSU body and/or the head domains. Vio, Spc, and high concentrations of Neo completely inhibit the backward movements of the SSU body and head domain. Kan, Par, HygB, and low concentrations of Neo slow down both movements, but their sequence and coordination are retained. Finally, Str has very little effect on the backward rotation of the SSU body domain, but retards the SSU head movement. The data underscore the importance of ribosome dynamics for tRNA-mRNA translocation and provide new insights into the mechanism of antibiotic action.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/metabolismo , RNA de Transferência/metabolismo , Subunidades Ribossômicas/efeitos dos fármacos , Transporte Biológico , Cinamatos/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Higromicina B/análogos & derivados , Higromicina B/farmacologia , Canamicina/farmacologia , Cinética , Neomicina/farmacologia , Paromomicina/farmacologia , Fator G para Elongação de Peptídeos/genética , Fator G para Elongação de Peptídeos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA de Transferência/antagonistas & inibidores , RNA de Transferência/química , RNA de Transferência/genética , Subunidades Ribossômicas/genética , Subunidades Ribossômicas/metabolismo , Subunidades Ribossômicas/ultraestrutura , Espectinomicina/farmacologia , Estreptomicina/farmacologia , Viomicina/farmacologia
2.
J Comput Aided Mol Des ; 34(3): 281-291, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31832846

RESUMO

Linezolid, an antibiotic of oxazolidinone family, is a translation inhibitor. The mechanism of its action that consists in preventing the binding of aminoacyl-tRNA to the A-site of the large subunit of a ribosome was embraced on the basis of the X-ray structural analysis of the linezolid complexes with vacant bacterial ribosomes. However, the known structures of the linezolid complexes with bacterial ribosomes poorly explain the linezolid selectivity in suppression of protein biosynthesis, depending on the amino acid sequence of the nascent peptide. In the present study the most probable structure of the linezolid complex with a E. coli ribosome in the A,A/P,P-state that is in line with the results of biochemical studies of linezolid action has been obtained by molecular dynamics simulation methods.


Assuntos
Antibacterianos/química , Linezolida/química , Biossíntese de Proteínas/efeitos dos fármacos , RNA de Transferência/química , Sequência de Aminoácidos/genética , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Simulação de Dinâmica Molecular , Ligação Proteica/efeitos dos fármacos , RNA de Transferência/antagonistas & inibidores , RNA de Transferência/genética , Ribossomos/química , Ribossomos/efeitos dos fármacos , Ribossomos/genética
3.
Nucleic Acids Res ; 45(12): 7507-7514, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28505372

RESUMO

The emergence of multi-drug resistant bacteria is limiting the effectiveness of commonly used antibiotics, which spurs a renewed interest in revisiting older and poorly studied drugs. Streptogramins A is a class of protein synthesis inhibitors that target the peptidyl transferase center (PTC) on the large subunit of the ribosome. In this work, we have revealed the mode of action of the PTC inhibitor madumycin II, an alanine-containing streptogramin A antibiotic, in the context of a functional 70S ribosome containing tRNA substrates. Madumycin II inhibits the ribosome prior to the first cycle of peptide bond formation. It allows binding of the tRNAs to the ribosomal A and P sites, but prevents correct positioning of their CCA-ends into the PTC thus making peptide bond formation impossible. We also revealed a previously unseen drug-induced rearrangement of nucleotides U2506 and U2585 of the 23S rRNA resulting in the formation of the U2506•G2583 wobble pair that was attributed to a catalytically inactive state of the PTC. The structural and biochemical data reported here expand our knowledge on the fundamental mechanisms by which peptidyl transferase inhibitors modulate the catalytic activity of the ribosome.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Peptidil Transferases/antagonistas & inibidores , Inibidores da Síntese de Proteínas/farmacologia , RNA de Transferência/antagonistas & inibidores , Ribossomos/efeitos dos fármacos , Estreptograminas/farmacologia , Antibacterianos/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Modelos Moleculares , Conformação de Ácido Nucleico , Peptidil Transferases/química , Peptidil Transferases/genética , Peptidil Transferases/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/química , RNA Ribossômico 23S/antagonistas & inibidores , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Estreptograminas/química , Thermus thermophilus/efeitos dos fármacos , Thermus thermophilus/enzimologia , Thermus thermophilus/genética
4.
Drug Des Devel Ther ; 14: 4579-4591, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33149555

RESUMO

PURPOSE: Steroids are known to inhibit osteogenic differentiation and subsequent bone formation in bone mesenchymal stem cells (BMSCs). However, little is known about the role of BMSC exosomes (Exos) and tRNA-derived small RNAs (tsRNAs) in steroid-induced osteonecrosis of the femoral head (SONFH). The objective of this study was to characterize the tsRNA expression profiles of plasma Exos collected from SONFH patients and healthy individuals using small RNA sequencing and further explore the effect of BMSC Exos carrying specific tsRNAs on osteogenic differentiation. MATERIALS AND METHODS: Based on insights from small RNA sequencing, five differentially expressed (DE) tsRNAs were selected for quantitative real-time polymerase chain reaction (qRT-PCR). The regulatory networks associated with interactions of the tsRNAs-mRNA-pathways were reconstructed. The osteogenesis and adipogenesis in BMSCs were detected via ALP and oil red O staining methods, respectively. RESULTS: A total of 345 DE small RNAs were screened, including 223 DE tsRNAs. The DE tsRNAs were enriched in Wnt signaling pathway and osteogenic differentiation. We identified five DE tsRNAs, among which tsRNA-10277 was significantly downregulated in plasma Exos of SONFH patients compared to that in healthy individuals. Dexamethasone-induced BMSCs were associated with an increased fraction of lipid droplets and decreased osteogenic differentiation, whereas BMSC Exos restored the osteogenic differentiation of that. After treatment of tsRNA-10277-loaded BMSC Exos, the lipid droplets and osteogenic differentiation ability were found to be decreased and enhanced in dexamethasone-induced BMSCs, respectively. CONCLUSION: An altered tsRNA profile might be involved in the pathophysiology of SONFH. tsRNA-10277-loaded BMSC Exos enhanced osteogenic differentiation ability of dexamethasone-induced BMSCs. Our results provide novel insights into the osteogenic effect of BMSC Exos carrying specific tsRNAs on SONFH.


Assuntos
Dexametasona/efeitos adversos , Exossomos/efeitos dos fármacos , Cabeça do Fêmur/efeitos dos fármacos , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , RNA de Transferência/antagonistas & inibidores , Adulto , Diferenciação Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Exossomos/metabolismo , Feminino , Cabeça do Fêmur/metabolismo , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Pessoa de Meia-Idade , Estrutura Molecular , RNA de Transferência/genética , RNA de Transferência/metabolismo , Análise de Sequência de RNA , Relação Estrutura-Atividade
5.
Mol Nutr Food Res ; 62(9): e1700992, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29573169

RESUMO

SCOPE: This study was undertaken to expand our insights into the mechanisms involved in the tolerance to resveratrol (RSV) that operate at system-level in gut microorganisms and advance knowledge on new RSV-responsive gene circuits. METHODS AND RESULTS: Whole genome transcriptional profiling was used to characterize the molecular response of Lactobacillus plantarum WCFS1 to RSV. DNA repair mechanisms were induced by RSV and responses were triggered to decrease the load of copper, a metal required for RSV-mediated DNA cleavage, and H2 S, a genotoxic gas. To counter the effects of RSV, L. plantarum strongly up- or downregulated efflux systems and ABC transporters pointing to transport control of RSV across the membrane as a key mechanism for RSV tolerance. L. plantarum also downregulated tRNAs, induced chaperones, and reprogrammed its transcriptome to tightly control ammonia levels. RSV induced a probiotic effector gene and a likely deoxycholate transporter, two functions that improve the host health status. CONCLUSION: Our data identify novel protective mechanisms involved in RSV tolerance operating at system level in a gut microbe. These insights could influence the way RSV is used for a better management of gut microbial ecosystems to obtain associated health benefits.


Assuntos
Antioxidantes/metabolismo , Proteínas de Bactérias/metabolismo , Reparo do DNA , Regulação Bacteriana da Expressão Gênica , Lactobacillus plantarum/metabolismo , Modelos Biológicos , Resveratrol/metabolismo , Animais , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Transporte Biológico , Cobre/química , Cobre/metabolismo , Ácidos Cumáricos , Suplementos Nutricionais , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Sulfeto de Hidrogênio/antagonistas & inibidores , Sulfeto de Hidrogênio/metabolismo , Lactobacillus plantarum/crescimento & desenvolvimento , Lactobacillus plantarum/isolamento & purificação , Probióticos , Propionatos/metabolismo , RNA Bacteriano/antagonistas & inibidores , RNA Bacteriano/metabolismo , RNA de Transferência/antagonistas & inibidores , RNA de Transferência/metabolismo , Saliva/microbiologia
6.
J Natl Cancer Inst ; 81(22): 1743-7, 1989 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-2681797

RESUMO

The active methylene compounds acetylacetone, 1,1,1-trifluoroacetylacetone, benzoylacetone, dibenzoylmethane, and 1,3-indandione inhibited the mutagenicity of 2-nitrofluorene in Salmonella typhimurium. They also inhibited the N,O-acetyltransferase-catalyzed transfer RNA binding of N-hydroxy-2-acetylaminofluorene, but they did not inhibit N,O-acetyltransferase. However, only 1,3-indandione and 1,1,1-trifluoroacetylacetone significantly inhibited the binding of N-acetoxy-2-acetylaminofluorene to transfer RNA. Reaction of the trifluoro compound with the acetoxy compound yielded 1-(N-2-fluorenylacetamido)acetone. These results demonstrate that active methylene compounds can inhibit mutagenicity and nucleic acid binding of chemical carcinogens.


Assuntos
Benzoatos/farmacologia , Butanonas/farmacologia , Chalconas , Fluorenos , Indanos/farmacologia , Indenos/farmacologia , Cetonas/farmacologia , Mutagênicos/antagonistas & inibidores , Mutação , Ácidos Nucleicos/metabolismo , Pentanonas/farmacologia , 2-Acetilaminofluoreno/metabolismo , Acetiltransferases/antagonistas & inibidores , Animais , Avaliação Pré-Clínica de Medicamentos , Interações Medicamentosas , Hidroxiacetilaminofluoreno/metabolismo , Masculino , Mutagênicos/metabolismo , RNA de Transferência/antagonistas & inibidores , RNA de Transferência/metabolismo , Ratos , Salmonella typhimurium/metabolismo
7.
Biochim Biophys Acta ; 1092(2): 218-25, 1991 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-2018789

RESUMO

Estradiol (E2) induces an increase in the peptide elongation rate of isolated uterine ribosomes assayed in a cell-free protein synthesis system. An inhibitory factor, extracted from ribosomes of E2-deprived rats, was found to inhibit the peptide elongation reaction by acting on certain tRNAs to render them incapable of binding to aminoacyl-tRNA synthetases, thus reducing the availability of specific aminoacylated tRNAs required for the sequential translation of the codons in mRNA. The uterine ribosome-associated tRNA inactivator (RATI) has been partially purified and monoclonal antibodies (MABs) to RATI have been prepared. Specificity of the MABs for RATI was indicated by the inactivation of RATI in vitro by the anti-RATI MABs. RATI selectively inactivates deacylated, but not acylated, tRNAs and the inactivation does not appear to involve nuclease cleavage of the tRNA. Within 1 h after E2 treatment 50% of both RATI activity and immunoreactivity were lost from the uterine ribosome extracts, suggesting that E2 regulation of tRNA reutilization may occur through dissociation of RATI from the ribosomal site of tRNA deacylation or alteration in the structure of RATI resulting in inactivation both biologically and immunologically. We propose that RATI may function as an E2-regulatable 'switch' mechanism which inactivates, delays or defers the aminoacylation of certain tRNAs in the absence of E2 and which participates in the regulation of protein synthesis at the translational level by creating rate-limiting levels of certain tRNAs in the E2-deprived uterus.


Assuntos
Estradiol/farmacologia , RNA de Transferência/antagonistas & inibidores , Ribossomos/química , Útero/química , Acilação , Aminoacil-tRNA Sintetases/metabolismo , Animais , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Especificidade de Anticorpos , Feminino , RNA de Transferência/metabolismo , Ratos , Ribossomos/metabolismo , Útero/metabolismo
8.
Biochimie ; 87(9-10): 885-8, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16164995

RESUMO

Human tRNA3(Lys) is used by HIV virus as a primer for the reverse transcription of its genome. The 18 nucleotides at the 3'-end of the tRNA3(Lys) are hybridized to a complementary sequence of the viral RNA called the primer-binding site. A screen against the human tRNA3(Lys) over a peptide library designed to target RNA has been performed. Of the 175 hexapeptides tested, three were found to bind to the d-stem of tRNA3(Lys). Alanine-scanning was used to define the determinants of the interaction between the peptides and tRNA3(Lys). They also bind to two other tested tRNAs, also at the level of the d-stem and loop, although the nucleotide sequence of the stem differs in one of them. These short peptides thus recognize specific structural features within the d-stem and loop of tRNAs. Associated with other pharmacophores, they could be useful to design optimized ligands targeting specific tRNAs such as retroviral replication primers.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos/metabolismo , RNA de Transferência/metabolismo , Sítios de Ligação , Primers do DNA , HIV-1/genética , Humanos , Ligantes , Conformação de Ácido Nucleico , Biblioteca de Peptídeos , RNA de Transferência/antagonistas & inibidores , RNA de Transferência/química , Transcrição Reversa
9.
Ukr Biokhim Zh (1999) ; 84(5): 68-75, 2012.
Artigo em Russo | MEDLINE | ID: mdl-23342637

RESUMO

The influence of the penetrating cryoprotector and Mg2+ ions on the protein-synthesizing activity of postmitochondrial supernantant of the rat liver as well as on aminoacylation processes has been investigated. The addition of the penetrating cryoprotectors--ethylene glycol and DMSO--resulted in the concentration-dependant reversible inhibition of the protein biosynthesis and aminoacylation reaction in the cell-free system. These cryoprotectors at low concentrations intensified the stimulating effect of Mg2+ on the cumulative protein synthesis in the cell-free system.


Assuntos
Dimetil Sulfóxido/farmacologia , Etilenoglicol/farmacologia , Magnésio/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , RNA de Transferência/antagonistas & inibidores , Aminoácidos/metabolismo , Aminoacilação/efeitos dos fármacos , Animais , Sistema Livre de Células , Centrifugação , Cromatografia em Gel , Relação Dose-Resposta a Droga , Fígado/efeitos dos fármacos , Fígado/metabolismo , Magnésio/metabolismo , RNA de Transferência/metabolismo , Ratos
10.
Wiley Interdiscip Rev RNA ; 2(2): 209-32, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21957007

RESUMO

The key role of the bacterial ribosome makes it an important target for antibacterial agents. Indeed, a large number of clinically useful antibiotics target this complex translational ribonucleoprotein machinery. The majority of these compounds, mostly of natural origin, bind to one of the three key ribosomal sites: the decoding (or A-site) on the 30S, the peptidyl transferase center (PTC) on the 50S, and the peptide exit tunnel on the 50S. Antibiotics that bind the A-site, such as the aminoglycosides, interfere with codon recognition and translocation. Peptide bond formation is inhibited when small molecules like oxazolidinones bind at the PTC. Finally, macrolides tend to block the growth of the amino acid chain at the peptide exit tunnel. In this article, the major classes of antibiotics that target the bacterial ribosome are discussed and classified according to their respective target. Notably, most antibiotics solely interact with the RNA components of the bacterial ribosome. The surge seen in the appearance of resistant bacteria has not been met by a parallel development of effective and broad-spectrum new antibiotics, as evident by the introduction of only two novel classes of antibiotics, the oxazolidinones and lipopeptides, in the past decades. Nevertheless, this significant health threat has revitalized the search for new antibacterial agents and novel targets. High resolution structural data of many ribosome-bound antibiotics provide unprecedented insight into their molecular contacts and mode of action and inspire the design and synthesis of new candidate drugs that target this fascinating molecular machine.


Assuntos
Antibacterianos/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Animais , Antibacterianos/administração & dosagem , Sequência de Bases , Sistemas de Liberação de Medicamentos/métodos , Humanos , Modelos Biológicos , Modelos Moleculares , Terapia de Alvo Molecular/métodos , RNA Ribossômico 16S/antagonistas & inibidores , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , RNA de Transferência/antagonistas & inibidores , RNA de Transferência/química , RNA de Transferência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA