Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.089
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Purinergic Signal ; 19(1): 185-197, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35181831

RESUMO

Hypertension is the leading cause of morbidity and mortality globally among all cardiovascular diseases. Purinergic signalling plays a crucial role in hypertension through the sympathetic nerve system, neurons in the brain stem, carotid body, endothelium, immune system, renin-angiotensin system, sodium excretion, epithelial sodium channel activity (ENaC), and renal autoregulation. Under hypertension, adenosine triphosphate (ATP) is released as a cotransmitter from the sympathetic nerve. It mediates vascular tone mainly through P2X1R activation on smooth muscle cells and activation of P2X4R and P2YR on endothelial cells and also via interaction with other purinoceptors, showing dual effects. P2Y1R is linked to neurogenic hypertension. P2X7R and P2Y11R are potential targets for immune-related hypertension. P2X3R located on the carotid body is the most promising novel therapeutic target for hypertension. A1R, A2AR, A2BR, and P2X7R are all related to renal autoregulation, which contribute to both renal damage and hypertension. The main focus is on the evidence addressing the involvement of purinoceptors in hypertension and therapeutic interventions.


Assuntos
Células Endoteliais , Hipertensão , Humanos , Receptores Purinérgicos/fisiologia , Transmissão Sináptica , Transdução de Sinais , Trifosfato de Adenosina/fisiologia
2.
Int J Mol Sci ; 24(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37298149

RESUMO

Since its inception by the late Geoffrey Burnstock in the early 1970s [...].


Assuntos
Fenômenos Biológicos , Receptores Purinérgicos , Receptores Purinérgicos/fisiologia , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/fisiologia
3.
J Neurosci ; 41(4): 594-612, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33303678

RESUMO

Spontaneous bursts of electrical activity in the developing auditory system arise within the cochlea before hearing onset and propagate through future sound-processing circuits of the brain to promote maturation of auditory neurons. Studies in isolated cochleae revealed that this intrinsically generated activity is initiated by ATP release from inner supporting cells (ISCs), resulting in activation of purinergic autoreceptors, K+ efflux, and subsequent depolarization of inner hair cells. However, it is unknown when this activity emerges or whether different mechanisms induce activity during distinct stages of development. Here we show that spontaneous electrical activity in mouse cochlea from both sexes emerges within ISCs during the late embryonic period, preceding the onset of spontaneous correlated activity in inner hair cells and spiral ganglion neurons, which begins at birth and follows a base to apex developmental gradient. At all developmental ages, pharmacological inhibition of P2Y1 purinergic receptors dramatically reduced spontaneous activity in these three cell types. Moreover, in vivo imaging within the inferior colliculus revealed that auditory neurons within future isofrequency zones exhibit coordinated neural activity at birth. The frequency of these discrete bursts increased progressively during the postnatal prehearing period yet remained dependent on P2RY1. Analysis of mice with disrupted cholinergic signaling in the cochlea indicate that this efferent input modulates, rather than initiates, spontaneous activity before hearing onset. Thus, the auditory system uses a consistent mechanism involving ATP release from ISCs and activation of P2RY1 autoreceptors to elicit coordinated excitation of neurons that will process similar frequencies of sound.SIGNIFICANCE STATEMENT In developing sensory systems, groups of neurons that will process information from similar sensory space exhibit highly correlated electrical activity that is critical for proper maturation and circuit refinement. Defining the period when this activity is present, the mechanisms responsible and the features of this activity are crucial for understanding how spontaneous activity influences circuit development. We show that, from birth to hearing onset, the auditory system relies on a consistent mechanism to elicit correlate firing of neurons that will process similar frequencies of sound. Targeted disruption of this activity will increase our understanding of how these early circuits mature and may provide insight into processes responsible for developmental disorders of the auditory system.


Assuntos
Vias Auditivas/crescimento & desenvolvimento , Vias Auditivas/fisiologia , Receptores Purinérgicos/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Sinalização do Cálcio/fisiologia , Cóclea/crescimento & desenvolvimento , Cóclea/fisiologia , Feminino , Células Ciliadas Auditivas/fisiologia , Células Ciliadas Auditivas Internas/fisiologia , Colículos Inferiores/fisiologia , Células Labirínticas de Suporte/fisiologia , Masculino , Camundongos , Sistema Nervoso Parassimpático/efeitos dos fármacos , Sistema Nervoso Parassimpático/fisiologia , Antagonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y1/fisiologia , Retina/fisiologia , Gânglio Espiral da Cóclea/fisiologia
4.
Purinergic Signal ; 18(1): 13-59, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34757513

RESUMO

Hyperinflammation plays an important role in severe and critical COVID-19. Using inconsistent criteria, many researchers define hyperinflammation as a form of very severe inflammation with cytokine storm. Therefore, COVID-19 patients are treated with anti-inflammatory drugs. These drugs appear to be less efficacious than expected and are sometimes accompanied by serious adverse effects. SARS-CoV-2 promotes cellular ATP release. Increased levels of extracellular ATP activate the purinergic receptors of the immune cells initiating the physiologic pro-inflammatory immune response. Persisting viral infection drives the ATP release even further leading to the activation of the P2X7 purinergic receptors (P2X7Rs) and a severe yet physiologic inflammation. Disease progression promotes prolonged vigorous activation of the P2X7R causing cell death and uncontrolled ATP release leading to cytokine storm and desensitisation of all other purinergic receptors of the immune cells. This results in immune paralysis with co-infections or secondary infections. We refer to this pathologic condition as hyperinflammation. The readily available and affordable P2X7R antagonist lidocaine can abrogate hyperinflammation and restore the normal immune function. The issue is that the half-maximal effective concentration for P2X7R inhibition of lidocaine is much higher than the maximal tolerable plasma concentration where adverse effects start to develop. To overcome this, we selectively inhibit the P2X7Rs of the immune cells of the lymphatic system inducing clonal expansion of Tregs in local lymph nodes. Subsequently, these Tregs migrate throughout the body exerting anti-inflammatory activities suppressing systemic and (distant) local hyperinflammation. We illustrate this with six critically ill COVID-19 patients treated with lidocaine.


Assuntos
Trifosfato de Adenosina/metabolismo , COVID-19/imunologia , Síndrome da Liberação de Citocina/etiologia , Inflamação/etiologia , Lidocaína/uso terapêutico , Antagonistas do Receptor Purinérgico P2X/uso terapêutico , Receptores Purinérgicos/fisiologia , Anti-Inflamatórios/uso terapêutico , Cuidados Críticos , Síndrome da Liberação de Citocina/tratamento farmacológico , Humanos , Inflamação/tratamento farmacológico , Infusões Subcutâneas , Lidocaína/administração & dosagem , Lidocaína/farmacologia , Linfonodos/imunologia , Sistema Linfático/imunologia , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Modelos Imunológicos , Antagonistas do Receptor Purinérgico P2X/administração & dosagem , Antagonistas do Receptor Purinérgico P2X/farmacologia , Receptores Purinérgicos/efeitos dos fármacos , Receptores Purinérgicos P1/efeitos dos fármacos , Receptores Purinérgicos P1/fisiologia , Receptores Purinérgicos P2X7/fisiologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/etiologia , Transdução de Sinais , Linfócitos T Reguladores/imunologia
5.
J Neurophysiol ; 125(3): 699-719, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33427575

RESUMO

Breathing is regulated by a host of arousal and sleep-wake state-dependent neuromodulators to maintain respiratory homeostasis. Modulators such as acetylcholine, norepinephrine, histamine, serotonin (5-HT), adenosine triphosphate (ATP), substance P, somatostatin, bombesin, orexin, and leptin can serve complementary or off-setting functions depending on the target cell type and signaling mechanisms engaged. Abnormalities in any of these modulatory mechanisms can destabilize breathing, suggesting that modulatory mechanisms are not overly redundant but rather work in concert to maintain stable respiratory output. The present review focuses on the modulation of a specific cluster of neurons located in the ventral medullary surface, named retrotrapezoid nucleus, that are activated by changes in tissue CO2/H+ and regulate several aspects of breathing, including inspiration and active expiration.


Assuntos
Células Quimiorreceptoras/fisiologia , Bulbo/fisiologia , Receptores de Neurotransmissores/fisiologia , Mecânica Respiratória/fisiologia , Trifosfato de Adenosina/fisiologia , Animais , Neurônios Colinérgicos/fisiologia , Humanos , Bulbo/citologia , Receptores Purinérgicos/fisiologia , Respiração , Neurônios Serotoninérgicos/fisiologia
6.
Int J Mol Sci ; 21(10)2020 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-32408622

RESUMO

The circadian system is an internal time-keeping system that synchronizes the behavior and physiology of an organism to the 24 h solar day. The master circadian clock, the suprachiasmatic nucleus (SCN), resides in the hypothalamus. It receives information about the environmental light/dark conditions through the eyes and orchestrates peripheral oscillators. Purinergic signaling is mediated by extracellular purines and pyrimidines that bind to purinergic receptors and regulate multiple body functions. In this review, we highlight the interaction between the circadian system and purinergic signaling to provide a better understanding of rhythmic body functions under physiological and pathological conditions.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Neurônios/fisiologia , Receptores Purinérgicos/fisiologia , Transdução de Sinais/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Humanos , Hipotálamo/citologia , Hipotálamo/fisiologia , Modelos Neurológicos , Neurônios/citologia , Núcleo Supraquiasmático/citologia
7.
Pharmacol Res ; 141: 32-45, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30553823

RESUMO

Uridine adenosine tetraphosphate (Up4A), biosynthesized by activation of vascular endothelial growth factor receptor (VEGFR) 2, was initially identified as a potent endothelium-derived vasoconstrictor in perfused rat kidney. Subsequently, the effect of Up4A on vascular tone regulation was intensively investigated in arteries isolated from different vascular beds in rodents including rat pulmonary arteries, aortas, mesenteric and renal arteries as well as mouse aortas, in which Up4A produces vascular contraction. In contrast, Up4A produces vascular relaxation in porcine coronary small arteries and rat aortas. Intravenous infusion of Up4A into conscious rats or mice decreases blood pressure, and intravenous bolus injection of Up4A into anesthetized mice increases coronary blood flow, indicating an overall vasodilator influence in vivo. Although Up4A is the first dinucleotide described that contains both purine and pyrimidine moieties, its cardiovascular effects are exerted mainly through activation of purinergic receptors. These effects not only encompass regulation of vascular tone, but also endothelial angiogenesis, smooth muscle cell proliferation and migration, and vascular calcification. Furthermore, this review discusses a potential role for Up4A in cardiovascular pathophysiology, as plasma levels of Up4A are elevated in juvenile hypertensive patients and Up4A-mediated vascular purinergic signaling changes in cardiovascular disease such as hypertension, diabetes, atherosclerosis and myocardial infarction. Better understanding the vascular effect of the novel dinucleotide Up4A and the purinergic signaling mechanisms mediating its effects will enhance its potential as target for treatment of cardiovascular disease.


Assuntos
Fenômenos Fisiológicos Cardiovasculares , Fosfatos de Dinucleosídeos/fisiologia , Receptores Purinérgicos/fisiologia , Animais , Sistema Cardiovascular , Humanos , Transdução de Sinais
8.
Pediatr Res ; 83(1-1): 148-155, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28976496

RESUMO

BackgroundIn early fetal life, the bladder is merely a conduit allowing urine to pass through freely into the amniotic cavity. As the striated external urethral sphincter evolves, the bladder acquires its reservoir and voiding functions. We characterized the myogenic and neurogenic contractions of the normal fetal porcine bladder from midterm until close to full-term gestation.MethodsContractile responses were measured in vitro using bladder strips from fetuses at 60 (N=23) and 100 days (N=21) of gestation. Spontaneous activity, and the responses to potassium chloride (KCl) solution, electrical field stimulation (EFS), and receptor activation were recorded. The smooth muscle content was evaluated histologically.ResultsHistological studies revealed that the fractional content of smooth muscle doubled between the two time points, and passive tension was adjusted to take that into account. Spontaneous activity was regular at 60 days, changing toward an irregular pattern at 100 days. Contractile force elicited by KCl and carbachol increased significantly with gestational age, while contractions to the purinergic agonist, α-ß-methylene adenosine 5'-triphosphate did not. The responses to EFS were almost completely blocked by atropine.ConclusionSpontaneous myogenic contractions become irregular and contractile responses to muscarinic receptor stimulation increase during gestation, as the bladder reservoir and voiding functions develop.


Assuntos
Contração Muscular/fisiologia , Músculo Liso/embriologia , Bexiga Urinária/embriologia , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/fisiologia , Animais , Campos Eletromagnéticos , Feminino , Técnicas In Vitro , Contração Isométrica/fisiologia , Masculino , Desenvolvimento Muscular , Músculo Liso/fisiologia , Cloreto de Potássio/química , Gravidez , Prenhez , Receptores Purinérgicos/fisiologia , Estresse Mecânico , Suínos , Bexiga Urinária/fisiologia
9.
Purinergic Signal ; 14(2): 97-108, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29619754

RESUMO

Obesity is a growing worldwide health problem, with an alarming increasing prevalence in developed countries, caused by a dysregulation of energy balance. Currently, no wholly successful pharmacological treatments are available for obesity and related adverse consequences. In recent years, hints obtained from several experimental animal models support the notion that purinergic signalling, acting through ATP-gated ion channels (P2X), G protein-coupled receptors (P2Y) and adenosine receptors (P1), is involved in obesity, both at peripheral and central levels. This review has drawn together, for the first time, the evidence for a promising, much needed novel therapeutic purinergic signalling approach for the treatment of obesity with a 'proof of concept' that hopefully could lead to further investigations and clinical trials for the management of obesity.


Assuntos
Obesidade/fisiopatologia , Receptores Purinérgicos/fisiologia , Transdução de Sinais/fisiologia , Animais , Humanos , Obesidade/metabolismo
10.
J Biol Regul Homeost Agents ; 32(6): 1349-1353, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30574738

RESUMO

Exracellular matrix (ECM) consists of a plethora of proteins and polysaccharides, which aggregate into an organized network connected to the surface of the producing cells. It is structurally and functionally present in all components of tissues and organs and represents the substrate on which cells adhere, migrate, proliferate and differentiate, influencing their survival, shape and function. In response to acute (trauma) or chronic (degenerative) insults, brain ECM modifies its composition and function, actively contributing to "scar forming" gliosis or tissue degeneration/remodelling. Moreover, morphological changes in dendritic spines associated with extracellular matrix remodeling play key roles in rewiring synaptic circuitry pertinent to memory formation. In the present report, we collected the main acquisitions on the functional interplay between ECM alterations and the adenine-/guaninebased purine system with particular regard on how purine compounds and their respective receptors may affect and be affected by changes of the cerebral ECM.


Assuntos
Encéfalo/fisiologia , Sistema Nervoso Central/fisiologia , Matriz Extracelular/fisiologia , Receptores Purinérgicos/fisiologia , Humanos
11.
Pharmacol Rev ; 66(1): 102-92, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24335194

RESUMO

Purinergic signaling plays important roles in control of vascular tone and remodeling. There is dual control of vascular tone by ATP released as a cotransmitter with noradrenaline from perivascular sympathetic nerves to cause vasoconstriction via P2X1 receptors, whereas ATP released from endothelial cells in response to changes in blood flow (producing shear stress) or hypoxia acts on P2X and P2Y receptors on endothelial cells to produce nitric oxide and endothelium-derived hyperpolarizing factor, which dilates vessels. ATP is also released from sensory-motor nerves during antidromic reflex activity to produce relaxation of some blood vessels. In this review, we stress the differences in neural and endothelial factors in purinergic control of different blood vessels. The long-term (trophic) actions of purine and pyrimidine nucleosides and nucleotides in promoting migration and proliferation of both vascular smooth muscle and endothelial cells via P1 and P2Y receptors during angiogenesis and vessel remodeling during restenosis after angioplasty are described. The pathophysiology of blood vessels and therapeutic potential of purinergic agents in diseases, including hypertension, atherosclerosis, ischemia, thrombosis and stroke, diabetes, and migraine, is discussed.


Assuntos
Vasos Sanguíneos/fisiologia , Receptores Purinérgicos/fisiologia , Doenças Vasculares/fisiopatologia , Animais , Células Endoteliais/fisiologia , Humanos , Sistema Nervoso/metabolismo , Fenômenos Fisiológicos do Sistema Nervoso , Purinas/metabolismo , Pirimidinas/metabolismo , Transdução de Sinais , Doenças Vasculares/metabolismo
12.
J Infect Dis ; 213(3): 456-64, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26150546

RESUMO

T cell suppression in sepsis is a well-known phenomenon; however, the underlying mechanisms are not fully understood. Previous studies have shown that T cell stimulation up-regulates mitochondrial adenosine triphosphate (ATP) production to fuel purinergic signaling mechanisms necessary for adequate T cell responses. Here we show that basal mitochondrial ATP production, ATP release, and stimulation of P2X1 receptors represent a standby purinergic signaling mechanism that is necessary for antigen recognition. Inhibition of this process impairs T cell vigilance and the ability of T cells to trigger T cell activation, up-regulate mitochondrial ATP production, and stimulate P2X4 and P2X7 receptors that elicit interleukin 2 production and T cell proliferation. T cells of patients with sepsis lack this standby purinergic signaling system owing to defects in mitochondrial function, ATP release, and calcium signaling. These defects impair antigen recognition and T cell function and are correlated with sepsis severity. Pharmacological targeting of these defects may improve T cell function and reduce the risk of sepsis.


Assuntos
Linfócitos T CD4-Positivos/fisiologia , Sinalização do Cálcio/fisiologia , Mitocôndrias/fisiologia , Purinas/metabolismo , Receptores Purinérgicos/fisiologia , Sepse/imunologia , Adolescente , Adulto , Humanos , Células Jurkat , Suramina , Adulto Jovem
13.
J Physiol ; 594(13): 3575-88, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27006168

RESUMO

KEY POINTS: The sensory components of the urinary bladder are responsible for the transduction of bladder filling and are often impaired with neurological injury or disease. Elevated extracellular ATP contributes, in part, to bladder afferent nerve hyperexcitability during urinary bladder inflammation or irritation. Transforming growth factor-ß1 (TGF-ß1) may stimulate ATP release from the urothelium through vesicular exocytosis mechanisms with minimal contribution from pannexin-1 channels to increase bladder afferent nerve discharge. Bladder afferent nerve hyperexcitability and urothelial ATP release with CYP-induced cystitis is decreased with TGF-ß inhibition. These results establish a causal link between an inflammatory mediator, TGF-ß, and intrinsic signalling mechanisms of the urothelium that may contribute to the altered sensory processing of bladder filling. ABSTRACT: The afferent limb of the micturition reflex is often compromised following bladder injury, disease and inflammatory conditions. We have previously demonstrated that transforming growth factor-ß (TGF-ß) signalling contributes to increased voiding frequency and decreased bladder capacity with cystitis. Despite the functional presence of TGF-ß in bladder inflammation, the precise mechanisms of TGF-ß mediating bladder dysfunction are not yet known. Thus, the present studies investigated the sensory components of the urinary bladder that may underlie the pathophysiology of aberrant TGF-ß activation. We utilized bladder-pelvic nerve preparations to characterize bladder afferent nerve discharge and the mechanisms of urothelial ATP release with distention. Our findings indicate that bladder afferent nerve discharge is sensitive to elevated extracellular ATP during pathological conditions of urinary bladder inflammation or irritation. We determined that TGF-ß1 may increase bladder afferent nerve excitability by stimulating ATP release from the urothelium via vesicular exocytosis mechanisms with minimal contribution from pannexin-1 channels. Furthermore, blocking aberrant TGF-ß signalling in cyclophosphamide-induced cystitis with TßR-1 inhibition decreased afferent nerve hyperexcitability with a concomitant decrease in urothelial ATP release. Taken together, these results establish a role for purinergic signalling mechanisms in TGF-ß-mediated bladder afferent nerve activation that may ultimately facilitate increased voiding frequency. The synergy between intrinsic urinary bladder signalling mechanisms and an inflammatory mediator provides novel insight into bladder dysfunction and supports new avenues for therapeutic intervention.


Assuntos
Trifosfato de Adenosina/fisiologia , Cistite/fisiopatologia , Receptores Purinérgicos/fisiologia , Fator de Crescimento Transformador beta/fisiologia , Bexiga Urinária/inervação , Bexiga Urinária/fisiologia , Animais , Conexinas/fisiologia , Ciclofosfamida , Cistite/induzido quimicamente , Masculino , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Antagonistas Purinérgicos/farmacologia , Fosfato de Piridoxal/análogos & derivados , Fosfato de Piridoxal/farmacologia , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/fisiologia , Transdução de Sinais , Urotélio/fisiologia
14.
Biochim Biophys Acta ; 1852(1): 120-30, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25445541

RESUMO

Glioma cells release cytokines to stimulate inflammation that facilitates cell proliferation. Here, we show that Lipopolysaccharide (LPS) treatment could induce glioma cells to proliferate and this process was dependent on nucleotide receptor activation as well as interleukin-8 (IL-8/CXCL8) secretion. We observed that extracellular nucleotides controlled IL-8/CXCL8 and monocyte chemoattractant protein 1 (MCP-1/CCL2) release by U251MG and U87MG human glioma cell lines via P2X7 and P2Y6 receptor activation. The LPS-induced release of these cytokines was also modulated by purinergic receptor activation since IL-8 and MCP-1 release was decreased by the nucleotide scavenger apyrase as well as by the pharmacological P2Y6 receptor antagonists suramin and MRS2578. In agreement with these observations, the knockdown of P2Y6 expression decreased LPS-induced IL-8 release as well as the spontaneous release of IL-8 and MCP-1, suggesting an endogenous basal release of nucleotides. Moreover, high millimolar concentrations of ATP increased IL-8 and MCP-1 release by the glioma cells stimulated with suboptimal LPS concentration which were blocked by P2X7 and P2Y6 antagonists. Altogether, these data suggest that extracellular nucleotides control glioma growth via P2 receptor-dependent IL-8 and MCP-1 secretions.


Assuntos
Neoplasias Encefálicas/metabolismo , Proliferação de Células , Quimiocina CCL2/metabolismo , Glioma/metabolismo , Interleucina-8/metabolismo , Receptores Purinérgicos/fisiologia , Sequência de Bases , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Primers do DNA , Glioma/patologia , Humanos , Reação em Cadeia da Polimerase , Receptores Purinérgicos/genética , Receptores Purinérgicos/metabolismo , Transdução de Sinais
16.
Purinergic Signal ; 12(1): 1-24, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26542977

RESUMO

Glutamate is the main excitatory neurotransmitter of the central nervous system (CNS), released both from neurons and glial cells. Acting via ionotropic (NMDA, AMPA, kainate) and metabotropic glutamate receptors, it is critically involved in essential regulatory functions. Disturbances of glutamatergic neurotransmission can be detected in cognitive and neurodegenerative disorders. This paper summarizes the present knowledge on the modulation of glutamate-mediated responses in the CNS. Emphasis will be put on NMDA receptor channels, which are essential executive and integrative elements of the glutamatergic system. This receptor is crucial for proper functioning of neuronal circuits; its hypofunction or overactivation can result in neuronal disturbances and neurotoxicity. Somewhat surprisingly, NMDA receptors are not widely targeted by pharmacotherapy in clinics; their robust activation or inhibition seems to be desirable only in exceptional cases. However, their fine-tuning might provide a promising manipulation to optimize the activity of the glutamatergic system and to restore proper CNS function. This orchestration utilizes several neuromodulators. Besides the classical ones such as dopamine, novel candidates emerged in the last two decades. The purinergic system is a promising possibility to optimize the activity of the glutamatergic system. It exerts not only direct and indirect influences on NMDA receptors but, by modulating glutamatergic transmission, also plays an important role in glia-neuron communication. These purinergic functions will be illustrated mostly by depicting the modulatory role of the purinergic system on glutamatergic transmission in the prefrontal cortex, a CNS area important for attention, memory and learning.


Assuntos
Neuroglia , Neurônios , Receptores de Glutamato/fisiologia , Receptores Purinérgicos/fisiologia , Transdução de Sinais/fisiologia , Transmissão Sináptica/fisiologia , Animais , Humanos , Neuroglia/metabolismo , Neurônios/metabolismo , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia
17.
Bioessays ; 36(7): 697-705, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24782352

RESUMO

The purinergic signalling system, which utilises ATP, related nucleotides and adenosine as transmitter molecules, appeared very early in evolution: release mechanisms and ATP-degrading enzymes are operative in bacteria, and the first specific receptors are present in single cell eukaryotic protozoa and algae. Further evolution of the purinergic signalling system resulted in the development of multiple classes of purinoceptors, several pathways for release of nucleotides and adenosine, and a system of ectonucleotidases controlling extracellular levels of purinergic transmitters. The purinergic signalling system is expressed in virtually all types of tissues and cells, where it mediates numerous physiological reactions and contributes to pathological responses in a variety of diseases.


Assuntos
Evolução Biológica , Receptores Purinérgicos/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Humanos , Agonistas Purinérgicos/metabolismo , Transdução de Sinais/genética
18.
Biochem Biophys Res Commun ; 463(4): 1006-11, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26072377

RESUMO

Extracellular nucleotides are important neurotransmitters, neuromodulators and paracrine factors in the neural sensory system [16]. Most of purines and pyrimidines act on the associated purinergic cell-surface receptors to mediate sensory transduction and modulation. Previously, we reported a subgroup of heptaldehyde (H)/2-hepatanone (Ho)-responsive olfactory sensory neurons (H/Ho-OSNs) in the ventral endoturbinates [31]. Through the calcium image recording, we characterized that ATP elicited [Ca(2+)]i increase in the presence of extracellular calcium, while depletion of intracellular calcium stores blocked UTP-evoked [Ca(2+)]i increase. Pharmacological studies indicated that P2X3 was expressed in the H/Ho-OSNs, modulating both heptaldehyde (H) and 2-hepatanone (Ho)-induced responses. These data indicated that activation of purinergic receptor negatively modulated odor response, providing the evidence to support the possible protective effect of purinergic receptor in OSNs.


Assuntos
Trifosfato de Adenosina/fisiologia , Odorantes , Receptores Purinérgicos/fisiologia , Células Receptoras Sensoriais/fisiologia , Uridina Trifosfato/fisiologia , Animais , Cálcio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Agonistas Purinérgicos/farmacologia , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo
19.
Purinergic Signal ; 11(3): 277-305, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25989750

RESUMO

Extracellular purines and pyrimidines play major roles during embryogenesis, organogenesis, postnatal development and ageing in vertebrates, including humans. Pluripotent stem cells can differentiate into three primary germ layers of the embryo but may also be involved in plasticity and repair of the adult brain. These cells express the molecular components necessary for purinergic signalling, and their developmental fates can be manipulated via this signalling pathway. Functional P1, P2Y and P2X receptor subtypes and ectonucleotidases are involved in the development of different organ systems, including heart, blood vessels, skeletal muscle, urinary bladder, central and peripheral neurons, retina, inner ear, gut, lung and vas deferens. The importance of purinergic signalling in the ageing process is suggested by changes in expression of A1 and A2 receptors in old rat brains and reduction of P2X receptor expression in ageing mouse brain. By contrast, in the periphery, increases in expression of P2X3 and P2X4 receptors are seen in bladder and pancreas.


Assuntos
Envelhecimento/fisiologia , Purinas , Receptores Purinérgicos/fisiologia , Transdução de Sinais/fisiologia , Adulto , Animais , Desenvolvimento Embrionário , Feminino , Humanos , Gravidez , Células-Tronco/fisiologia
20.
Purinergic Signal ; 11(4): 411-34, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26260710

RESUMO

The involvement of purinergic signalling in the physiology of erythrocytes, platelets and leukocytes was recognised early. The release of ATP and the expression of purinoceptors and ectonucleotidases on erythrocytes in health and disease are reviewed. The release of ATP and ADP from platelets and the expression and roles of P1, P2Y(1), P2Y(12) and P2X1 receptors on platelets are described. P2Y(1) and P2X(1) receptors mediate changes in platelet shape, while P2Y(12) receptors mediate platelet aggregation. The changes in the role of purinergic signalling in a variety of disease conditions are considered. The successful use of P2Y(12) receptor antagonists, such as clopidogrel and ticagrelor, for the treatment of thrombosis, myocardial infarction and stroke is discussed.


Assuntos
Células Sanguíneas/fisiologia , Receptores Purinérgicos/sangue , Receptores Purinérgicos/fisiologia , Transdução de Sinais/fisiologia , Difosfato de Adenosina/fisiologia , Trifosfato de Adenosina/sangue , Animais , Plaquetas/metabolismo , Plaquetas/fisiologia , Humanos , Agregação Plaquetária/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA