Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 214
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Int J Obes (Lond) ; 46(2): 297-306, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34686781

RESUMO

OBJECTIVE: The study aimed at comparing how changes in the gut microbiota are associated to the beneficial effects of the most clinically efficient hypoabsorptive bariatric procedures, namely Roux-en-Y gastric bypass (RYGB), biliopancreatic diversion with duodenal switch (BPD-DS) and single anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S). METHODS: Diet-induced obese (DIO) male Wistar rats were divided into seven groups. In addition to the groups subjected to RYGB, BPD-DS and SADI-S, the following four control groups were included: SHAM-operated rats fed a high-fat diet (SHAM HF), SHAM fed a low-fat diet (SHAM LF), SHAM HF-pair-weighed to BPD-DS (SHAM HF-PW) and sleeve-gastrectomy (SG) rats. Body weight, food intake, glucose tolerance, insulin sensitivity/resistance, and L-cell secretion were assessed. The gut microbiota (16 S ribosomal RNA gene sequencing) as well as the fecal and cæcal contents of short-chain fatty acids (SCFAs) were also analyzed prior to, and after the surgeries. RESULTS: The present study demonstrates the beneficial effect of RYGB, BPD-DS and SADI-S on fat mass gain and glucose metabolism in DIO rats. These benefits were proportional to the effect of the surgeries on food digestibility (BPD-DS > SADI-S > RYGB). Notably, hypoabsorptive surgeries led to consonant microbial signatures characterized by decreased abundance of the Ruminococcaceae (Oscillospira and Ruminococcus), Oscillospiraceae (Oscillibacter) and Christensenellaceae, and increased abundance of the Clostridiaceae (Clostridium), Sutterellaceae (Sutterella) and Enterobacteriaceae. The gut bacteria following hypoabsorptive surgeries were associated with higher fecal levels of propionate, butyrate, isobutyrate and isovalerate. Increases in the fecal SCFAs were in turn positively and strongly correlated with the levels of peptide tyrosine-tyrosine (PYY) and with the beneficial effects of the surgery. CONCLUSION: The present study emphasizes the consistency with which the three major hypoabsorptive bariatric procedures RYGB, BPD-DS and SADI-S create a gut microbial environment capable of producing a SCFA profile favorable to the secretion of PYY and to beneficial metabolic effects.


Assuntos
Cirurgia Bariátrica/estatística & dados numéricos , Ácidos Graxos Voláteis/análise , Microbioma Gastrointestinal/fisiologia , Análise de Variância , Animais , Cirurgia Bariátrica/métodos , Modelos Animais de Doenças , Ácidos Graxos Voláteis/isolamento & purificação , Ácidos Graxos Voláteis/metabolismo , Masculino , Obesidade/cirurgia , Ratos , Ratos Wistar/metabolismo
2.
Int J Obes (Lond) ; 46(1): 137-143, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34552207

RESUMO

BACKGROUND: Early postnatal overfeeding (PO) induces long-term overweight and reduces brown adipose tissue (BAT) thermogenesis. Exercise has been suggested as a possible intervention to increase BAT function. In this study, we investigated chronical effects of moderate-intensity exercise in BAT function in postnatal overfed male Wistar rats METHODS: Litters' delivery was on postnatal-day 0 - PN0. At PN2, litters were adjusted to nine (normal litter - NL) or three pups (small litter - SL) per dam. Animals were weaned on PN21 and in PN30 randomly divided into sedentary (NL-Sed and SL-Sed) or exercised (NL-Exe and SL-Exe), N of 14 litters per group. Exercise protocol started (PN30) with an effort test; training sessions were performed three times weekly at 60% of the VO2max achieved in effort test, until PN80. On PN81, a temperature transponder was implanted beneath the interscapular BAT, whose temperature was assessed in periods of lights-on and -off from PN87 to PN90. Sympathetic nerve activation of BAT was registered at PN90. Animals were euthanized at PN91 and tissues collected RESULTS: PO impaired BAT thermogenesis in lights-on (pPO < 0.0001) and -off (pPO < 0.01). Exercise increased BAT temperature in lights-on (pExe < 0.0001). In NL-Exe, increased BAT activity was associated with higher sympathetic activity (pExe < 0.05), ß3-AR (pExe < 0.001), and UCP1 (pExe < 0.001) content. In SL-Exe, increasing BAT thermogenesis is driven by a combination of tissue morphology remodeling (pExe < 0.0001) with greater effect in increasing UCP1 (pExe < 0.001) and increased ß3-AR (pExe < 0.001) content. CONCLUSION: Moderate exercise chronically increased BAT thermogenesis in both, NL and SL groups. In NL-Exe by increasing Sympathetic activity, and in SL-Exe by a combination of increased ß3-AR and UCP1 content with morphologic remodeling of BAT. Chronically increasing BAT thermogenesis in obese subjects may lead to higher overall energy expenditure, favoring the reduction of obesity and related comorbidities.


Assuntos
Tecido Adiposo Marrom/metabolismo , Obesidade/fisiopatologia , Condicionamento Físico Animal/fisiologia , Animais , Brasil , Modelos Animais de Doenças , Camundongos , Obesidade/diagnóstico , Condicionamento Físico Animal/métodos , Ratos Wistar/crescimento & desenvolvimento , Ratos Wistar/metabolismo
3.
Heart Fail Rev ; 24(2): 279-299, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30349977

RESUMO

ABSTARCT: Diabetic complications are among the largely exigent health problems currently. Cardiovascular complications, including diabetic cardiomyopathy (DCM), account for more than 80% of diabetic deaths. Investigators are exploring new therapeutic targets to slow or abate diabetes because of the growing occurrence and augmented risk of deaths due to its complications. Research on rodent models of type 1 and type 2 diabetes mellitus, and the use of genetic engineering techniques in mice and rats have significantly sophisticated for our understanding of the molecular mechanisms in human DCM. DCM is featured by pathophysiological mechanisms that are hyperglycemia, insulin resistance, oxidative stress, left ventricular hypertrophy, damaged left ventricular systolic and diastolic functions, myocardial fibrosis, endothelial dysfunction, myocyte cell death, autophagy, and endoplasmic reticulum stress. A number of molecular and cellular pathways, such as cardiac ubiquitin proteasome system, FoxO transcription factors, hexosamine biosynthetic pathway, polyol pathway, protein kinase C signaling, NF-κB signaling, peroxisome proliferator-activated receptor signaling, Nrf2 pathway, mitogen-activated protein kinase pathway, and micro RNAs, play a major role in DCM. Currently, there are a few drugs for the management of DCM and some of them have considerable adverse effects. So, researchers are focusing on the natural products to ameliorate it. Hence, in this review, we discuss the pathogical, molecular, and cellular mechanisms of DCM; the current diagnostic methods and treatments; adverse effects of conventional treatment; and beneficial effects of natural product-based therapeutics, which may pave the way to new treatment strategies. Graphical Abstract.


Assuntos
Diabetes Mellitus Tipo 2/complicações , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/terapia , Terapia de Relaxamento/métodos , Animais , Antibióticos Antineoplásicos/administração & dosagem , Autopsia , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatologia , Diabetes Mellitus Tipo 2/epidemiologia , Cardiomiopatias Diabéticas/diagnóstico por imagem , Cardiomiopatias Diabéticas/fisiopatologia , Fibrose , Engenharia Genética/métodos , Humanos , Hipertrofia Ventricular Esquerda/fisiopatologia , Injeções Intraperitoneais , Camundongos , Camundongos Endogâmicos C57BL/metabolismo , Modelos Animais , Miocárdio/metabolismo , Miocárdio/patologia , Ratos , Ratos Wistar/metabolismo , Estreptozocina/administração & dosagem
4.
Biochem Biophys Res Commun ; 503(4): 3242-3247, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30149912

RESUMO

The ductus arteriosus (DA), an essential fetal shunt between the pulmonary trunk and the descending aorta, changes its structure during development. Our previous studies have demonstrated that prostaglandin E2 (PGE2)-EP4 signaling promotes intimal cushion formation (ICF) by activating the migration of DA smooth muscle cells via the secretion of hyaluronan. We hypothesized that, in addition to hyaluronan, PGE2 may secrete other proteins that also regulate vascular remodeling in the DA. In order to detect PGE2 stimulation-secreted proteins, we found that CCN3 protein was increased in the culture supernatant in the presence of PGE2 in a dose-dependent manner by nano-flow liquid chromatography coupled with tandem mass spectrometry analysis and enzyme-linked immunosorbent assay. Quantitative RT-PCR analysis revealed that PGE2 stimulation tended to increase the expression levels of CCN3 mRNA in DA smooth muscle cells. Immunohistochemical analysis revealed that CCN3 was highly localized in the entire smooth muscle layers and the endothelium of the DA. Furthermore, exogenous CCN3 inhibited PGE2-induced ICF in the ex vivo DA tissues. These results suggest that CCN3 is a secreted protein of the DA smooth muscle cells induced by PGE2 to suppress ICF of the DA. The present study indicates that CCN3 could be a novel negative regulator of ICF in the DA to fine-tune the PGE2-mediated DA remodeling.


Assuntos
Dinoprostona/metabolismo , Canal Arterial/embriologia , Ácido Hialurônico/metabolismo , Miócitos de Músculo Liso/metabolismo , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Ratos Wistar/embriologia , Animais , Movimento Celular , Células Cultivadas , Canal Arterial/citologia , Canal Arterial/metabolismo , Miócitos de Músculo Liso/citologia , Técnicas de Cultura de Órgãos , Ratos Wistar/metabolismo , Remodelação Vascular
5.
Crit Care ; 22(1): 249, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30290827

RESUMO

BACKGROUND: Ischemic stroke causes brain inflammation, which we postulate may result in lung damage. Several studies have focused on stroke-induced immunosuppression and lung infection; however, the possibility that strokes may trigger lung inflammation has been overlooked. We hypothesized that even focal ischemic stroke might induce acute systemic and pulmonary inflammation, thus altering respiratory parameters, lung tissue integrity, and alveolar macrophage behavior. METHODS: Forty-eight Wistar rats were randomly assigned to ischemic stroke (Stroke) or sham surgery (Sham). Lung function, histology, and inflammation in the lung, brain, bronchoalveolar lavage fluid (BALF), and circulating plasma were evaluated at 24 h. In vitro, alveolar macrophages from naïve rats (unstimulated) were exposed to serum or BALF from Sham or Stroke animals to elucidate possible mechanisms underlying alterations in alveolar macrophage phagocytic capability. Alveolar macrophages and epithelial and endothelial cells of Sham and Stroke animals were also isolated for evaluation of mRNA expression of interleukin (IL)-6 and tumor necrosis factor (TNF)-α. RESULTS: Twenty-four hours following ischemic stroke, the tidal volume, expiratory time, and mean inspiratory flow were increased. Compared to Sham animals, the respiratory rate and duty cycle during spontaneous breathing were reduced, but this did not affect lung mechanics during mechanical ventilation. Lungs from Stroke animals showed clear evidence of increased diffuse alveolar damage, pulmonary edema, and inflammation markers. This was associated with an increase in ultrastructural damage, as evidenced by injury to type 2 pneumocytes and endothelial cells, cellular infiltration, and enlarged basement membrane thickness. Protein levels of proinflammatory mediators were documented in the lung, brain, and plasma (TNF-α and IL-6) and in BALF (TNF-α). The phagocytic ability of macrophages was significantly reduced. Unstimulated macrophages isolated from naïve rats only upregulated expression of TNF-α and IL-6 following exposure to serum from Stroke rats. Exposure to BALF from Stroke or Sham animals did not change alveolar macrophage behavior, or gene expression of TNF-α and IL-6. IL-6 expression was increased in macrophages and endothelial cells from Stroke animals. CONCLUSIONS: In rats, focal ischemic stroke is associated with brain-lung crosstalk, leading to increased pulmonary damage and inflammation, as well as reduced alveolar macrophage phagocytic capability, which seems to be promoted by systemic inflammation.


Assuntos
Lesão Pulmonar/etiologia , Macrófagos Alveolares/patologia , Fagócitos/patologia , Acidente Vascular Cerebral/complicações , Animais , Isquemia Encefálica/complicações , Isquemia Encefálica/fisiopatologia , Modelos Animais de Doenças , Terapia de Imunossupressão/efeitos adversos , Interleucina-6/análise , Interleucina-6/sangue , Lesão Pulmonar/sangue , Lesão Pulmonar/patologia , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/veterinária , RNA Mensageiro/análise , RNA Mensageiro/sangue , Ratos , Ratos Wistar/imunologia , Ratos Wistar/metabolismo , Estatísticas não Paramétricas , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/fisiopatologia , Fator de Necrose Tumoral alfa/análise , Fator de Necrose Tumoral alfa/sangue
6.
Behav Genet ; 47(5): 564-580, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28744604

RESUMO

Impulsivity, the predisposition to act prematurely without foresight, is associated with a number of neuropsychiatric disorders, including attention-deficit/hyperactivity disorder (ADHD). Identifying genetic underpinnings of impulsive behavior may help decipher the complex etiology and neurobiological factors of disorders marked by impulsivity. To identify potential genetic factors of impulsivity, we examined common differentially expressed genes (DEGs) in the prefrontal cortex (PFC) of adolescent SHR/NCrl and Wistar rats, which showed marked decrease in preference for the large but delayed reward, compared with WKY/NCrl rats, in the delay discounting task. Of these DEGs, we examined drug-responsive transcripts whose mRNA levels were altered following treatment (in SHR/NCrl and Wistar rats) with drugs that alleviate impulsivity, namely, the ADHD medications methylphenidate and atomoxetine. Prefrontal cortical genetic overlaps between SHR/NCrl and Wistar rats in comparison with WKY/NCrl included genes associated with transcription (e.g., Btg2, Fos, Nr4a2), synaptic plasticity (e.g., Arc, Homer2), and neuron apoptosis (Grik2, Nmnat1). Treatment with methylphenidate and/or atomoxetine increased choice of the large, delayed reward in SHR/NCrl and Wistar rats and changed, in varying degrees, mRNA levels of Nr4a2, Btg2, and Homer2, genes with previously described roles in neuropsychiatric disorders characterized by impulsivity. While further studies are required, we dissected potential genetic factors that may influence impulsivity by identifying genetic overlaps in the PFC of "impulsive" SHR/NCrl and Wistar rats. Notably, these are also drug-responsive transcripts which may be studied further as biomarkers to predict response to ADHD drugs, and as potential targets for the development of treatments to improve impulsivity.


Assuntos
Comportamento Impulsivo/efeitos dos fármacos , Comportamento Impulsivo/fisiologia , Córtex Pré-Frontal/efeitos dos fármacos , Animais , Cloridrato de Atomoxetina/metabolismo , Transtorno do Deficit de Atenção com Hiperatividade/genética , Comportamento de Escolha , Modelos Animais de Doenças , Masculino , Metilfenidato/metabolismo , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Endogâmicos SHR/genética , Ratos Endogâmicos SHR/metabolismo , Ratos Endogâmicos WKY/genética , Ratos Endogâmicos WKY/metabolismo , Ratos Wistar/genética , Ratos Wistar/metabolismo
7.
Reprod Fertil Dev ; 27(2): 341-50, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24355403

RESUMO

Maternal vitamin B12 deficiency leads to an adverse pregnancy outcome and increases the risk for developing diabetes and metabolic syndrome in mothers in later life. Our earlier studies have demonstrated that vitamin B12 and n-3 polyunsaturated fatty acids (PUFA) are interlinked in the one carbon cycle. The present study for the first time examines the effect of maternal n-3 PUFA supplementation to vitamin B12 deficient or supplemented diets on pregnancy outcome, fatty-acid status and metabolic variables in Wistar rats. Pregnant dams were assigned to one of the following groups: control, vitamin B12 deficient, vitamin B12 supplemented, vitamin B12 deficient + n-3 PUFA or vitamin B12 supplemented + n-3 PUFA. The amount of vitamin B12 in the supplemented group was 0.50 µg kg(-1) diet and n-3 PUFA was alpha linolenic acid (ALA) 1.68, eicosapentaenoic acid 5.64, docosahexaenoic acid (DHA) 3.15 (g per 100g fatty acids per kg diet). Our findings indicate that maternal vitamin B12 supplementation did not affect the weight gain of dams during pregnancy but reduced litter size and weight and was ameliorated by n-3 PUFA supplementation. Vitamin B12 deficiency or supplementation resulted in a low percentage distribution of plasma arachidonic acid and DHA. n-3 PUFA supplementation to these diets improved the fatty-acid status. Vitamin B12 deficiency resulted in higher homocysteine and insulin levels, which were normalised by supplementation with either vitamin B12 or n-3 PUFA. Our study suggests that maternal vitamin B12 status is critical in determining pregnancy outcome and metabolic variables in dams and that supplementation with n-3 PUFA is beneficial.


Assuntos
Suplementos Nutricionais , Ácidos Graxos Ômega-3/farmacologia , Ratos Wistar/metabolismo , Deficiência de Vitamina B 12/metabolismo , Vitamina B 12/farmacologia , Análise de Variância , Animais , Ácidos Docosa-Hexaenoicos/sangue , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/sangue , Ácido Eicosapentaenoico/farmacologia , Feminino , Gravidez , Resultado da Gravidez , Ratos , Vitamina B 12/sangue , Deficiência de Vitamina B 12/sangue , Deficiência de Vitamina B 12/fisiopatologia , Ácido alfa-Linolênico/sangue , Ácido alfa-Linolênico/farmacologia
8.
J Dairy Sci ; 98(10): 6651-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26233456

RESUMO

Conjugated linoleic acid (CLA) has been shown to provide beneficial effects on health; however, the amount consumed in food is far from that required for the desired effects. Thus, increasing the CLA content in dairy foods through milk fermentation with specific lactic acid bacteria (LAB) offers an interesting alternative. Moreover, some LAB may be able to adhere to the intestinal mucosa and produce CLA through endogenous synthesis. Therefore, the objective of this study was to screen LAB isolates for their ability to produce CLA in skim milk and in simulated gastrointestinal conditions. Additionally, the ability of selected CLA-producing LAB to adhere to the intestinal mucosa in a murine model was assessed. Results showed that of 13 strains of Lactobacillus tested, only 4 were able to produce CLA in skim milk supplemented with linoleic acid (13.44 ± 0.78 to 50.9 ± 0.26 µg/mL). Furthermore, these 4 Lactobacillus strains were able to survive and produce CLA in simulated gastrointestinal conditions and to adhere to the intestinal mucosa of Wistar rats after 7 d of oral inoculation with fluorescently labeled bacteria. Accordingly, these 4 Lactobacillus strains may be used to manufacture fermented dairy foods to increase CLA content, and consumption of these fermented milks may result in CLA produced endogenously by these LAB.


Assuntos
Intestino Delgado/microbiologia , Lactobacillus/fisiologia , Ácidos Linoleicos Conjugados/metabolismo , Leite/química , Animais , Aderência Bacteriana , Produtos Fermentados do Leite/química , Fermentação , Lactobacillus/genética , Masculino , Leite/microbiologia , Distribuição Aleatória , Ratos , Ratos Wistar/metabolismo , Ratos Wistar/microbiologia
9.
Horm Metab Res ; 46(9): 621-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24691733

RESUMO

Obesity is associated with myocardial insulin resistance and impairment of the mammalian target of rapamycin (mTOR) signaling pathway. The activation of the mTOR cascade by exercise has been largely shown in skeletal muscle, but insufficiently analyzed in myocardial tissue. In addition, little is known regarding the mTOR upstream molecules in the hearts of obese animals and even less about the role of exercise in this process. Thus, the present study was aimed to evaluate the effects of physical exercise on P38 Mitogen-Activated Protein Kinase (P38MAPK) phosphorylation and the REDD1 (regulated in development and DNA damage responses 1) and 14-3-3 protein levels in the myocardium of diet-induced obesity (DIO) rats. After achievement of DIO and insulin resistance, Wistar rats were divided in 2 groups: sedentary obese rats and obese rats performed treadmill running (50-min/day, 5 days per week velocity of 1.0 km/h for 2 months). Forty-eight hours after the final physical exercise, the rats were killed, and the myocardial tissue was removed for Western blot analysis. DIO increased the REDD1 protein levels and reduced the 14-3-3 protein levels and P38MAPK, mTOR, P70S6k (p70 ribosomal S6 protein kinase), and 4EBP1 (4E-binding protein-1) phosphorylation. Interestingly, physical exercise reduced the REDD1 protein levels and increased the 14-3-3 protein levels and P38MAPK, mTOR, P70S6k, and 4EBP1 phosphorylation. Moreover, exercise increased the REDD1/14-3-3 association in the heart. Our results indicate that the phospho-P38MAPK, REDD1, and 14-3-3 protein levels were reduced in the myocardium of obese rats and that physical exercise increased the protein levels of these molecules.


Assuntos
Proteínas 14-3-3/metabolismo , Terapia por Exercício , Miocárdio/metabolismo , Obesidade/metabolismo , Obesidade/terapia , Ratos Wistar/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas 14-3-3/genética , Animais , Dieta Hiperlipídica/efeitos adversos , Humanos , Insulina/metabolismo , Masculino , Músculo Esquelético/metabolismo , Obesidade/etiologia , Obesidade/genética , Ratos , Ratos Wistar/genética , Proteínas Repressoras/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição , Proteínas Quinases p38 Ativadas por Mitógeno/genética
10.
Poult Sci ; 93(2): 429-33, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24570465

RESUMO

Glycation starts from nonenzymatic amino-carbonyl reaction that binds carbonyl group of reducing sugars to the amino group of amino acids. Glycation leads to further complex reactions to form advanced glycation end products (AGE). Because AGE are implicated in the gradual development of diabetic complications, tissue accumulation of AGE has been widely examined in various tissues of rats. Avian species are known to have high body temperature and blood glucose concentration compared with mammals. Although these characteristics enabled chickens to be used as experimental models for diabetes mellitus, the information of AGE accumulation in various tissues of chickens has not been limited so far. In the present study, therefore, the radioactive AGE prepared by reacting (14)C-glucose and amino acids were intravenously administrated, and comparison of tissue accumulation of (14)C-labeled AGE was made between chickens and rats. At 30 min after administration, tissues (18-20) were collected, and the radioactivity incorporated into tissues was determined. High levels of radioactivity per gram of tissue in the liver and kidney were observed in both rats and chickens. In chickens but not rats, a large amount of (14)C-labeled AGE incorporated into 1 g of spleen was observed, and the specific accumulation of AGE in the avian spleen might have a particular role in immune response in avian species.


Assuntos
Aminoácidos/metabolismo , Galinhas/metabolismo , Glucose/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Ratos/metabolismo , Baço/metabolismo , Administração Intravenosa/veterinária , Aminoácidos/administração & dosagem , Animais , Radioisótopos de Carbono , Galinhas/crescimento & desenvolvimento , Glucose/administração & dosagem , Masculino , Especificidade de Órgãos , Ratos/crescimento & desenvolvimento , Ratos Wistar/metabolismo , Contagem de Cintilação/veterinária
11.
Biosci Biotechnol Biochem ; 76(4): 660-4, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22484926

RESUMO

We had previously found plant sterols deposited in the bodies of stroke-prone spontaneously hypertensive rats (SHRSP)/Sea and Wistar Kyoto (WKY)/NCrlCrlj rats that had a missense mutation in the Abcg5 cDNA sequence that coded for ATP-binding cassette transporter (ABC) G5. We used SHRSP/Izm, WKY/NCrlCrlj, and WKY/Izm rats in the present study to determine the mechanisms for plant sterol deposition in the body. Jcl:Wistar rats were used as a control strain. A diet containing 0.5% plant sterols fed to the rats resulted in plant sterol deposition in the body of SHRSP/Izm, but not in WKY/Izm or Jcl:Wistar rats. Only a single non-synonymous nucleotide change, G1747T, resulting in a conservative cysteine substitution for glycine at amino acid 583 (Gly583Cys) in Abcg5 cDNA was identified in the SHRSP/Izm and WKY/NCrlCrlj rats. However, this mutation was not found in the WKY/Izm or Jcl:Wistar rats. No significant difference in the biliary secretion or lymphatic absorption of plant sterols was apparent between the rat strains with or without the missense mutation in Abcg5 cDNA. Our observations suggest that plant sterol deposition in rat strains with the missense mutation in Abcg5 cDNA can occur, despite there being no significant change in the biliary secretion or lymphatic absorption of plant sterols.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Bile/metabolismo , Hipertensão/genética , Lipoproteínas/genética , Vasos Linfáticos/metabolismo , Mutação de Sentido Incorreto/genética , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Absorção , Substituição de Aminoácidos , Animais , Pressão Sanguínea , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Lipoproteínas/metabolismo , Vasos Linfáticos/fisiopatologia , Masculino , Nucleotídeos , Fitosteróis/administração & dosagem , Fitosteróis/metabolismo , Ratos , Ratos Endogâmicos SHR/genética , Ratos Endogâmicos SHR/metabolismo , Ratos Endogâmicos WKY/genética , Ratos Endogâmicos WKY/metabolismo , Ratos Wistar/genética , Ratos Wistar/metabolismo
12.
J Diabetes Res ; 2022: 9321445, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242881

RESUMO

Obesity and dyslipidemias are both signs of metabolic syndrome, usually associated with ventricular arrhythmias. Here, we tried to identify cardiac electrical alteration and biomarkers in nonobese rats with metabolic syndrome (MetS), and these findings might lead to more lethal arrhythmias than obese animals. The MetS model was developed in Wistar rats with high-sucrose diet (20%), and after twenty-eight weeks were obtained two subgroups: obese (OMetS) and nonobese (NOMetS). The electrocardiogram was used to measure the ventricular arrhythmias and changes in the heart rate variability. Also, we measured ventricular hypertrophy and its relationship with electrical activity alterations of both ventricles, using micro-electrode and voltage clamp techniques. Also, we observed alterations in the contraction force of ventricles where a transducer was used to record mechanical and electrical papillary muscle, simultaneously. Despite both subgroups presenting long QT syndrome (0.66 ± 0.05 and 0.66 ± 0.07 ms with respect to the control 0.55 ± 0.1 ms), the changes in the heart rate variability were present only in OMetS, while the NOMetS subgroup presented changes in QT interval variability (NOMetS SD = 1.8, SD2 = 2.8; SD1/SD2 = 0.75). Also, the NOMetS revealed tachycardia (10%; p < 0.05) with changes in action potential duration (63% in the right papillary and 50% in the left papillary) in the ventricular papillary which are correlated with certain alterations in the potassium currents and the force of contraction. The OMetS showed an increase in action potential duration and the force of contraction in both ventricles, which are explained as bradycardia. Our results revealed lethal arrhythmias in both MetS subgroups, irrespectively of the presence of obesity. Consequently, the NOMetS showed mechanical-electrical alterations regarding ventricle hypertrophy that should be at the NOMetS, leading to an increase of CV mortality.


Assuntos
Síndrome Metabólica/complicações , Obesidade/complicações , Disfunção Ventricular/fisiopatologia , Animais , Modelos Animais de Doenças , Síndrome Metabólica/fisiopatologia , Obesidade/fisiopatologia , Ratos , Ratos Wistar/metabolismo , Disfunção Ventricular/etiologia
13.
J Dev Orig Health Dis ; 13(1): 90-100, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33650480

RESUMO

Early weaning (EW) is associated with obesity later in life. Here, using an EW model in rats, we investigated changes in feeding behavior and the dopaminergic and endocannabinoid systems (ECS) in the adult offspring. Lactating Wistar rats were divided into two groups: EW, dams were wrapped with a bandage to interrupt suckling during the last 3 days of breastfeeding; CONT; dams fed the pups throughout the period without hindrances. EW animals were compared with CONT animals of the same sex. At PN175, male and female offspring of both groups could freely self-select between high-fat and high-sugar diets (food challenge test). EW males preferred the high-fat diet at 30 min and more of the high-sugar diet after 12 h compared to CONT males. EW females did not show differences in their preference for the palatable diets compared to CONT females. Total intake of standard diet from PN30-PN180 was higher in both male and female EW animals, indicating hyperphagia. At PN180, EW males showed lower type 2 dopamine receptor (D2r) in the nucleus accumbens (NAc) and dorsal striatum, while EW females had lower tyrosine hydroxylase in the ventral tegmental area and NAc, D1r in the NAc, and D2r in the prefrontal cortex. In the lateral hypothalamus, EW males had lower fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase, whereas EW females showed lower N-arachidonoyl-phosphatidylethanolamine phospholipase-D and increased FAAH. Early weaning altered both the dopaminergic and ECS parameters at adulthood, contributing to the eating behavior changes of the progeny in a sex-dependent manner.


Assuntos
Dopaminérgicos/metabolismo , Endocanabinoides/metabolismo , Preferências Alimentares/psicologia , Fatores de Tempo , Desmame , Análise de Variância , Animais , Modelos Animais de Doenças , Comportamento Alimentar , Ratos , Ratos Wistar/metabolismo
14.
J Dev Orig Health Dis ; 13(1): 20-27, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33441200

RESUMO

The consumption of fructose has increased in children and adolescents and is partially responsible for the high incidence of metabolic diseases. The lifestyle during postnatal development can result in altered metabolic programming, thereby impairing the reproductive system and fertility during adulthood. Therefore, the aim of this study was to evaluate the effect of a high-fructose diet in the male reproductive system of pubertal and adult rats. Male Wistar rats (30 d old) were assigned to four different groups: Fr30, which received fructose (20%) in water for 30 d and were euthanized at postnatal day (PND) 60; Re-Fr30, which received fructose (20%) for 30 d and were euthanized at PND 120; and two control groups C30 and Re-C30, which received water ad libitum and were euthanized at PND 60 and 120, respectively. Fructose induced an increase in abnormal seminiferous tubules with epithelial vacuoles, degeneration, and immature cells in the lumen. Moreover, Fr30 rats showed altered spermatogenesis and daily sperm production (DSP), as well as increased serum testosterone concentrations. After discontinuing high-fructose consumption, DSP and sperm number decreased significantly. We observed tissue remodeling in the epididymis, with a reduction in stromal and epithelial compartments that might have influenced sperm motility. Therefore, we concluded that fructose intake in peripubertal rats led to changes in the reproductive system observed both during puberty and adulthood.


Assuntos
Epididimo/patologia , Qualidade dos Alimentos , Xarope de Milho Rico em Frutose/efeitos adversos , Testículo/patologia , Animais , Modelos Animais de Doenças , Epididimo/efeitos dos fármacos , Epididimo/fisiopatologia , Xarope de Milho Rico em Frutose/metabolismo , Masculino , Puberdade/sangue , Puberdade/metabolismo , Ratos Wistar/crescimento & desenvolvimento , Ratos Wistar/metabolismo , Contagem de Espermatozoides/métodos , Contagem de Espermatozoides/estatística & dados numéricos , Testículo/efeitos dos fármacos , Testículo/fisiopatologia , Testosterona/análise , Testosterona/sangue
15.
Clin Epigenetics ; 13(1): 180, 2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565458

RESUMO

BACKGROUND: Road traffic air pollution is linked with an increased risk of autistic spectrum disorder (ASD). The aim of this study is to assess the effect of exposure to prenatal or postnatal traffic-related air pollution combining concomitant noise pollution on ASD-related epigenetic and behavioral alternations on offspring. METHODS: A 2 × 2 factorial analysis experiment was designed. Wistar rats were exposed at different sites (L group: green space; H group: crossroads) and timings (E group: full gestation; P group: 21 days after birth) at the same time, and air pollutants of nitrogen dioxide (NO2) and fine particles (PM2.5) were meanwhile sampled. On postnatal day 25, brains from offspring of each group were extracted to determine the levels of DNA methylation in Shank3 (three parts: Shank3_01, Shank3_02, Shank3_03) and MeCP2 (two parts: MeCP2_01, MeCP2_02) promoter regions, H3K4me3 and H3K27me3 after three-chamber social test. Meanwhile, the Shank3 and MeCP2 levels were quantified. RESULTS: The concentrations of PM2.5 (L: 58.33 µg/m3; H: 88.33 µg/m3, P < 0.05) and NO2 (L: 52.76 µg/m3; H: 146.03 µg/m3, P < 0.01) as well as the intensity of noise pollution (L: 44.4 dB (A); H: 70.1 dB (A), P < 0.001) differed significantly from 18:00 to 19:00 between experimental sites. Traffic pollution exposure (P = 0.006) and neonatal exposure (P = 0.001) led to lower weight of male pups on PND25. Male rats under early-life exposure had increased levels of Shank3 (Shank3_02: timing P < 0.001; site P < 0.05, Shank3_03: timing P < 0.001) and MeCP2 (MeCP2_01: timing P < 0.001, MeCP2_02: timing P < 0.001) methylation and H3K4me3 (EL: 11.94 µg/mg; EH: 11.98; PL: 17.14; PH: 14.78, timing P < 0.05), and reduced levels of H3K27me3 (EL: 71.07 µg/mg; EH: 44.76; PL: 29.15; PH: 28.67, timing P < 0.001; site P < 0.05) in brain compared to those under prenatal exposure. There was, for female pups, a same pattern of Shank3 (Shank3_02: timing P < 0.001; site P < 0.05, Shank3_03: timing P < 0.001) and MeCP2 (MeCP2_01: timing P < 0.05, MeCP2_02: timing P < 0.001) methylation and H3K4me3 (EL: 11.27 µg/mg; EH: 11.55; PL: 16.11; PH: 15.44, timing P < 0.001), but the levels of H3K27me3 exhibited an inverse trend concerning exposure timing. Hypermethylation at the MeCP2 and Shank3 promoter was correlated with the less content of MeCP2 (female: EL: 32.23 ng/mg; EH: 29.58; PL: 25.01; PH: 23.03, timing P < 0.001; site P < 0.05; male: EL: 31.05 ng/mg; EH: 32.75; PL: 23.40; PH: 25.91, timing P < 0.001) and Shank3 (female: EL: 5.10 ng/mg; EH: 5.31; PL: 4.63; PH: 4.82, timing P < 0.001; male: EL: 5.40 ng/mg; EH: 5.48; PL: 4.82; PH: 4.87, timing P < 0.001). Rats with traffic pollution exposure showed aberrant sociability preference and social novelty, while those without it behaved normally. CONCLUSIONS: Our findings suggest early life under environmental risks is a crucial window for epigenetic perturbations and then abnormalities in protein expression, and traffic pollution impairs behaviors either during pregnancy or after birth.


Assuntos
Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Poluição Relacionada com o Tráfego/efeitos adversos , Poluição do Ar , Animais , Metilação de DNA , Modelos Animais de Doenças , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Feminino , Gravidez , Ratos , Ratos Wistar/metabolismo , Poluição Relacionada com o Tráfego/análise
16.
Nutr Hosp ; 38(5): 1089-1100, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34176275

RESUMO

INTRODUCTION: Introduction: in the last few years important changes have occurred in nutritional patterns. There has been an increase in the consumption of simple carbohydrates such as fructose, which has been associated with numerous metabolic disorders, including hepatic steatosis. Materials and methods: we sought to evaluate the impact of fructose consumption, as diluted in water at different concentrations, for two time periods, on the metabolic parameters of Wistar rats using ANOVA. Results: our data indicate that both time and fructose concentration promote variations in animal body mass, and in food, water, and caloric intake. The time variable influenced the modulation of biochemical parameters such as serum concentrations of glucose and total cholesterol. Both fructose concentration and time of exposure influenced the concentrations of serum triglycerides, creatinine, AST, TNF, and IL-6. When evaluating redox status and oxidative damage markers, we observed that fructose concentration and exposure time had an effect on total glutathione levels, which decreased with an increase in concentration and time. For superoxide dismutase, we evaluated the effects of time and interaction. A significant interaction was observed for TBARS. For carbonylated proteins, exposure time was a fundamental factor in generating an effect. Conclusions: we demonstrated that fructose modulates the parameters of triglycerides and total liver cholesterol, and that time influences the number of hepatocytes. Our data suggest that fructose concentration, exposure time, and an interaction between these two parameters have a significant effect on the metabolic parameters responsible for the development of non-alcoholic fatty liver disease.


INTRODUCCIÓN: Introducción: en los últimos años se han producido cambios importantes en los patrones nutricionales. Ha habido un aumento del consumo de carbohidratos simples como la fructosa, que se ha asociado con numerosos trastornos metabólicos, incluida la esteatosis hepática. Materiales y métodos: buscamos evaluar el impacto del consumo de fructosa, diluida en agua a diferentes concentraciones, durante dos períodos de tiempo sobre los parámetros metabólicos de ratas Wistar, utilizando para ello el ANOVA. Resultados: nuestros datos indican que tanto el tiempo como la concentración de fructosa promueven variaciones en la masa corporal animal y la ingesta de alimentos, agua y calorías. La variable tiempo influyó en la modulación de parámetros bioquímicos tales como las concentraciones séricas de glucosa y colesterol total. Tanto la concentración de fructosa como el tiempo de exposición influyeron en las concentraciones séricas de triglicéridos, creatinina, AST, TNF e IL-6. Al evaluar el estado redox y los marcadores de daño oxidativo, observamos que la concentración de fructosa y el tiempo de exposición tuvieron un efecto sobre los niveles de glutatión total, que disminuyeron al aumentar la concentración y el tiempo. Para la superóxido dismutasa evaluamos los efectos del tiempo y la interacción. Se observó una interacción significativa para TBARS. Para las proteínas carboniladas, el tiempo de exposición fue un factor fundamental para generar algún efecto. Conclusiones: demostramos que la fructosa modula los parámetros de los triglicéridos y el colesterol total del hígado, y que el tiempo influye en el número de hepatocitos. Nuestros datos sugieren que la concentración de fructosa, el tiempo de exposición y cierta interacción entre estos dos parámetros tienen un efecto significativo sobre los parámetros metabólicos responsables del desarrollo de la enfermedad del hígado graso no alcohólico.


Assuntos
Aditivos Alimentares/normas , Frutose/administração & dosagem , Frutose/efeitos adversos , Fígado/metabolismo , Metabolismo/efeitos dos fármacos , Análise de Variância , Animais , Modelos Animais de Doenças , Aditivos Alimentares/administração & dosagem , Aditivos Alimentares/efeitos adversos , Ratos Wistar/metabolismo
17.
J Dev Orig Health Dis ; 12(5): 758-767, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303040

RESUMO

The hypothesis was that maternal intake of the antioxidant alpha-lipoid acid (ALA), during the developmental period of the hypothalamic orexigenic neurons, causes a permanent beneficial effect in offspring metabolism. Pregnant Wistar rats were fed with standard diet (food) + ALA (0.4% wt/wt) from day 14 of gestation to day 20 of lactation (n = 4) or food (n = 4). At 3 months of age, male offspring born from ALA-fed rats or controls (CT) were randomly assigned to be fed with food + 10% fructose solution in drinking water (F) or food + tap water (C), resulting in four groups: ALAF, ALAC, CTF, and CTC (n = 5/group). Food intake and body weight (BW) were measured twice a week for 31 days. Metabolites' levels in blood, mRNA expressions of Npy, Agrp (hypothalamus), Fasn, Srebf1, Ppard, and Pparg (liver), and the antioxidant capacity of the liver were determined. Results significance was set at p < 0.05. Average BW gain, daily BW gain, and intraabdominal fat tissue at necropsy were higher in CTF group followed by CTC, ALAF, and ALAC groups. There were no differences between groups in Kcal intake per day. mRNA expressions of hypothalamic and hepatic genes and plasmatic levels of glucose and triglycerides were higher in CTF group followed by ALAF, CTC, and ALAC groups. Fructose intake affected the oxidative capacity of the liver, but this effect was not observed in the ALAF group. In conclusion, maternal ALA intake protected the adult offspring to develop metabolic symptoms associated with high fructose in the drinking water.


Assuntos
Frutose/efeitos adversos , Exposição Materna , Ácido Tióctico/farmacologia , Animais , Dieta/métodos , Dieta/estatística & dados numéricos , Modelos Animais de Doenças , Feminino , Frutose/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Wistar/metabolismo , Ácido Tióctico/uso terapêutico
18.
Pak J Biol Sci ; 24(5): 599-611, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34486335

RESUMO

<b>Background and Objective:</b> Lead is defined as a severe adverse metal that induces neurological, renal, haematological and hepatic dysfunctions. It stimulates oxidative stress to disrupt the antioxidative enzyme mechanism, organ structure and lipid membranes of the cell. Kiwifruit (<i>Actinidia deliciosa</i>) is amongst the world's most valuable fruits due to its various pharmacological characteristics and health benefits. The present research was intended to observe the antioxidant efficiency of kiwifruit ethanolic extract on lead toxicity in the hepatic, renal, brain and blood tissues in rats. <b>Materials and Methods:</b> Twenty-four adult Wister albino rats were classified into 4 groups with 6 rats within each group. The rats in group I functioned as normal control. Animals within group II, III and IV were given three intraperitoneal doses of lead acetate (25 mg kg<sup>1</sup> b.wt., liquefied in distilled H<sub>2</sub>O as a vehicle) on the day 7th, 14th and 21st of the experiment. Group III and IV were the treatment groups and were treated with a daily oral dose of kiwifruit extract (250 and 500 mg kg<sup>1</sup> b.wt., respectively) for 28 days. <b>Results:</b> The protective impact of kiwifruit was observed in the improvement in antioxidant enzyme activity [Catalase (CAT), Superoxide Dismutase (SOD), Glutathione Peroxidase (GPx) and Glutathione Reductase (GR)] and decreased level of Lipid Peroxidation (LPO) in the liver, brain and kidney tissues. Additionally, <i>Actinidia deliciosa</i> has a great effect on increasing acetylcholine esterase activity in the brain and also, improved the delta-aminolevulinic acid dehydratase activity in the blood. <b>Conclusion:</b> Kiwifruit emerged as an effective factor for the alleviation of lead-induced oxidative damage in cells.


Assuntos
Actinidia , Chumbo/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/farmacologia , Animais , Chumbo/efeitos adversos , Extratos Vegetais/uso terapêutico , Fatores de Proteção , Ratos Wistar/metabolismo
19.
J Dev Orig Health Dis ; 12(6): 865-869, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33407988

RESUMO

With the legalization of marijuana (Cannabis sativa) and increasing use during pregnancy, it is important to understand its impact on exposed offspring. Specifically, the effects of Δ-9-tetrahydrocannabinol (Δ9-THC), the major psychoactive component of cannabis, on fetal ovarian development and long-term reproductive health are not fully understood. The aim of this study was to assess the effect of prenatal exposure to Δ9-THC on ovarian health in adult rat offspring. At 6 months of age, Δ9-THC-exposed offspring had accelerated folliculogenesis with apparent follicular development arrest, but no persistent effects on circulating steroid levels. Ovaries from Δ9-THC-exposed offspring had reduced blood vessel density in association with decreased expression of the pro-angiogenic factor VEGF and its receptor VEGFR-2, as well as an increase in the anti-angiogenic factor thrombospondin 1 (TSP-1). Collectively, these data suggest that exposure to Δ9-THC during pregnancy alters follicular dynamics during postnatal life, which may have long-lasting detrimental effects on female reproductive health.


Assuntos
Dronabinol/efeitos adversos , Folículo Ovariano/efeitos dos fármacos , Indutores da Angiogênese/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Modelos Animais de Doenças , Dronabinol/metabolismo , Dronabinol/farmacologia , Feminino , Exposição Materna/efeitos adversos , Folículo Ovariano/fisiopatologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Ratos , Ratos Wistar/metabolismo
20.
Behav Brain Res ; 410: 113349, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-33971246

RESUMO

Reserpine (RES) is an irreversible inhibitor of VMAT2 used to study Parkinson's disease (PD) and screening for antiparkinsonian treatments in rodents. Recently, the repeated treatment with a low dose of reserpine was proposed as a model capable of emulating progressive neurochemical, motor and non-motor impairments in PD. Conversely, compared to Wistar rats, Spontaneously Hypertensive Rats (SHR) are resistant to motor changes induced by repeated treatment with a low dose of RES. However, such resistance has not yet been investigated for RES-induced non-motor impairments. We aimed to assess whether SHR would have differential susceptibility to the object recognition deficit induced by repeated low-dose reserpine treatment. We submitted male Wistar and SHR rats to repeated RES treatment (15 s.c. injections of 0.1 mg/kg, every other day) and assessed object memory acquisition and retrieval 48 h after the 6th RES injection (immediately before the appearance of motor impairments). Only RES Wistar rats displayed memory impairment after reserpine treatment. On the other hand, untreated SHR rats displayed object recognition memory deficit, but RES treatment restored such deficits. We also performed immunohistochemistry for tyrosine hydroxylase (TH) and α-synuclein (α-syn) 48 h after the last RES injection. In a different set of animals submitted to the same treatment, we quantified DA, 5-HT and products of lipid peroxidation in the prefrontal cortex (PFC) and hippocampus (HPC). SHR presented increased constitutive levels of DA in the PFC and reduced immunoreactivity to TH in the medial PFC and dorsal HPC. Corroborating the behavioral findings, RES treatment restored those constitutive alterations in SHR. These findings indicate that the neurochemical, molecular and genetic differences in the SHR strain are potentially relevant targets to the study of susceptibility to diseases related to dopaminergic alterations.


Assuntos
Transtornos Cognitivos/induzido quimicamente , Dopamina/metabolismo , Hipocampo , Doença de Parkinson Secundária/induzido quimicamente , Córtex Pré-Frontal , Reconhecimento Psicológico/efeitos dos fármacos , Reserpina/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos , Ratos Endogâmicos SHR/metabolismo , Ratos Wistar/metabolismo , Reserpina/administração & dosagem , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA