Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.073
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Immunity ; 57(2): 333-348.e6, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38295799

RESUMO

The notion that neutrophils exist as a homogeneous population is being replaced with the knowledge that neutrophils adopt different functional states. Neutrophils can have a pro-inflammatory phenotype or an anti-inflammatory state, but how these states are regulated remains unclear. Here, we demonstrated that the neutrophil-expressed G-protein-coupled receptor (GPCR) Mrgpra1 is a negative regulator of neutrophil bactericidal functions. Mrgpra1-mediated signaling was driven by its ligand, neuropeptide FF (NPFF), which dictated the balance between pro- and anti-inflammatory programming. Specifically, the Mrgpra1-NPFF axis counter-regulated interferon (IFN) γ-mediated neutrophil polarization during acute lung infection by favoring an alternative-like polarization, suggesting that it may act to balance overzealous neutrophilic responses. Distinct, cross-regulated populations of neutrophils were the primary source of NPFF and IFNγ during infection. As a subset of neutrophils at steady state expressed NPFF, these findings could have broad implications in various infectious and inflammatory diseases. Therefore, a neutrophil-intrinsic pathway determines their cellular fate, function, and magnitude of infection.


Assuntos
Infecções Bacterianas , Neuropeptídeos , Humanos , Receptores de Neuropeptídeos/metabolismo , Neutrófilos/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Anti-Inflamatórios
2.
Immunity ; 52(2): 404-416.e5, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32049054

RESUMO

Mast cells are rare tissue-resident cells of importance to human allergies. To understand the structural basis of principle mast cell functions, we analyzed the proteome of primary human and mouse mast cells by quantitative mass spectrometry. We identified a mast-cell-specific proteome signature, indicative of a unique lineage, only distantly related to other immune cell types, including innate immune cells. Proteome comparison between human and mouse suggested evolutionary conservation of core mast cell functions. In addition to specific proteases and proteins associated with degranulation and proteoglycan biosynthesis, mast cells expressed proteins potentially involved in interactions with neurons and neurotransmitter metabolism, including cell adhesion molecules, ion channels, and G protein coupled receptors. Toward targeted cell ablation in severe allergic diseases, we used MRGPRX2 for mast cell depletion in human skin biopsies. These proteome analyses suggest a unique role of mast cells in the immune system, probably intertwined with the nervous system.


Assuntos
Mastócitos/citologia , Mastócitos/imunologia , Animais , Biomarcadores/metabolismo , Degranulação Celular , Linhagem da Célula , Células Cultivadas , Tecido Conjuntivo/imunologia , Humanos , Imunoterapia , Mastócitos/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/imunologia , Proteínas do Tecido Nervoso/metabolismo , Neuroimunomodulação , Proteoglicanas/biossíntese , Proteoma , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/imunologia , Receptores de Neuropeptídeos/metabolismo , Pele/imunologia
3.
Immunity ; 50(5): 1163-1171.e5, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31027996

RESUMO

Classical itch studies have focused on immunoglobulin E (IgE)-mediated mast cell activation and histamine release. Recently, members of the Mas-related G-protein-coupled receptor (Mrgpr) family have been identified as mast cell receptors, but their role in itch is unclear. Here, we report that mast cell activation via Mrgprb2 evoked non-histaminergic itch in mice independently of the IgE-Fc epsilon RI (FcεRI)-histamine axis. Compared with IgE-FcεRI stimulation, Mrgprb2 activation of mast cells was distinct in both released substances (histamine, serotonin, and tryptase) and the pattern of activated itch-sensory neurons. Mrgprb2 deficiency decreased itch in multiple preclinical models of allergic contact dermatitis (ACD), a pruritic inflammatory skin disorder, and both mast cell number and PAMP1-20 concentrations (agonist of the human Mrgprb2 homolog, MRGPRX2) were increased in human ACD skin. These findings suggest that this pathway may represent a therapeutic target for treating ACD and mast-cell-associated itch disorders in which antihistamines are ineffective.


Assuntos
Mastócitos/imunologia , Proteínas do Tecido Nervoso/metabolismo , Prurido/patologia , Receptores Acoplados a Proteínas G/metabolismo , Receptores de IgE/metabolismo , Receptores de Neuropeptídeos/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Histamina/metabolismo , Antagonistas dos Receptores Histamínicos/uso terapêutico , Humanos , Imunoglobulina E/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Fragmentos de Peptídeos/metabolismo , Receptores Acoplados a Proteínas G/genética , Serotonina/metabolismo , Pele/metabolismo , Triptases/metabolismo , Adulto Jovem
4.
Trends Immunol ; 45(5): 371-380, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38653601

RESUMO

Peripheral sensory neurons recognize diverse noxious stimuli, including microbial products and allergens traditionally thought to be targets of the mammalian immune system. Activation of sensory neurons by these stimuli leads to pain and itch responses as well as the release of neuropeptides that interact with their cognate receptors expressed on immune cells, such as dendritic cells (DCs). Neuronal control of immune cell function through neuropeptide release not only affects local inflammatory responses but can impact adaptive immune responses through downstream effects on T cell priming. Numerous neuropeptide receptors are expressed by DCs but only a few have been characterized, presenting opportunities for further investigation of the pathways by which cutaneous neuroimmune interactions modulate host immunity.


Assuntos
Células Receptoras Sensoriais , Pele , Humanos , Animais , Células Receptoras Sensoriais/imunologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Pele/imunologia , Neuropeptídeos/metabolismo , Neuropeptídeos/imunologia , Células Dendríticas/imunologia , Neuroimunomodulação , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/imunologia
5.
Nature ; 600(7887): 164-169, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34789875

RESUMO

In the clades of animals that diverged from the bony fish, a group of Mas-related G-protein-coupled receptors (MRGPRs) evolved that have an active role in itch and allergic signals1,2. As an MRGPR, MRGPRX2 is known to sense basic secretagogues (agents that promote secretion) and is involved in itch signals and eliciting pseudoallergic reactions3-6. MRGPRX2 has been targeted by drug development efforts to prevent the side effects induced by certain drugs or to treat allergic diseases. Here we report a set of cryo-electron microscopy structures of the MRGPRX2-Gi1 trimer in complex with polycationic compound 48/80 or with inflammatory peptides. The structures of the MRGPRX2-Gi1 complex exhibited shallow, solvent-exposed ligand-binding pockets. We identified key common structural features of MRGPRX2 and describe a consensus motif for peptidic allergens. Beneath the ligand-binding pocket, the unusual kink formation at transmembrane domain 6 (TM6) and the replacement of the general toggle switch from Trp6.48 to Gly6.48 (superscript annotations as per Ballesteros-Weinstein nomenclature) suggest a distinct activation process. We characterized the interfaces of MRGPRX2 and the Gi trimer, and mapped the residues associated with key single-nucleotide polymorphisms on both the ligand and G-protein interfaces of MRGPRX2. Collectively, our results provide a structural basis for the sensing of cationic allergens by MRGPRX2, potentially facilitating the rational design of therapies to prevent unwanted pseudoallergic reactions.


Assuntos
Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Prurido/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/química , Receptores de Neuropeptídeos/metabolismo , Alérgenos/imunologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Sequência Consenso , Microscopia Crioeletrônica , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Humanos , Modelos Moleculares , Proteínas do Tecido Nervoso/imunologia , Proteínas do Tecido Nervoso/ultraestrutura , Receptores Acoplados a Proteínas G/imunologia , Receptores Acoplados a Proteínas G/ultraestrutura , Receptores de Neuropeptídeos/imunologia , Receptores de Neuropeptídeos/ultraestrutura
6.
Nature ; 600(7887): 170-175, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34789874

RESUMO

The MRGPRX family of receptors (MRGPRX1-4) is a family of mas-related G-protein-coupled receptors that have evolved relatively recently1. Of these, MRGPRX2 and MRGPRX4 are key physiological and pathological mediators of itch and related mast cell-mediated hypersensitivity reactions2-5. MRGPRX2 couples to both Gi and Gq in mast cells6. Here we describe agonist-stabilized structures of MRGPRX2 coupled to Gi1 and Gq in ternary complexes with the endogenous peptide cortistatin-14 and with a synthetic agonist probe, respectively, and the development of potent antagonist probes for MRGPRX2. We also describe a specific MRGPRX4 agonist and the structure of this agonist in a complex with MRGPRX4 and Gq. Together, these findings should accelerate the structure-guided discovery of therapeutic agents for pain, itch and mast cell-mediated hypersensitivity.


Assuntos
Microscopia Crioeletrônica , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/química , Prurido/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/química , Agonismo Inverso de Drogas , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/química , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/ultraestrutura , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/química , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/ultraestrutura , Humanos , Modelos Moleculares , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/ultraestrutura , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/ultraestrutura , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/ultraestrutura
7.
Cell ; 145(1): 133-44, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21458672

RESUMO

Internal physiological states influence behavioral decisions. We have investigated the underlying cellular and molecular mechanisms at the first olfactory synapse for starvation modulation of food-search behavior in Drosophila. We found that a local signal by short neuropeptide F (sNPF) and a global metabolic cue by insulin are integrated at specific odorant receptor neurons (ORNs) to modulate olfactory sensitivity. Results from two-photon calcium imaging show that starvation increases presynaptic activity via intraglomerular sNPF signaling. Expression of sNPF and its receptor (sNPFR1) in Or42b neurons is necessary for starvation-induced food-search behavior. Presynaptic facilitation in Or42b neurons is sufficient to mimic starvation-like behavior in fed flies. Furthermore, starvation elevates the transcription level of sNPFR1 but not that of sNPF, and insulin signaling suppresses sNPFR1 expression. Thus, starvation increases expression of sNPFR1 to change the odor map, resulting in more robust food-search behavior.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/fisiologia , Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/metabolismo , Receptores Odorantes/metabolismo , Transdução de Sinais , Animais , Antenas de Artrópodes/metabolismo , Feminino , Odorantes , Células Receptoras Sensoriais/metabolismo , Inanição/metabolismo , Sinapses/metabolismo
8.
Proc Natl Acad Sci U S A ; 120(11): e2217604120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36877849

RESUMO

The l- to d-amino acid residue isomerization of neuropeptides is an understudied post-translational modification found in animals across several phyla. Despite its physiological importance, little information is available regarding the impact of endogenous peptide isomerization on receptor recognition and activation. As a result, the full roles peptide isomerization play in biology are not well understood. Here, we identify that the Aplysia allatotropin-related peptide (ATRP) signaling system utilizes l- to d-residue isomerization of one amino acid residue in the neuropeptide ligand to modulate selectivity between two distinct G protein-coupled receptors (GPCRs). We first identified a novel receptor for ATRP that is selective for the D2-ATRP form, which bears a single d-phenylalanine residue at position 2. Using cell-based receptor activation experiments, we then characterized the stereoselectivity of the two known ATRP receptors for both endogenous ATRP diastereomers, as well as for homologous toxin peptides from a carnivorous predator. We found that the ATRP system displayed dual signaling through both the Gαq and Gαs pathways, and each receptor was selectively activated by one naturally occurring ligand diastereomer over the other. Overall, our results provide insights into an unexplored mechanism by which nature regulates intercellular communication. Given the challenges in detecting l- to d-residue isomerization from complex mixtures de novo and in identifying receptors for novel neuropeptides, it is likely that other neuropeptide-receptor systems may also utilize changes in stereochemistry to modulate receptor selectivity in a manner similar to that discovered here.


Assuntos
Aminoácidos , Receptores de Neuropeptídeos , Animais , Isomerismo , Ligantes , Fenilalanina , Aplysia
9.
Proc Natl Acad Sci U S A ; 119(33): e2123146119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35947618

RESUMO

Human prefrontal cortex (hPFC) is a complex brain region involved in cognitive and emotional processes and several psychiatric disorders. Here, we present an overview of the distribution of the peptidergic systems in 17 subregions of hPFC and three reference cortices obtained by microdissection and based on RNA sequencing and RNAscope methods integrated with published single-cell transcriptomics data. We detected expression of 60 neuropeptides and 60 neuropeptide receptors in at least one of the hPFC subregions. The results reveal that the peptidergic landscape in PFC consists of closely located and functionally different subregions with unique peptide/transmitter-related profiles. Neuropeptide-rich PFC subregions were identified, encompassing regions from anterior cingulate cortex/orbitofrontal gyrus. Furthermore, marked differences in gene expression exist between different PFC regions (>5-fold; cocaine and amphetamine-regulated transcript peptide) as well as between PFC regions and reference regions, for example, for somatostatin and several receptors. We suggest that the present approach allows definition of, still hypothetical, microcircuits exemplified by glutamatergic neurons expressing a peptide cotransmitter either as an agonist (hypocretin/orexin) or antagonist (galanin). Specific neuropeptide receptors have been identified as possible targets for neuronal afferents and, interestingly, peripheral blood-borne peptide hormones (leptin, adiponectin, gastric inhibitory peptide, glucagon-like peptides, and peptide YY). Together with other recent publications, our results support the view that neuropeptide systems may play an important role in hPFC and underpin the concept that neuropeptide signaling helps stabilize circuit connectivity and fine-tune/modulate PFC functions executed during health and disease.


Assuntos
Neuropeptídeos , Córtex Pré-Frontal , Receptores de Neuropeptídeos , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo
10.
BMC Biol ; 22(1): 186, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218857

RESUMO

BACKGROUND: Habitat transitions have considerable consequences in organism homeostasis, as they require the adjustment of several concurrent physiological compartments to maintain stability and adapt to a changing environment. Within the range of molecules with a crucial role in the regulation of different physiological processes, neuropeptides are key agents. Here, we examined the coding status of several neuropeptides and their receptors with pleiotropic activity in Cetacea. RESULTS: Analysis of 202 mammalian genomes, including 41 species of Cetacea, exposed an intricate mutational landscape compatible with gene sequence modification and loss. Specifically for Cetacea, in the 12 genes analysed we have determined patterns of loss ranging from species-specific disruptive mutations (e.g. neuropeptide FF-amide peptide precursor; NPFF) to complete erosion of the gene across the cetacean stem lineage (e.g. somatostatin receptor 4; SSTR4). CONCLUSIONS: Impairment of some of these neuromodulators may have contributed to the unique energetic metabolism, circadian rhythmicity and diving response displayed by this group of iconic mammals.


Assuntos
Cetáceos , Receptores de Neuropeptídeos , Animais , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Cetáceos/genética , Cetáceos/fisiologia , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Pleiotropia Genética , Mutação , Filogenia
11.
BMC Biol ; 22(1): 223, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39379997

RESUMO

BACKGROUND: The phylum Nematoda is incredibly diverse and includes many parasites of humans, livestock, and plants. Peptide-activated G protein-coupled receptors (GPCRs) are central to the regulation of physiology and numerous behaviors, and they represent appealing pharmacological targets for parasite control. Efforts are ongoing to characterize the functions and define the ligands of nematode GPCRs, with already most peptide GPCRs known or predicted in Caenorhabditis elegans. However, comparative analyses of peptide GPCR conservation between C. elegans and other nematode species are limited, and many nematode GPCRs remain orphan. A phylum-wide perspective on peptide GPCR profiles will benefit functional and applied studies of nematode peptide GPCRs. RESULTS: We constructed a pan-phylum resource of C. elegans peptide GPCR orthologs in 125 nematode species using a semi-automated pipeline for analysis of predicted proteome datasets. The peptide GPCR profile varies between nematode species of different phylogenetic clades and multiple C. elegans peptide GPCRs have orthologs across the phylum Nematoda. We identified peptide ligands for two highly conserved orphan receptors, NPR-9 and NPR-16, that belong to the bilaterian galanin/allatostatin A (Gal/AstA) and somatostatin/allatostatin C (SST/AstC) receptor families. The AstA-like NLP-1 peptides activate NPR-9 in cultured cells and are cognate ligands of this receptor in vivo. In addition, we discovered an AstC-type peptide, NLP-99, that activates the AstC-type receptor NPR-16. In our pan-phylum resource, the phylum-wide representation of NPR-9 and NPR-16 resembles that of their cognate ligands more than those of allatostatin-like peptides that do not activate these receptors. CONCLUSIONS: The repertoire of C. elegans peptide GPCR orthologs varies across phylogenetic clades and several peptide GPCRs show broad conservation in the phylum Nematoda. Our work functionally characterizes the conserved receptors NPR-9 and NPR-16 as the respective GPCRs for the AstA-like NLP-1 peptides and the AstC-related peptide NLP-99. NLP-1 and NLP-99 are widely conserved in nematodes and their representation matches that of their receptor in most species. These findings demonstrate the conservation of a functional Gal/AstA and SST/AstC signaling system in nematodes. Our dataset of C. elegans peptide GPCR orthologs also lays a foundation for further functional studies of peptide GPCRs in the widely diverse nematode phylum.


Assuntos
Caenorhabditis elegans , Nematoides , Filogenia , Receptores de Neuropeptídeos , Animais , Nematoides/genética , Caenorhabditis elegans/genética , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Ligantes , Humanos , Sequência Conservada , Sequência de Aminoácidos
12.
J Allergy Clin Immunol ; 154(4): 1033-1043, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38971540

RESUMO

BACKGROUND: Mas-related G protein-coupled receptor X2 (MRGPRX2) is a promiscuous receptor on mast cells that mediates IgE-independent degranulation and has been implicated in multiple mast cell-mediated disorders, including chronic urticaria, atopic dermatitis, and pain disorders. Although it is a promising therapeutic target, few potent, selective, small molecule antagonists have been identified, and functional effects of human MRGPRX2 inhibition have not been evaluated in vivo. OBJECTIVE: We sought to identify and characterize novel, potent, and selective orally active small molecule MRGPRX2 antagonists for potential treatment of mast cell-mediated disease. METHODS: Antagonists were identified using multiple functional assays in cell lines overexpressing human MRGPRX2, LAD2 mast cells, human peripheral stem cell-derived mast cells, and isolated skin mast cells. Skin mast cell degranulation was evaluated in Mrgprb2em(-/-) knockout and Mrgprb2em(MRGPRX2) transgenic human MRGPRX2 knock-in mice by assessment of agonist-induced skin vascular permeability. Ex vivo skin mast cell degranulation and associated histamine release was evaluated by microdialysis of human skin tissue samples. RESULTS: MRGPRX2 antagonists potently inhibited agonist-induced MRGPRX2 activation and mast cell degranulation in all mast cell types tested in an IgE-independent manner. Orally administered MRGPRX2 antagonists also inhibited agonist-induced degranulation and resulting vascular permeability in MRGPRX2 knock-in mice. In addition, antagonist treatment dose dependently inhibited agonist-induced degranulation in ex vivo human skin. CONCLUSIONS: MRGPRX2 small molecule antagonists potently inhibited agonist-induced mast cell degranulation in vitro and in vivo as well as ex vivo in human skin, supporting potential therapeutic utility as a novel treatment for multiple human diseases involving clinically relevant mast cell activation.


Assuntos
Degranulação Celular , Mastócitos , Proteínas do Tecido Nervoso , Receptores Acoplados a Proteínas G , Receptores de Neuropeptídeos , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Animais , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Degranulação Celular/efeitos dos fármacos , Humanos , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/genética , Camundongos , Proteínas do Tecido Nervoso/genética , Camundongos Knockout , Pele/imunologia , Pele/efeitos dos fármacos , Linhagem Celular , Camundongos Endogâmicos C57BL
13.
J Neurosci ; 43(19): 3394-3420, 2023 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-36977580

RESUMO

Neuropeptides influence animal behaviors through complex molecular and cellular mechanisms, the physiological and behavioral effects of which are difficult to predict solely from synaptic connectivity. Many neuropeptides can activate multiple receptors, whose ligand affinity and downstream signaling cascades are often different from one another. Although we know that the diverse pharmacological characteristics of neuropeptide receptors form the basis of unique neuromodulatory effects on distinct downstream cells, it remains unclear exactly how different receptors shape the downstream activity patterns triggered by a single neuronal neuropeptide source. Here, we uncovered two separate downstream targets that are differentially modulated by tachykinin, an aggression-promoting neuropeptide in Drosophila Tachykinin from a single male-specific neuronal type recruits two separate downstream groups of neurons. One downstream group, synaptically connected to the tachykinergic neurons, expresses the receptor TkR86C and is necessary for aggression. Here, tachykinin supports cholinergic excitatory synaptic transmission between the tachykinergic and TkR86C downstream neurons. The other downstream group expresses the TkR99D receptor and is recruited primarily when tachykinin is overexpressed in the source neurons. Differential activity patterns in the two groups of downstream neurons correlate with levels of male aggression triggered by the tachykininergic neurons. These findings highlight how the amount of neuropeptide released from a small number of neurons can reshape the activity patterns of multiple downstream neuronal populations. Our results lay the foundation for further investigations into the neurophysiological mechanism by which a neuropeptide controls complex behaviors.SIGNIFICANCE STATEMENT Neuropeptides control a variety of innate behaviors, including social behaviors, in both animals and humans. Unlike fast-acting neurotransmitters, neuropeptides can elicit distinct physiological responses in different downstream neurons. How such diverse physiological effects coordinate complex social interactions remains unknown. This study uncovers the first in vivo example of a neuropeptisde from a single neuronal source eliciting distinct physiological responses in multiple downstream neurons that express different neuropeptide receptors. Understanding the unique motif of neuropeptidergic modulation, which may not be easily predicted from a synaptic connectivity map, can help elucidate how neuropeptides orchestrate complex behaviors by modulating multiple target neurons simultaneously.


Assuntos
Drosophila , Neuropeptídeos , Animais , Humanos , Masculino , Neurônios/fisiologia , Neuropeptídeos/fisiologia , Taquicininas , Receptores de Neuropeptídeos , Agressão
14.
Am J Physiol Cell Physiol ; 327(4): C1143-C1149, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39159390

RESUMO

The renin-angiotensin system (RAS) is composed of a series of peptides, receptors, and enzymes that play a pivotal role in maintaining cardiovascular homeostasis. Among the most important players in this system are the angiotensin-II and angiotensin-(1-7) peptides. Our group has recently demonstrated that alamandine (ALA), a peptide with structural and functional similarities to angiotensin-(1-7), interacts with cardiomyocytes, enhancing contractility via the Mas-related G protein-coupled receptor member D (MrgD). It is currently unknown whether this modulation varies along the distinct phases of the day. To address this issue, we assessed the ALA-induced contractility response of cardiomyocytes from mice at four Zeitgeber times (ZTs). At ZT2 (light phase), ALA enhanced cardiomyocyte shortening in an MrgD receptor-dependent manner, which was associated with nitric oxide (NO) production. At ZT14 (dark phase), ALA induced a negative modulation on the cardiomyocyte contraction. ß-Alanine, an MrgD agonist, reproduced the time-of-day effects of ALA on myocyte shortening. NG-nitro-l-arginine methyl ester, an NO synthase inhibitor, blocked the increase in fractional shortening induced by ALA at ZT2. No effect of ALA on myocyte shortening was observed at ZT8 and ZT20. Our results show that ALA/MrgD signaling in cardiomyocytes is subject to temporal modulation. This finding has significant implications for pharmacological approaches that combine chronotherapy for cardiac conditions triggered by disruption of circadian rhythms and hormonal signaling.NEW & NOTEWORTHY Alamandine, a member of the renin-angiotensin system, serves critical roles in cardioprotection, including the modulation of cardiomyocyte contractility. Whether this effect varies along the day is unknown. Our results provide evidence that alamandine via receptor MrgD exerts opposing actions on cardiomyocyte shortening, enhancing, or reducing contraction depending on the time of day. These findings may have significant implications for the development and effectiveness of future cardiac therapies.


Assuntos
Contração Miocárdica , Miócitos Cardíacos , Óxido Nítrico , Oligopeptídeos , Receptores Acoplados a Proteínas G , Animais , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Camundongos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Óxido Nítrico/metabolismo , Oligopeptídeos/farmacologia , Camundongos Endogâmicos C57BL , Ritmo Circadiano/fisiologia , Ritmo Circadiano/efeitos dos fármacos , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/agonistas , Receptores de Neuropeptídeos/antagonistas & inibidores , Masculino , Células Cultivadas , Sistema Renina-Angiotensina/efeitos dos fármacos , Sistema Renina-Angiotensina/fisiologia
15.
Anal Chem ; 96(31): 12927-12935, 2024 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-39041225

RESUMO

Mas-related G protein-coupled receptor X2 (MrgprX2) plays a crucial role in anaphylactoid reactions and allergic diseases. Some antagonists with reasonable potency and selectivity have been reported. Cell membrane chromatography (CMC) is effective for discovering ligands. Protein-tag-based CMC models (e.g., SNAP tags and HALO tags) have enhanced performance but also increased nonspecific adsorption of small molecules. The Avi tag, a short peptide sequence, binds biotin specifically via BirA catalysis. Our study showed that 2-iminobiotin (IB) can be a BirA substrate, enabling the development of a new cell membrane stationary phase (CMSP) based on the chemical properties (modifying carboxyl silica gel and specifically labeling the Avi tag) of IB. First, we constructed the MrgprX2-Avi-tag HEK293T cell line. Next, we synthesized IB-modified silica gel (SiO2-IB) stepwise. Finally, we immobilized Avi-tagged MrgprX2 cell membranes on SiO2-IB under BirA catalysis. We characterized the developed CMSP and used it to establish a MrgprX2-Avi-tag/CMC-HPLC/MS two-dimensional screening platform, successfully screening vitexicarpin fromViticis Fructus extract via a 2D/CMC platform. In vitro and in vivo experiments confirmed that vitexicarpin targets the MrgprX2 receptor, demonstrating antiallergic effects. Our IB-Avi tag-based CMC approach effectively decreased nonspecific adsorption of the screening materials. The Avi-tag-based 2D/CMC platform is suitable for screening potential drug candidates.


Assuntos
Membrana Celular , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Células HEK293 , Membrana Celular/metabolismo , Animais , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/antagonistas & inibidores , Camundongos , Cromatografia Líquida de Alta Pressão , Proteínas do Tecido Nervoso
16.
Biochem Biophys Res Commun ; 717: 149992, 2024 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-38714013

RESUMO

Insects have about 50 neuropeptide genes and about 70 genes, coding for neuropeptide G protein-coupled receptors (GPCRs). An important, but small family of evolutionarily related insect neuropeptides consists of adipokinetic hormone (AKH), corazonin, and AKH/corazonin-related peptide (ACP). Normally, insects have one specific GPCR for each of these neuropeptides. The tick Ixodes scapularis is not an insect, but belongs to the subphylum Chelicerata, which comprises ticks, scorpions, mites, spiders, and horseshoe crabs. Many of the neuropeptides and neuropeptide GPCRs occurring in insects, also occur in chelicerates, illustrating that insects and chelicerates are evolutionarily closely related. The tick I. scapularis is an ectoparasite and health risk for humans, because it infects its human host with dangerous pathogens during a blood meal. Understanding the biology of ticks will help researchers to prevent tick-borne diseases. By annotating the I. scapularis genome sequence, we previously found that ticks contain as many as five genes, coding for presumed ACP receptors. In the current paper, we cloned these receptors and expressed each of them in Chinese Hamster Ovary (CHO) cells. Each expressed receptor was activated by nanomolar concentrations of ACP, demonstrating that all five receptors were functional ACP receptors. Phylogenetic tree analyses showed that the cloned tick ACP receptors were mostly related to insect ACP receptors and, next, to insect AKH receptors, suggesting that ACP receptor genes and AKH receptor genes originated by gene duplications from a common ancestor. Similar duplications have probably occurred for the ligand genes, during a process of ligand/receptor co-evolution. Interestingly, chelicerates, in contrast to all other arthropods, do not have AKH or AKH receptor genes. Therefore, the ancestor of chelicerates might have lost AKH and AKH receptor genes and functionally replaced them by ACP and ACP receptor genes. For the small family of AKH, ACP, and corazonin receptors and their ligands, gene losses and gene gains occur frequently between the various ecdysozoan clades. Tardigrades, for example, which are well known for their survival in extreme environments, have as many as ten corazonin receptor genes and six corazonin peptide genes, while insects only have one of each, or none.


Assuntos
Hormônios de Inseto , Ixodes , Neuropeptídeos , Oligopeptídeos , Ácido Pirrolidonocarboxílico , Receptores Acoplados a Proteínas G , Animais , Neuropeptídeos/metabolismo , Neuropeptídeos/genética , Hormônios de Inseto/metabolismo , Hormônios de Inseto/genética , Ixodes/metabolismo , Ixodes/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Oligopeptídeos/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/química , Ácido Pirrolidonocarboxílico/análogos & derivados , Ácido Pirrolidonocarboxílico/metabolismo , Filogenia , Sequência de Aminoácidos , Cricetulus , Células CHO , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/genética
17.
J Neurosci Res ; 102(1): e25271, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284837

RESUMO

Similar to the human brain, Drosophila glia may well be divided into several subtypes that each carries out specific functions. Glial GPCRs play key roles in crosstalk between neurons and glia. Drosophila Lgr4 (dLgr4) is a human relaxin receptor homolog involved in angiogenesis, cardiovascular regulation, collagen remodeling, and wound healing. A recent study suggests that ilp7 might be the ligand for Lgr4 and regulates escape behavior of Drosophila larvae. Here we demonstrate that Drosophila Lgr4 expression in glial cells, not neurons, is necessary for early development, adult behavior, and lifespan. Reducing the Lgr4 level in glial cells disrupts Drosophila development, while knocking down other LGR family members in glia has no impact. Adult-specific knockdown of Lgr4 in glia but not neurons reduce locomotion, male reproductive success, and animal longevity. The investigation of how glial expression of Lgr4 contributes to this behavioral alteration will increase our understanding of how insulin signaling via glia selectively modulates neuronal activity and behavior.


Assuntos
Proteínas de Drosophila , Drosophila , Neuroglia , Receptores Acoplados a Proteínas G , Animais , Masculino , Encéfalo , Neurônios , Receptores de Neuropeptídeos , Receptores Acoplados a Proteínas G/genética , Proteínas de Drosophila/genética
18.
Cell Tissue Res ; 397(1): 61-76, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38727755

RESUMO

Motilin (MLN) is a peptide hormone originally isolated from the mucosa of the porcine intestine. Its orthologs have been identified in various vertebrates. Although MLN regulates gastrointestinal motility in tetrapods from amphibians to mammals, recent studies indicate that MLN is not involved in the regulation of isolated intestinal motility in zebrafish, at least in vitro. To determine the unknown function of MLN in teleosts, we examined the expression of MLN and the MLN receptor (MLNR) at the cellular level in Japanese medaka (Oryzias latipes). Quantitative PCR revealed that mln mRNA was limitedly expressed in the gut, whereas mlnr mRNA was not detected in the gut but was expressed in the brain and kidney. By in situ hybridization and immunohistochemistry, mlnr mRNA was detected in the dopaminergic neurons of the area postrema in the brain and the noradrenaline-producing cells in the interrenal gland of the kidney. Furthermore, we observed efferent projections of mlnr-expressing dopaminergic neurons in the lobus vagi (XL) and nucleus motorius nervi vagi (NXm) of the medulla oblongata by establishing a transgenic medaka expressing the enhanced green fluorescence protein driven by the mlnr promoter. The expression of dopamine receptor mRNAs in the XL and cholinergic neurons in NXm was confirmed by in situ hybridization. These results indicate novel sites of MLN activity other than the gastrointestinal tract. MLN may exert central and peripheral actions through the regulation of catecholamine release in medaka.


Assuntos
Motilina , Oryzias , Receptores dos Hormônios Gastrointestinais , Animais , Oryzias/metabolismo , Oryzias/genética , Receptores dos Hormônios Gastrointestinais/metabolismo , Receptores dos Hormônios Gastrointestinais/genética , Motilina/metabolismo , Receptores de Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/genética , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Animais Geneticamente Modificados , Neurônios Dopaminérgicos/metabolismo , Encéfalo/metabolismo
19.
Allergy ; 79(3): 601-612, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37947156

RESUMO

Immediate drug hypersensitivity reactions (IDHRs) are a burden for patients and the health systems. This problem increases when taking into account that only a small proportion of patients initially labelled as allergic are finally confirmed after an allergological workup. The diverse nature of drugs involved will imply different interactions with the immunological system. Therefore, IDHRs can be produced by a wide array of mechanisms mediated by the drug interaction with specific antibodies or directly on effector target cells. These heterogeneous mechanisms imply an enhanced complexity for an accurate diagnosis and the identification of the phenotype and endotype at early stages of the reaction is of vital importance. Currently, several endophenotypic categories (type I IgE/non-IgE, cytokine release, Mast-related G-protein coupled receptor X2 (MRGPRX2) or Cyclooxygenase-1 (COX-1) inhibition and their associated biomarkers have been proposed. A precise knowledge of endotypes will permit to discriminate patients within the same phenotype, which is crucial in order to personalise diagnosis, future treatment and prevention to improve the patient's quality of life.


Assuntos
Hipersensibilidade a Drogas , Hipersensibilidade Imediata , Hipersensibilidade , Humanos , Qualidade de Vida , Hipersensibilidade a Drogas/diagnóstico , Hipersensibilidade Imediata/diagnóstico , Biomarcadores , Receptores Acoplados a Proteínas G/genética , Mastócitos , Degranulação Celular , Proteínas do Tecido Nervoso , Receptores de Neuropeptídeos
20.
J Chem Inf Model ; 64(18): 7056-7067, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39207455

RESUMO

The growth hormone-releasing hormone receptor (GHRHR) belongs to Class B1 of G protein-coupled receptors (GPCRs). Class B1 GPCR peptides such, as growth hormone-releasing hormone (GHRH), have been proposed to bind in a two-step model, where first the C-terminal region of the peptide interacts with the extracellular domain of the receptor and, subsequently, the N-terminus interacts with the seven transmembrane domain of the receptor, resulting in activation. The GHRHR has recently been highlighted as a promising drug target toward several types of cancer and has been shown to be overexpressed in prostate, breast, pancreatic, and ovarian cancer. Indeed, peptide GHRHR antagonists have displayed promising results in many cancer models. However, no nonpeptide GHRHR-targeting compounds have yet been identified. We have utilized several computational tools to target GHRHR and identify potential small-molecule compounds directed at this receptor. These compounds were validated in vitro using a cyclic adenosine monophosphate (cAMP) ELISA to measure activity at the GHRHR. In vitro results suggest that several of the novel small-molecule compounds could inhibit GHRH-induced cAMP accumulation. Preliminary analysis of the specificity/selectivity of one of the most effective hit compounds indicated that the effect seen was via inhibition of the GHRHR. We therefore report the first nonpeptide antagonists of GHRHR and propose a structural basis for inhibition induced by the compounds, which may assist in the future design of lead GHRHR compounds for treating disorders attributed to dysregulated/aberrant GHRHR signaling.


Assuntos
Receptores de Neuropeptídeos , Receptores de Hormônios Reguladores de Hormônio Hipofisário , Humanos , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/antagonistas & inibidores , Receptores de Neuropeptídeos/antagonistas & inibidores , Receptores de Neuropeptídeos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Bibliotecas de Moléculas Pequenas/química , Simulação de Acoplamento Molecular , AMP Cíclico/metabolismo , Descoberta de Drogas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA