Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.693
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(8): 2151-2166.e16, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33765440

RESUMO

Cutaneous mast cells mediate numerous skin inflammatory processes and have anatomical and functional associations with sensory afferent neurons. We reveal that epidermal nerve endings from a subset of sensory nonpeptidergic neurons expressing MrgprD are reduced by the absence of Langerhans cells. Loss of epidermal innervation or ablation of MrgprD-expressing neurons increased expression of a mast cell gene module, including the activating receptor, Mrgprb2, resulting in increased mast cell degranulation and cutaneous inflammation in multiple disease models. Agonism of MrgprD-expressing neurons reduced expression of module genes and suppressed mast cell responses. MrgprD-expressing neurons released glutamate which was increased by MrgprD agonism. Inhibiting glutamate release or glutamate receptor binding yielded hyperresponsive mast cells with a genomic state similar to that in mice lacking MrgprD-expressing neurons. These data demonstrate that MrgprD-expressing neurons suppress mast cell hyperresponsiveness and skin inflammation via glutamate release, thereby revealing an unexpected neuroimmune mechanism maintaining cutaneous immune homeostasis.


Assuntos
Ácido Glutâmico/metabolismo , Mastócitos/metabolismo , Neurônios/metabolismo , Pele/metabolismo , Animais , Células Cultivadas , Dermatite/metabolismo , Dermatite/patologia , Toxina Diftérica/farmacologia , Modelos Animais de Doenças , Feminino , Cadeias beta de Integrinas/genética , Cadeias beta de Integrinas/metabolismo , Células de Langerhans/citologia , Células de Langerhans/efeitos dos fármacos , Células de Langerhans/metabolismo , Mastócitos/citologia , Mastócitos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/citologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Pele/patologia , beta-Alanina/química , beta-Alanina/metabolismo , beta-Alanina/farmacologia
2.
Cell ; 176(3): 468-478.e11, 2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30639099

RESUMO

"Biased" G protein-coupled receptor (GPCR) agonists preferentially activate pathways mediated by G proteins or ß-arrestins. Here, we use double electron-electron resonance spectroscopy to probe the changes that ligands induce in the conformational distribution of the angiotensin II type I receptor. Monitoring distances between 10 pairs of nitroxide labels distributed across the intracellular regions enabled mapping of four underlying sets of conformations. Ligands from different functional classes have distinct, characteristic effects on the conformational heterogeneity of the receptor. Compared to angiotensin II, the endogenous agonist, agonists with enhanced Gq coupling more strongly stabilize an "open" conformation with an accessible transducer-binding site. ß-arrestin-biased agonists deficient in Gq coupling do not stabilize this open conformation but instead favor two more occluded conformations. These data suggest a structural mechanism for biased ligand action at the angiotensin receptor that can be exploited to rationally design GPCR-targeting drugs with greater specificity of action.


Assuntos
Angiotensinas/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Antagonistas de Receptores de Angiotensina/metabolismo , Arrestinas/metabolismo , Linhagem Celular , Humanos , Ligantes , Conformação Proteica , Receptores de Angiotensina/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Espectroscopia de Perda de Energia de Elétrons/métodos , beta-Arrestinas/metabolismo
3.
Cell ; 166(5): 1084-1102, 2016 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-27565340

RESUMO

Four major receptor families enable cells to respond to chemical and physical signals from their proximal environment. The ligand- and voltage-gated ion channels, G-protein-coupled receptors, nuclear hormone receptors, and receptor tyrosine kinases are all allosteric proteins that carry multiple, spatially distinct, yet conformationally linked ligand-binding sites. Recent studies point to common mechanisms governing the allosteric transitions of these receptors, including the impact of oligomerization, pre-existing and functionally distinct conformational ensembles, intrinsically disordered regions, and the occurrence of allosteric modulatory sites. Importantly, synthetic allosteric modulators are being discovered for these receptors, providing an enriched, yet challenging, landscape for novel therapeutics.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante/química , Receptores Proteína Tirosina Quinases/química , Receptores Citoplasmáticos e Nucleares/química , Receptores Acoplados a Proteínas G/química , Regulação Alostérica , Sítio Alostérico , Animais , Doença/genética , Desenho de Fármacos , Humanos , Canais Iônicos de Abertura Ativada por Ligante/agonistas , Ligantes , Modelos Químicos , Mutação , Conformação Proteica , Multimerização Proteica , Receptores Proteína Tirosina Quinases/agonistas , Receptores Citoplasmáticos e Nucleares/agonistas , Receptores Acoplados a Proteínas G/agonistas , Transdução de Sinais
4.
Cell ; 166(4): 907-919, 2016 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-27499021

RESUMO

Classically, G protein-coupled receptor (GPCR) stimulation promotes G protein signaling at the plasma membrane, followed by rapid ß-arrestin-mediated desensitization and receptor internalization into endosomes. However, it has been demonstrated that some GPCRs activate G proteins from within internalized cellular compartments, resulting in sustained signaling. We have used a variety of biochemical, biophysical, and cell-based methods to demonstrate the existence, functionality, and architecture of internalized receptor complexes composed of a single GPCR, ß-arrestin, and G protein. These super-complexes or "megaplexes" more readily form at receptors that interact strongly with ß-arrestins via a C-terminal tail containing clusters of serine/threonine phosphorylation sites. Single-particle electron microscopy analysis of negative-stained purified megaplexes reveals that a single receptor simultaneously binds through its core region with G protein and through its phosphorylated C-terminal tail with ß-arrestin. The formation of such megaplexes provides a potential physical basis for the newly appreciated sustained G protein signaling from internalized GPCRs.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , beta-Arrestinas/metabolismo , Técnicas de Transferência de Energia por Ressonância de Bioluminescência , AMP Cíclico/metabolismo , Endossomos/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Microscopia Confocal , Microscopia Eletrônica , Complexos Multiproteicos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , beta-Arrestinas/química
5.
Mol Cell ; 83(17): 3171-3187.e7, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37597514

RESUMO

Hydroxycarboxylic acid receptor 2 (HCAR2), modulated by endogenous ketone body ß-hydroxybutyrate and exogenous niacin, is a promising therapeutic target for inflammation-related diseases. HCAR2 mediates distinct pathophysiological events by activating Gi/o protein or ß-arrestin effectors. Here, we characterize compound 9n as a Gi-biased allosteric modulator (BAM) of HCAR2 and exhibit anti-inflammatory efficacy in RAW264.7 macrophages via a specific HCAR2-Gi pathway. Furthermore, four structures of HCAR2-Gi complex bound to orthosteric agonists (niacin or monomethyl fumarate), compound 9n, and niacin together with compound 9n simultaneously reveal a common orthosteric site and a unique allosteric site. Combined with functional studies, we decipher the action framework of biased allosteric modulation of compound 9n on the orthosteric site. Moreover, co-administration of compound 9n with orthosteric agonists could enhance anti-inflammatory effects in the mouse model of colitis. Together, our study provides insight to understand the molecular pharmacology of the BAM and facilitates exploring the therapeutic potential of the BAM with orthosteric drugs.


Assuntos
Colite , Receptores Acoplados a Proteínas G , Animais , Camundongos , Regulação Alostérica , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP , Inflamação/tratamento farmacológico , Corpos Cetônicos , Niacina/farmacologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
6.
Nat Rev Mol Cell Biol ; 19(10): 638-653, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30104700

RESUMO

G protein-coupled receptors (GPCRs) are the largest group of cell surface receptors in humans that signal in response to diverse inputs and regulate a plethora of cellular processes. Hence, they constitute one of the primary drug target classes. Progress in our understanding of GPCR dynamics, activation and signalling has opened new possibilities for selective drug development. A key advancement has been provided by the concept of biased agonism, which describes the ability of ligands acting at the same GPCR to elicit distinct cellular signalling profiles by preferentially stabilizing different active conformational states of the receptor. Application of this concept raises the prospect of 'designer' biased agonists as optimized therapeutics with improved efficacy and/or reduced side-effect profiles. However, this application will require a detailed understanding of the spectrum of drug actions and a structural understanding of the drug-receptor interactions that drive distinct pharmacologies. The recent revolution in GPCR structural biology provides unprecedented insights into ligand binding, conformational dynamics and the control of signalling outcomes. These insights, together with new approaches to multi-dimensional analysis of drug action, are allowing refined classification of drugs according to their pharmacodynamic profiles, which can be linked to receptor structure and predictions of preclinical drug efficacy.


Assuntos
Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Animais , Humanos , Ligantes , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
7.
Nature ; 628(8008): 664-671, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600377

RESUMO

Bitter taste sensing is mediated by type 2 taste receptors (TAS2Rs (also known as T2Rs)), which represent a distinct class of G-protein-coupled receptors1. Among the 26 members of the TAS2Rs, TAS2R14 is highly expressed in extraoral tissues and mediates the responses to more than 100 structurally diverse tastants2-6, although the molecular mechanisms for recognizing diverse chemicals and initiating cellular signalling are still poorly understood. Here we report two cryo-electron microscopy structures for TAS2R14 complexed with Ggust (also known as gustducin) and Gi1. Both structures have an orthosteric binding pocket occupied by endogenous cholesterol as well as an intracellular allosteric site bound by the bitter tastant cmpd28.1, including a direct interaction with the α5 helix of Ggust and Gi1. Computational and biochemical studies validate both ligand interactions. Our functional analysis identified cholesterol as an orthosteric agonist and the bitter tastant cmpd28.1 as a positive allosteric modulator with direct agonist activity at TAS2R14. Moreover, the orthosteric pocket is connected to the allosteric site via an elongated cavity, which has a hydrophobic core rich in aromatic residues. Our findings provide insights into the ligand recognition of bitter taste receptors and suggest activities of TAS2R14 beyond bitter taste perception via intracellular allosteric tastants.


Assuntos
Colesterol , Espaço Intracelular , Receptores Acoplados a Proteínas G , Paladar , Humanos , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico , Colesterol/química , Colesterol/metabolismo , Colesterol/farmacologia , Microscopia Crioeletrônica , Interações Hidrofóbicas e Hidrofílicas , Espaço Intracelular/química , Espaço Intracelular/metabolismo , Ligantes , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Reprodutibilidade dos Testes , Paladar/efeitos dos fármacos , Paladar/fisiologia , Transducina/química , Transducina/metabolismo , Transducina/ultraestrutura
8.
Nature ; 631(8020): 459-466, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776963

RESUMO

Bitter taste receptors, particularly TAS2R14, play central roles in discerning a wide array of bitter substances, ranging from dietary components to pharmaceutical agents1,2. TAS2R14 is also widely expressed in extragustatory tissues, suggesting its extra roles in diverse physiological processes and potential therapeutic applications3. Here we present cryogenic electron microscopy structures of TAS2R14 in complex with aristolochic acid, flufenamic acid and compound 28.1, coupling with different G-protein subtypes. Uniquely, a cholesterol molecule is observed occupying what is typically an orthosteric site in class A G-protein-coupled receptors. The three potent agonists bind, individually, to the intracellular pockets, suggesting a distinct activation mechanism for this receptor. Comprehensive structural analysis, combined with mutagenesis and molecular dynamic simulation studies, elucidate the broad-spectrum ligand recognition and activation of the receptor by means of intricate multiple ligand-binding sites. Our study also uncovers the specific coupling modes of TAS2R14 with gustducin and Gi1 proteins. These findings should be instrumental in advancing knowledge of bitter taste perception and its broader implications in sensory biology and drug discovery.


Assuntos
Ácidos Aristolóquicos , Colesterol , Ácido Flufenâmico , Receptores Acoplados a Proteínas G , Paladar , Humanos , Ácidos Aristolóquicos/metabolismo , Ácidos Aristolóquicos/química , Ácidos Aristolóquicos/farmacologia , Sítios de Ligação/efeitos dos fármacos , Colesterol/química , Colesterol/metabolismo , Colesterol/farmacologia , Microscopia Crioeletrônica , Ácido Flufenâmico/química , Ácido Flufenâmico/metabolismo , Ácido Flufenâmico/farmacologia , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Paladar/efeitos dos fármacos , Paladar/fisiologia , Transducina/química , Transducina/metabolismo
9.
Cell ; 159(7): 1712, 1712.e1, 2014 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-25525884

RESUMO

G-protein-coupled receptors enable cells to recognize numerous external stimuli and to transmit corresponding signals across the plasma membrane to trigger appropriate cellular responses. Crystal structures of a number of these receptors have now been determined in inactive and active conformations bound to chemically and functionally distinct ligands. These crystal structures illustrate overall receptor organization and atomic details of ligand-receptor interactions.


Assuntos
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Cristalografia por Raios X , Humanos , Ligantes , Modelos Moleculares , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores
10.
Nature ; 624(7992): 663-671, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37935377

RESUMO

Trace amine-associated receptor 1 (TAAR1), the founding member of a nine-member family of trace amine receptors, is responsible for recognizing a range of biogenic amines in the brain, including the endogenous ß-phenylethylamine (ß-PEA)1 as well as methamphetamine2, an abused substance that has posed a severe threat to human health and society3. Given its unique physiological role in the brain, TAAR1 is also an emerging target for a range of neurological disorders including schizophrenia, depression and drug addiction2,4,5. Here we report structures of human TAAR1-G-protein complexes bound to methamphetamine and ß-PEA as well as complexes bound to RO5256390, a TAAR1-selective agonist, and SEP-363856, a clinical-stage dual agonist for TAAR1 and serotonin receptor 5-HT1AR (refs. 6,7). Together with systematic mutagenesis and functional studies, the structures reveal the molecular basis of methamphetamine recognition and underlying mechanisms of ligand selectivity and polypharmacology between TAAR1 and other monoamine receptors. We identify a lid-like extracellular loop 2 helix/loop structure and a hydrogen-bonding network in the ligand-binding pockets, which may contribute to the ligand recognition in TAAR1. These findings shed light on the ligand recognition mode and activation mechanism for TAAR1 and should guide the development of next-generation therapeutics for drug addiction and various neurological disorders.


Assuntos
Metanfetamina , Fenetilaminas , Receptores Acoplados a Proteínas G , Humanos , Ligantes , Metanfetamina/metabolismo , Doenças do Sistema Nervoso/metabolismo , Fenetilaminas/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Polifarmacologia , Ligação de Hidrogênio
11.
Nature ; 618(7967): 1085-1093, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37286611

RESUMO

G protein-coupled receptors (GPCRs) generally accommodate specific ligands in the orthosteric-binding pockets. Ligand binding triggers a receptor allosteric conformational change that leads to the activation of intracellular transducers, G proteins and ß-arrestins. Because these signals often induce adverse effects, the selective activation mechanism for each transducer must be elucidated. Thus, many orthosteric-biased agonists have been developed, and intracellular-biased agonists have recently attracted broad interest. These agonists bind within the receptor intracellular cavity and preferentially tune the specific signalling pathway over other signalling pathways, without allosteric rearrangement of the receptor from the extracellular side1-3. However, only antagonist-bound structures are currently available1,4-6, and there is no evidence to support that biased agonist binding occurs within the intracellular cavity. This limits the comprehension of intracellular-biased agonism and potential drug development. Here we report the cryogenic electron microscopy structure of a complex of Gs and the human parathyroid hormone type 1 receptor (PTH1R) bound to a PTH1R agonist, PCO371. PCO371 binds within an intracellular pocket of PTH1R and directly interacts with Gs. The PCO371-binding mode rearranges the intracellular region towards the active conformation without extracellularly induced allosteric signal propagation. PCO371 stabilizes the significantly outward-bent conformation of transmembrane helix 6, which facilitates binding to G proteins rather than ß-arrestins. Furthermore, PCO371 binds within the highly conserved intracellular pocket, activating 7 out of the 15 class B1 GPCRs. Our study identifies a new and conserved intracellular agonist-binding pocket and provides evidence of a biased signalling mechanism that targets the receptor-transducer interface.


Assuntos
Subunidades alfa Gs de Proteínas de Ligação ao GTP , Imidazolidinas , Receptores Acoplados a Proteínas G , Humanos , Regulação Alostérica , beta-Arrestinas/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Desenvolvimento de Medicamentos , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Imidazolidinas/química , Imidazolidinas/farmacologia , Ligantes , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/classificação , Receptores Acoplados a Proteínas G/ultraestrutura , Transdução de Sinais
12.
Nature ; 621(7979): 635-641, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37524305

RESUMO

Class B G-protein-coupled receptors (GPCRs), including glucagon-like peptide 1 receptor (GLP1R) and parathyroid hormone 1 receptor (PTH1R), are important drug targets1-5. Injectable peptide drugs targeting these receptors have been developed, but orally available small-molecule drugs remain under development6,7. Here we report the high-resolution structure of human PTH1R in complex with the stimulatory G protein (Gs) and a small-molecule agonist, PCO371, which reveals an unexpected binding mode of PCO371 at the cytoplasmic interface of PTH1R with Gs. The PCO371-binding site is totally different from all binding sites previously reported for small molecules or peptide ligands in GPCRs. The residues that make up the PCO371-binding pocket are conserved in class B GPCRs, and a single alteration in PTH2R and two residue alterations in GLP1R convert these receptors to respond to PCO371. Functional assays reveal that PCO371 is a G-protein-biased agonist that is defective in promoting PTH1R-mediated arrestin signalling. Together, these results uncover a distinct binding site for designing small-molecule agonists for PTH1R and possibly other members of the class B GPCRs and define a receptor conformation that is specific only for G-protein activation but not arrestin signalling. These insights should facilitate the design of distinct types of class B GPCR small-molecule agonist for various therapeutic indications.


Assuntos
Imidazolidinas , Receptores Acoplados a Proteínas G , Compostos de Espiro , Humanos , Arrestina/metabolismo , Sítios de Ligação , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Imidazolidinas/farmacologia , Ligantes , Peptídeos/farmacologia , Conformação Proteica , Receptor Tipo 1 de Hormônio Paratireóideo/agonistas , Receptor Tipo 1 de Hormônio Paratireóideo/classificação , Receptor Tipo 1 de Hormônio Paratireóideo/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/classificação , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Compostos de Espiro/farmacologia , Desenho de Fármacos
13.
Nature ; 604(7907): 779-785, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35418679

RESUMO

Adhesion G protein-coupled receptors (aGPCRs) are essential for a variety of physiological processes such as immune responses, organ development, cellular communication, proliferation and homeostasis1-7. An intrinsic manner of activation that involves a tethered agonist in the N-terminal region of the receptor has been proposed for the aGPCRs8,9, but its molecular mechanism remains elusive. Here we report the G protein-bound structures of ADGRD1 and ADGRF1, which exhibit many unique features with regard to the tethered agonism. The stalk region that proceeds the first transmembrane helix acts as the tethered agonist by forming extensive interactions with the transmembrane domain; these interactions are mostly conserved in ADGRD1 and ADGRF1, suggesting that a common stalk-transmembrane domain interaction pattern is shared by members of the aGPCR family. A similar stalk binding mode is observed in the structure of autoproteolysis-deficient ADGRF1, supporting a cleavage-independent manner of receptor activation. The stalk-induced activation is facilitated by a cascade of inter-helix interaction cores that are conserved in positions but show sequence variability in these two aGPCRs. Furthermore, the intracellular region of ADGRF1 contains a specific lipid-binding site, which proves to be functionally important and may serve as the recognition site for the previously discovered endogenous ADGRF1 ligand synaptamide. These findings highlight the diversity and complexity of the signal transduction mechanisms of the aGPCRs.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Humanos , Ligantes , Proteínas Oncogênicas/agonistas , Proteínas Oncogênicas/metabolismo , Ligação Proteica , Domínios Proteicos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
14.
Nature ; 609(7928): 846-853, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35940205

RESUMO

Thyroid hormones are vital in metabolism, growth and development1. Thyroid hormone synthesis is controlled by thyrotropin (TSH), which acts at the thyrotropin receptor (TSHR)2. In patients with Graves' disease, autoantibodies that activate the TSHR pathologically increase thyroid hormone activity3. How autoantibodies mimic thyrotropin function remains unclear. Here we determined cryo-electron microscopy structures of active and inactive TSHR. In inactive TSHR, the extracellular domain lies close to the membrane bilayer. Thyrotropin selects an upright orientation of the extracellular domain owing to steric clashes between a conserved hormone glycan and the membrane bilayer. An activating autoantibody from a patient with Graves' disease selects a similar upright orientation of the extracellular domain. Reorientation of the extracellular domain transduces a conformational change in the seven-transmembrane-segment domain via a conserved hinge domain, a tethered peptide agonist and a phospholipid that binds within the seven-transmembrane-segment domain. Rotation of the TSHR extracellular domain relative to the membrane bilayer is sufficient for receptor activation, revealing a shared mechanism for other glycoprotein hormone receptors that may also extend to other G-protein-coupled receptors with large extracellular domains.


Assuntos
Microscopia Crioeletrônica , Imunoglobulinas Estimuladoras da Glândula Tireoide , Receptores da Tireotropina , Tireotropina , Membrana Celular/metabolismo , Doença de Graves/imunologia , Doença de Graves/metabolismo , Humanos , Imunoglobulinas Estimuladoras da Glândula Tireoide/química , Imunoglobulinas Estimuladoras da Glândula Tireoide/imunologia , Imunoglobulinas Estimuladoras da Glândula Tireoide/farmacologia , Imunoglobulinas Estimuladoras da Glândula Tireoide/ultraestrutura , Fosfolipídeos/metabolismo , Domínios Proteicos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/ultraestrutura , Receptores da Tireotropina/agonistas , Receptores da Tireotropina/química , Receptores da Tireotropina/imunologia , Receptores da Tireotropina/ultraestrutura , Rotação , Tireotropina/química , Tireotropina/metabolismo , Tireotropina/farmacologia
15.
Mol Cell ; 80(3): 485-500.e7, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027691

RESUMO

Peptide drugs targeting class B1 G-protein-coupled receptors (GPCRs) can treat multiple diseases; however, there remains substantial interest in the development of orally delivered non-peptide drugs. Here, we reveal unexpected overlap between signaling and regulation of the glucagon-like peptide-1 (GLP-1) receptor by the non-peptide agonist PF 06882961 and GLP-1 that was not observed for another compound, CHU-128. Compounds from these patent series, including PF 06882961, are currently in clinical trials for treatment of type 2 diabetes. High-resolution cryoelectron microscopy (cryo-EM) structures reveal that the binding sites for PF 06882961 and GLP-1 substantially overlap, whereas CHU-128 adopts a unique binding mode with a more open receptor conformation at the extracellular face. Structural differences involving extensive water-mediated hydrogen bond networks could be correlated to functional data to understand how PF 06882961, but not CHU-128, can closely mimic the pharmacological properties of GLP-1. These findings will facilitate rational structure-based discovery of non-peptide agonists targeting class B GPCRs.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Animais , Sítios de Ligação/fisiologia , Microscopia Crioeletrônica/métodos , Peptídeo 1 Semelhante ao Glucagon/química , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Humanos , Peptídeos/química , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
16.
Nature ; 600(7887): 170-175, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34789874

RESUMO

The MRGPRX family of receptors (MRGPRX1-4) is a family of mas-related G-protein-coupled receptors that have evolved relatively recently1. Of these, MRGPRX2 and MRGPRX4 are key physiological and pathological mediators of itch and related mast cell-mediated hypersensitivity reactions2-5. MRGPRX2 couples to both Gi and Gq in mast cells6. Here we describe agonist-stabilized structures of MRGPRX2 coupled to Gi1 and Gq in ternary complexes with the endogenous peptide cortistatin-14 and with a synthetic agonist probe, respectively, and the development of potent antagonist probes for MRGPRX2. We also describe a specific MRGPRX4 agonist and the structure of this agonist in a complex with MRGPRX4 and Gq. Together, these findings should accelerate the structure-guided discovery of therapeutic agents for pain, itch and mast cell-mediated hypersensitivity.


Assuntos
Microscopia Crioeletrônica , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Prurido/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/química , Agonismo Inverso de Drogas , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/ultraestrutura , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/ultraestrutura , Humanos , Modelos Moleculares , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/ultraestrutura , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/ultraestrutura
17.
Proc Natl Acad Sci U S A ; 121(18): e2307090121, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38648487

RESUMO

G protein-coupled receptors (GPCRs) transduce the effects of many neuromodulators including dopamine, serotonin, epinephrine, acetylcholine, and opioids. The localization of synthetic or endogenous GPCR agonists impacts their action on specific neuronal pathways. In this paper, we show a series of single-protein chain integrator sensors that are highly modular and could potentially be used to determine GPCR agonist localization across the brain. We previously engineered integrator sensors for the mu- and kappa-opioid receptor agonists called M- and K-Single-chain Protein-based Opioid Transmission Indicator Tool (SPOTIT), respectively. Here, we engineered red versions of the SPOTIT sensors for multiplexed imaging of GPCR agonists. We also modified SPOTIT to create an integrator sensor design platform called SPOTIT for all GPCRs (SPOTall). We used the SPOTall platform to engineer sensors for the beta 2-adrenergic receptor (B2AR), the dopamine receptor D1, and the cholinergic receptor muscarinic 2 agonists. Finally, we demonstrated the application of M-SPOTIT and B2AR-SPOTall in detecting exogenously administered morphine, isoproterenol, and epinephrine in the mouse brain via locally injected viruses. The SPOTIT and SPOTall sensor design platform has the potential for unbiased agonist detection of many synthetic and endogenous neuromodulators across the brain.


Assuntos
Receptores Acoplados a Proteínas G , Animais , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Humanos , Camundongos , Células HEK293 , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Receptores Adrenérgicos beta 2/genética , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/metabolismo , Isoproterenol/farmacologia , Receptores Opioides mu/agonistas , Receptores Opioides mu/metabolismo , Morfina/farmacologia , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Receptores Opioides kappa/agonistas , Receptores Opioides kappa/metabolismo , Técnicas Biossensoriais/métodos
18.
Nature ; 579(7797): 152-157, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32076264

RESUMO

GPR52 is a class-A orphan G-protein-coupled receptor that is highly expressed in the brain and represents a promising therapeutic target for the treatment of Huntington's disease and several psychiatric disorders1,2. Pathological malfunction of GPR52 signalling occurs primarily through the heterotrimeric Gs protein2, but it is unclear how GPR52 and Gs couple for signal transduction and whether a native ligand or other activating input is required. Here we present the high-resolution structures of human GPR52 in three states: a ligand-free state, a Gs-coupled self-activation state and a potential allosteric ligand-bound state. Together, our structures reveal that extracellular loop 2 occupies the orthosteric binding pocket and operates as a built-in agonist, conferring an intrinsically high level of basal activity to GPR523. A fully active state is achieved when Gs is coupled to GPR52 in the absence of an external agonist. The receptor also features a side pocket for ligand binding. These insights into the structure and function of GPR52 could improve our understanding of other self-activated GPCRs, enable the identification of endogenous and tool ligands, and guide drug discovery efforts that target GPR52.


Assuntos
Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Regulação Alostérica , Sítio Alostérico , Motivos de Aminoácidos , Sequência de Aminoácidos , Apoproteínas/agonistas , Apoproteínas/química , Apoproteínas/metabolismo , Sítios de Ligação , Microscopia Crioeletrônica , Cristalografia por Raios X , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Humanos , Ligantes , Modelos Moleculares , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/ultraestrutura
19.
Nature ; 587(7834): 499-504, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32698187

RESUMO

The G-protein-coupled bile acid receptor (GPBAR) conveys the cross-membrane signalling of a vast variety of bile acids and is a signalling hub in the liver-bile acid-microbiota-metabolism axis1-3. Here we report the cryo-electron microscopy structures of GPBAR-Gs complexes stabilized by either the high-affinity P3954 or the semisynthesized bile acid derivative INT-7771,3 at 3 Å resolution. These structures revealed a large oval pocket that contains several polar groups positioned to accommodate the amphipathic cholic core of bile acids, a fingerprint of key residues to recognize diverse bile acids in the orthosteric site, a putative second bile acid-binding site with allosteric properties and structural features that contribute to bias properties. Moreover, GPBAR undertakes an atypical mode of activation and G protein coupling that features a different set of key residues connecting the ligand-binding pocket to the Gs-coupling site, and a specific interaction motif that is localized in intracellular loop 3. Overall, our study not only reveals unique structural features of GPBAR that are involved in bile acid recognition and allosteric effects, but also suggests the presence of distinct connecting mechanisms between the ligand-binding pocket and the G-protein-binding site in the G-protein-coupled receptor superfamily.


Assuntos
Ácidos e Sais Biliares/metabolismo , Microscopia Crioeletrônica , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Regulação Alostérica/efeitos dos fármacos , Ácidos e Sais Biliares/química , Sítios de Ligação/efeitos dos fármacos , Ácidos Cólicos/química , Ácidos Cólicos/farmacologia , Subunidades alfa Gs de Proteínas de Ligação ao GTP/química , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/ultraestrutura , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Especificidade por Substrato
20.
Proc Natl Acad Sci U S A ; 119(29): e2117054119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858343

RESUMO

The G protein-coupled bile acid receptor (GPBAR) is the membrane receptor for bile acids and a driving force of the liver-bile acid-microbiota-organ axis to regulate metabolism and other pathophysiological processes. Although GPBAR is an important therapeutic target for a spectrum of metabolic and neurodegenerative diseases, its activation has also been found to be linked to carcinogenesis, leading to potential side effects. Here, via functional screening, we found that two specific GPBAR agonists, R399 and INT-777, demonstrated strikingly different regulatory effects on the growth and apoptosis of non-small cell lung cancer (NSCLC) cells both in vitro and in vivo. Further mechanistic investigation showed that R399-induced GPBAR activation displayed an obvious bias for ß-arrestin 1 signaling, thus promoting YAP signaling activation to stimulate cell proliferation. Conversely, INT-777 preferentially activated GPBAR-Gs signaling, thus inactivating YAP to inhibit cell proliferation and induce apoptosis. Phosphorylation of GPBAR by GRK2 at S310/S321/S323/S324 sites contributed to R399-induced GPBAR-ß-arrestin 1 association. The cryoelectron microscopy (cryo-EM) structure of the R399-bound GPBAR-Gs complex enabled us to identify key interaction residues and pivotal conformational changes in GPBAR responsible for the arrestin signaling bias and cancer cell proliferation. In summary, we demonstrate that different agonists can regulate distinct functions of cell growth and apoptosis through biased GPBAR signaling and control of YAP activity in a NSCLC cell model. The delineated mechanism and structural basis may facilitate the rational design of GPBAR-targeting drugs with both metabolic and anticancer benefits.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Proteínas de Ciclo Celular , Neoplasias Pulmonares , Receptores Acoplados a Proteínas G , Fatores de Transcrição , Ácidos e Sais Biliares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ciclo Celular/metabolismo , Ácidos Cólicos/farmacologia , Microscopia Crioeletrônica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Fatores de Transcrição/metabolismo , beta-Arrestina 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA