Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.798
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 176(5): 982-997.e16, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30712873

RESUMO

Immune cells and epithelium form sophisticated barrier systems in symbiotic relationships with microbiota. Evidence suggests that immune cells can sense microbes through intact barriers, but regulation of microbial commensalism remain largely unexplored. Here, we uncovered spatial compartmentalization of skin-resident innate lymphoid cells (ILCs) and modulation of sebaceous glands by a subset of RORγt+ ILCs residing within hair follicles in close proximity to sebaceous glands. Their persistence in skin required IL-7 and thymic stromal lymphopoietin, and localization was dependent on the chemokine receptor CCR6. ILC subsets expressed TNF receptor ligands, which limited sebocyte growth by repressing Notch signaling pathway. Consequently, loss of ILCs resulted in sebaceous hyperplasia with increased production of antimicrobial lipids and restricted commensalism of Gram-positive bacterial communities. Thus, epithelia-derived signals maintain skin-resident ILCs that regulate microbial commensalism through sebaceous gland-mediated tuning of the barrier surface, highlighting an immune-epithelia circuitry that facilitates host-microbe symbiosis.


Assuntos
Linfócitos/imunologia , Glândulas Sebáceas/metabolismo , Glândulas Sebáceas/microbiologia , Animais , Bactérias/metabolismo , Citocinas/metabolismo , Epitélio/imunologia , Folículo Piloso/metabolismo , Folículo Piloso/microbiologia , Imunidade Inata , Interleucina-7/metabolismo , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/imunologia , Receptores CCR6/metabolismo , Receptores Notch/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Glândulas Sebáceas/imunologia , Pele/metabolismo , Fenômenos Fisiológicos da Pele , Simbiose , Linfopoietina do Estroma do Timo
2.
Cell ; 162(6): 1365-78, 2015 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-26359988

RESUMO

The cytokine TWEAK and its cognate receptor Fn14 are members of the TNF/TNFR superfamily and are upregulated in tumors. We found that Fn14, when expressed in tumors, causes cachexia and that antibodies against Fn14 dramatically extended lifespan by inhibiting tumor-induced weight loss although having only moderate inhibitory effects on tumor growth. Anti-Fn14 antibodies prevented tumor-induced inflammation and loss of fat and muscle mass. Fn14 signaling in the tumor, rather than host, is responsible for inducing this cachexia because tumors in Fn14- and TWEAK-deficient hosts developed cachexia that was comparable to that of wild-type mice. These results extend the role of Fn14 in wound repair and muscle development to involvement in the etiology of cachexia and indicate that Fn14 antibodies may be a promising approach to treat cachexia, thereby extending lifespan and improving quality of life for cancer patients.


Assuntos
Caquexia/tratamento farmacológico , Neoplasias/patologia , Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/administração & dosagem , Atrofia/tratamento farmacológico , Caquexia/patologia , Morte Celular , Neoplasias do Colo/tratamento farmacológico , Citocina TWEAK , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Desenvolvimento Muscular , Neoplasias/metabolismo , Receptores do Fator de Necrose Tumoral/química , Receptores do Fator de Necrose Tumoral/metabolismo , Alinhamento de Sequência , Transdução de Sinais , Receptor de TWEAK , Fatores de Necrose Tumoral/metabolismo
3.
Nat Immunol ; 17(5): 593-603, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26950238

RESUMO

Persistent viral infections are characterized by the simultaneous presence of chronic inflammation and T cell dysfunction. In prototypic models of chronicity--infection with human immunodeficiency virus (HIV) or lymphocytic choriomeningitis virus (LCMV)--we used transcriptome-based modeling to reveal that CD4(+) T cells were co-exposed not only to multiple inhibitory signals but also to tumor-necrosis factor (TNF). Blockade of TNF during chronic infection with LCMV abrogated the inhibitory gene-expression signature in CD4(+) T cells, including reduced expression of the inhibitory receptor PD-1, and reconstituted virus-specific immunity, which led to control of infection. Preventing signaling via the TNF receptor selectively in T cells sufficed to induce these effects. Targeted immunological interventions to disrupt the TNF-mediated link between chronic inflammation and T cell dysfunction might therefore lead to therapies to overcome persistent viral infection.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Fator de Necrose Tumoral alfa/imunologia , Adolescente , Adulto , Idoso , Animais , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Citometria de Fluxo , Células HEK293 , HIV/fisiologia , Infecções por HIV/genética , Infecções por HIV/virologia , Interações Hospedeiro-Patógeno/imunologia , Humanos , Immunoblotting , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/imunologia , Receptores do Fator de Necrose Tumoral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética , Transcriptoma/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Adulto Jovem
4.
Nat Immunol ; 16(8): 819-828, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26147686

RESUMO

Fat-associated lymphoid clusters (FALCs) are a type of lymphoid tissue associated with visceral fat. Here we found that the distribution of FALCs was heterogeneous, with the pericardium containing large numbers of these clusters. FALCs contributed to the retention of B-1 cells in the peritoneal cavity through high expression of the chemokine CXCL13, and they supported B cell proliferation and germinal center differentiation during peritoneal immunological challenges. FALC formation was induced by inflammation, which triggered the recruitment of myeloid cells that expressed tumor-necrosis factor (TNF) necessary for signaling via the TNF receptors in stromal cells. Natural killer T cells (NKT cells) restricted by the antigen-presenting molecule CD1d were likewise required for the inducible formation of FALCs. Thus, FALCs supported and coordinated the activation of innate B cells and T cells during serosal immune responses.


Assuntos
Inflamação/imunologia , Gordura Intra-Abdominal/imunologia , Linfócitos/imunologia , Tecido Linfoide/imunologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Quimiocina CXCL13/genética , Quimiocina CXCL13/imunologia , Quimiocina CXCL13/metabolismo , Citometria de Fluxo , Expressão Gênica/imunologia , Inflamação/genética , Inflamação/metabolismo , Gordura Intra-Abdominal/metabolismo , Linfócitos/metabolismo , Tecido Linfoide/citologia , Tecido Linfoide/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Confocal , Células Mieloides/imunologia , Células Mieloides/metabolismo , Células T Matadoras Naturais/imunologia , Células T Matadoras Naturais/metabolismo , Receptores do Fator de Necrose Tumoral/genética , Receptores do Fator de Necrose Tumoral/imunologia , Receptores do Fator de Necrose Tumoral/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/imunologia , Células Estromais/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
5.
Physiol Rev ; 99(1): 115-160, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30354964

RESUMO

The tumor necrosis factor (TNF) and TNF receptor (TNFR) superfamilies (TNFSF/TNFRSF) include 19 ligands and 29 receptors that play important roles in the modulation of cellular functions. The communication pathways mediated by TNFSF/TNFRSF are essential for numerous developmental, homeostatic, and stimulus-responsive processes in vivo. TNFSF/TNFRSF members regulate cellular differentiation, survival, and programmed death, but their most critical functions pertain to the immune system. Both innate and adaptive immune cells are controlled by TNFSF/TNFRSF members in a manner that is crucial for the coordination of various mechanisms driving either co-stimulation or co-inhibition of the immune response. Dysregulation of these same signaling pathways has been implicated in inflammatory and autoimmune diseases, highlighting the importance of their tight regulation. Investigation of the control of TNFSF/TNFRSF activities has led to the development of therapeutics with the potential to reduce chronic inflammation or promote anti-tumor immunity. The study of TNFSF/TNFRSF proteins has exploded over the last 30 yr, but there remains a need to better understand the fundamental mechanisms underlying the molecular pathways they mediate to design more effective anti-inflammatory and anti-cancer therapies.


Assuntos
Sistema Imunitário/metabolismo , Inflamação/imunologia , Ligantes , Receptores do Fator de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/metabolismo , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Humanos , Inflamação/metabolismo
6.
Immunity ; 44(5): 1005-19, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27192566

RESUMO

Cytokines related to tumor necrosis factor (TNF) provide a communication network essential for coordinating multiple cell types into an effective host defense system against pathogens and malignant cells. The pathways controlled by the TNF superfamily differentiate both innate and adaptive immune cells and modulate stromal cells into microenvironments conducive to host defenses. Members of the TNF receptor superfamily activate diverse cellular functions from the production of type 1 interferons to the modulation of survival of antigen-activated T cells. Here, we focus attention on the subset of TNF superfamily receptors encoded in the immune response locus in chromosomal region 1p36. Recent studies have revealed that these receptors use diverse mechanisms to either co-stimulate or restrict immune responses. Translation of the fundamental mechanisms of TNF superfamily is leading to the design of therapeutics that can alter pathogenic processes in several autoimmune diseases or promote immunity to tumors.


Assuntos
Doenças Autoimunes/imunologia , Transtornos Cromossômicos/genética , Imunoterapia/métodos , Neoplasias/imunologia , Receptor Cross-Talk , Receptores do Fator de Necrose Tumoral/metabolismo , Linfócitos T/imunologia , Imunidade Adaptativa , Animais , Deleção Cromossômica , Cromossomos Humanos Par 1/genética , Humanos , Imunidade Inata , Imunoterapia/tendências , Ativação Linfocitária , Neurogênese/genética , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 119(18): e2200128119, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35482923

RESUMO

Null mutations of spliceosome components or cofactors are homozygous lethal in eukaryotes, but viable hypomorphic mutations provide an opportunity to understand the physiological impact of individual splicing proteins. We describe a viable missense allele (F181I) of Rnps1 encoding an essential regulator of splicing and nonsense-mediated decay (NMD), identified in a mouse genetic screen for altered immune cell development. Homozygous mice displayed a stem cell­intrinsic defect in hematopoiesis of all lineages due to excessive apoptosis induced by tumor necrosis factor (TNF)­dependent death signaling. Numerous transcript splice variants containing retained introns and skipped exons were detected at elevated frequencies in Rnps1F181I/F181I splenic CD8+ T cells and hematopoietic stem cells (HSCs), but NMD appeared normal. Strikingly, Tnf knockout rescued all hematopoietic cells to normal or near-normal levels in Rnps1F181I/F181I mice and dramatically reduced intron retention in Rnps1F181I/F181I CD8+ T cells and HSCs. Thus, RNPS1 is necessary for accurate splicing, without which disinhibited TNF signaling triggers hematopoietic cell death.


Assuntos
Linfócitos T CD8-Positivos , Ribonucleoproteínas , Animais , Linfócitos T CD8-Positivos/metabolismo , Hematopoese/genética , Homozigoto , Mamíferos/metabolismo , Camundongos , Receptores do Fator de Necrose Tumoral/metabolismo , Ribonucleoproteínas/metabolismo , Deleção de Sequência , Fatores de Necrose Tumoral/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(40): e2208436119, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36161919

RESUMO

Engineered regulatory T cell (Treg cell) therapy is a promising strategy to treat patients suffering from inflammatory diseases, autoimmunity, and transplant rejection. However, in many cases, disease-related antigens that can be targeted by Treg cells are not available. In this study, we introduce a class of synthetic biosensors, named artificial immune receptors (AIRs), for murine and human Treg cells. AIRs consist of three domains: (a) extracellular binding domain of a tumor necrosis factor (TNF)-receptor superfamily member, (b) intracellular costimulatory signaling domain of CD28, and (c) T cell receptor signaling domain of CD3-ζ chain. These AIR receptors equip Treg cells with an inflammation-sensing machinery and translate this environmental information into a CD3-ζ chain-dependent TCR-activation program. Different AIRs were generated, recognizing the inflammatory ligands of the TNF-receptor superfamily, including LIGHT, TNFα, and TNF-like ligand 1A (TL1A), leading to activation, differentiation, and proliferation of AIR-Treg cells. In a graft-versus-host disease model, Treg cells expressing lymphotoxin ß receptor-AIR, which can be activated by the ligand LIGHT, protect significantly better than control Treg cells. Expression and signaling of the corresponding human AIR in human Treg cells prove that this concept can be translated. Engineering Treg cells that target inflammatory ligands leading to TCR signaling and activation might be used as a Treg cell-based therapy approach for a broad range of inflammation-driven diseases.


Assuntos
Técnicas Biossensoriais , Engenharia Celular , Terapia Baseada em Transplante de Células e Tecidos , Inflamação , Linfócitos T Reguladores , Animais , Antígenos CD28/metabolismo , Humanos , Inflamação/terapia , Ligantes , Receptor beta de Linfotoxina/metabolismo , Camundongos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Linfócitos T Reguladores/transplante , Fator de Necrose Tumoral alfa
9.
Hum Mol Genet ; 31(13): 2194-2206, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35103281

RESUMO

Age-related macular degeneration (AMD) and central serous chorioretinopathy (CSC) are common diseases that can cause vision loss in older and younger populations. These diseases share pathophysiological conditions derived from retinal pigment epithelium (RPE) dysfunction. Tumor necrosis factor receptor superfamily 10A (TNFRSF10A)-LOC389641 with the same lead single-nucleotide polymorphism (SNP) (rs13278062) is the only overlapped susceptibility locus found in both AMD and CSC through genome-wide association studies. This lead SNP has been reported to alter the transcriptional activity of TNFRSF10A. This study aimed to elucidate the function of TNFRSF10A in RPE degeneration using human primary RPE cells and Tnfrsf10 knockout (Tnfrsf10-/-) mice. TNFRSF10A was found to be localized in human RPE. In vitro assays revealed that a T allele of rs13278062, the risk allele for AMD and CSC, downregulated TNFRSF10A transcription in RPE, leading to decreased cell viability and increased apoptosis through protein kinase C-α (PKCA) downregulation. Treatment with phorbol 12-myristate 13-acetate, a PKC activator, rescued the cell viability. Morphological RPE abnormality was found in the retina of Tnfrsf10-/- mice. Our data suggest that downregulation of TNFRSF10A expression inactivates PKCA signaling and causes cellular vulnerability of the RPE, which may contribute to the pathogenesis of AMD and CSC.


Assuntos
Coriorretinopatia Serosa Central , Degeneração Macular , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Coriorretinopatia Serosa Central/metabolismo , Coriorretinopatia Serosa Central/patologia , Regulação para Baixo/genética , Estudo de Associação Genômica Ampla , Degeneração Macular/patologia , Camundongos , Receptores do Fator de Necrose Tumoral/metabolismo , Epitélio Pigmentado da Retina/metabolismo
10.
Hepatology ; 77(2): 395-410, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34995376

RESUMO

BACKGROUND AND AIMS: Intrahepatic cholangiocarcinoma (ICC) is a deadly but poorly understood disease, and its treatment options are very limited. The aim of this study was to identify the molecular drivers of ICC and search for therapeutic targets. APPROACH AND RESULTS: We performed a Sleeping Beauty transposon-based in vivo insertional mutagenesis screen in liver-specific Pten -deficient mice and identified TNF receptor-related factor 3 ( Traf3 ) as the most significantly mutated gene in murine ICCs in a loss-of-function manner. Liver-specific Traf3 deletion caused marked cholangiocyte overgrowth and spontaneous development of ICC in Pten knockout and KrasG12D mutant mice. Hepatocyte-specific, but not cholangiocyte-specific, Traf3 -deficient and Pten -deficient mice recapitulated these phenotypes. Lineage tracing and single-cell RNA sequencing suggested that these ICCs were derived from hepatocytes through transdifferentiation. TRAF3 and PTEN inhibition induced a transdifferentiation-like phenotype of hepatocyte-lineage cells into proliferative cholangiocytes through NF-κB-inducing kinase (NIK) up-regulation in vitro. Intrahepatic NIK levels were elevated in liver-specific Traf3 -deficient and Pten -deficient mice, and NIK inhibition alleviated cholangiocyte overgrowth. In human ICCs, we identified an inverse correlation between TRAF3 and NIK expression, with low TRAF3 or high NIK expression associated with poor prognosis. Finally, we showed that NIK inhibition by a small molecule inhibitor or gene silencing suppressed the growth of multiple human ICC cells in vitro and ICC xenografts in vivo. CONCLUSIONS: TRAF3 inactivation promotes ICC development through NIK-mediated hepatocyte transdifferentiation. The oncogenic TRAF3-NIK axis may be a potential therapeutic target for ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Camundongos , Animais , Transdução de Sinais/fisiologia , Fator 3 Associado a Receptor de TNF/genética , Fator 3 Associado a Receptor de TNF/metabolismo , Transdiferenciação Celular , Hepatócitos/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , NF-kappa B/metabolismo , Quinase Induzida por NF-kappaB
11.
Cell ; 137(6): 997-1000, 2009 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-19524503

RESUMO

The APP-processing pathway is a pathological component of Alzheimer's disease (AD), but there is no consensus regarding the physiological functions of APP and its products. Two studies (Nikolaev et al., 2009; Lauren et al., 2009) link the physiological and pathological aspects of APP processing. They show that the APP products, N-APP and Abeta42, are ligands for death receptor 6 and cellular prion protein, respectively, which are important in nervous system development and synaptic suppression.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Humanos , Fragmentos de Peptídeos/metabolismo , Proteínas PrPC/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo
12.
Vet Dermatol ; 35(2): 219-225, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38111073

RESUMO

BACKGROUND: C-C motif chemokine ligand (CCL)5 induces skin inflammation in healthy dogs. In addition, CCL5 is overexpressed in the skin of experimental models of canine atopic dermatitis (cAD). Tumour necrosis factor (TNF)-α has been shown to be upregulated in cAD. However, it remains unclear whether TNF-α induces CCL5 production in canine keratinocytes. HYPOTHESIS/OBJECTIVES: To determine the effect of TNF-α on CCL5 production in canine keratinocyte culture and investigate possible synergy with interferon (IFN)-γ and interleukin (IL)-4. MATERIALS AND METHODS: CCL5 protein concentrations were measured by enzyme-linked immunosorbent assay (ELISA) in the culture supernatant of a cell line of canine progenitor epidermal keratinocyte (CPEK) cells stimulated with TNF-α with or without inhibitors of the TNF receptor signalling pathway. CCL5 protein concentrations also were measured in CPEK cells stimulated with TNF-α in the absence or presence of IFN-γ, a T-helper (Th)1-type cytokine, and/or IL-4, a Th2-type cytokine. RESULTS: TNF-α increased CCL5 production in CPEK cells in time- and dose-dependent manners. Inhibitors of the TNF receptor signalling pathway diminished CCL5 production. Although neither IFN-γ nor IL-4 alone induced CCL5 production in CPEK cells, the combination of TNF-α and IFN-γ, and not IL-4, synergistically enhanced CCL5 production in these cells. CONCLUSIONS AND CLINICAL RELEVANCE: TNF-α may be involved in skin inflammation in dogs by promoting CCL5 production in keratinocytes. Furthermore, the synergistic effect of TNF-α and IFN-γ suggests that the local Th1-type milieu may aggravate skin inflammation. Further studies are required to elucidate the role of TNF-α-induced CCL5 production of keratinocytes in the pathogenesis of cAD.


Assuntos
Dermatite Atópica , Doenças do Cão , Cães , Animais , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-4 , Ligantes , Interferon gama/metabolismo , Queratinócitos , Citocinas/metabolismo , Dermatite Atópica/patologia , Dermatite Atópica/veterinária , Quimiocinas , Inflamação/veterinária , Receptores do Fator de Necrose Tumoral/metabolismo , Doenças do Cão/patologia
13.
Am J Physiol Cell Physiol ; 325(3): C780-C795, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37575057

RESUMO

Inducible nitric oxide synthase (iNOS) and vascular endothelial dysfunction have been implicated in the development and progression of atherosclerosis. This study aimed to elucidate the role of iNOS in vascular endothelial dysfunction. Ultrahigh performance liquid chromatography-quadrupole time-of-flight mass spectrometry combined with multivariate data analysis was used to characterize the metabolic changes in human umbilical vein endothelial cells (HUVECs) in response to different treatment conditions. In addition, molecular biology techniques were employed to explain the molecular mechanisms underlying the role of iNOS in vascular endothelial dysfunction. Tumor necrosis factor-α (TNF-α) enhances the expression of iNOS, TXNIP, and the level of reactive oxygen species (ROS) facilitates the entry of nuclear factor-κB (NF-κB) into the nucleus and promotes injury in HUVECs. iNOS deficiency reversed the TNF-α-mediated pathological changes in HUVECs. Moreover, TNF-α increased the expression of tumor necrosis factor receptor-2 (TNFR-2) and the levels of p-IκBα and IL-6 proteins and CD31, ICAM-1, and VCAM-1 protein expression, which was significantly reduced in HUVECs with iNOS deficiency. In addition, treating HUVECs in the absence or presence of TNF-α or iNOS, respectively, enabled the identification of putative endogenous biomarkers associated with endothelial dysfunction. These biomarkers were involved in critical metabolic pathways, including glycosylphosphatidylinositol-anchor biosynthesis, amino acid metabolism, sphingolipid metabolism, and fatty acid metabolism. iNOS deficiency during vascular endothelial dysfunction may affect the expression of TNFR-2, vascular adhesion factors, and the level of ROS via cellular metabolic changes, thereby attenuating vascular endothelial dysfunction.NEW & NOTEWORTHY Inducible nitric oxide synthase (iNOS) deficiency during vascular endothelial dysfunction may affect the expression of tumor necrosis factor receptor-2 and vascular adhesion factors via cellular metabolic changes, thereby attenuating vascular endothelial dysfunction.


Assuntos
NF-kappa B , Fator de Necrose Tumoral alfa , Humanos , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NF-kappa B/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Óxido Nítrico/metabolismo
14.
Nature ; 548(7669): 602-606, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28847007

RESUMO

Regulatory T cells (Treg cells) have a pivotal role in the establishment and maintenance of immunological self-tolerance and homeostasis. Transcriptional programming of regulatory mechanisms facilitates the functional activation of Treg cells in the prevention of diverse types of inflammatory responses. It remains unclear how Treg cells orchestrate their homeostasis and interplay with environmental signals. Here we show that liver kinase B1 (LKB1) programs the metabolic and functional fitness of Treg cells in the control of immune tolerance and homeostasis. Mice with a Treg-specific deletion of LKB1 developed a fatal inflammatory disease characterized by excessive TH2-type-dominant responses. LKB1 deficiency disrupted Treg cell survival and mitochondrial fitness and metabolism, but also induced aberrant expression of immune regulatory molecules including the negative co-receptor PD-1 and the TNF receptor superfamily proteins GITR and OX40. Unexpectedly, LKB1 function in Treg cells was independent of conventional AMPK signalling or the mTORC1-HIF-1α axis, but contributed to the activation of ß-catenin signalling for the control of PD-1 and TNF receptor proteins. Blockade of PD-1 activity reinvigorated the ability of LKB1-deficient Treg cells to suppress TH2 responses and the interplay with dendritic cells primed by thymic stromal lymphopoietin. Thus, Treg cells use LKB1 signalling to coordinate their metabolic and immunological homeostasis and to prevent apoptotic and functional exhaustion, thereby orchestrating the balance between immunity and tolerance.


Assuntos
Homeostase , Tolerância Imunológica , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Apoptose , Sobrevivência Celular/genética , Citocinas/metabolismo , Células Dendríticas/imunologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteína Relacionada a TNFR Induzida por Glucocorticoide/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/biossíntese , Receptor de Morte Celular Programada 1/metabolismo , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Receptores OX40/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/citologia , Células Th2/imunologia , beta Catenina/metabolismo , Linfopoietina do Estroma do Timo
15.
Proc Natl Acad Sci U S A ; 117(43): 26885-26894, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33046647

RESUMO

Ectromelia virus (ECTV) causes mousepox, a surrogate mouse model for smallpox caused by variola virus in humans. Both orthopoxviruses encode tumor necrosis factor receptor (TNFR) homologs or viral TNFR (vTNFR). These homologs are termed cytokine response modifier (Crm) proteins, containing a TNF-binding domain and a chemokine-binding domain called smallpox virus-encoded chemokine receptor (SECRET) domain. ECTV encodes one vTNFR known as CrmD. Infection of ECTV-resistant C57BL/6 mice with a CrmD deletion mutant virus resulted in uniform mortality due to excessive TNF secretion and dysregulated inflammatory cytokine production. CrmD dampened pathology, leukocyte recruitment, and inflammatory cytokine production in lungs including TNF, IL-6, IL-10, and IFN-γ. Blockade of TNF, IL-6, or IL-10R function with monoclonal antibodies reduced lung pathology and provided 60 to 100% protection from otherwise lethal infection. IFN-γ caused lung pathology only when both the TNF-binding and SECRET domains were absent. Presence of the SECRET domain alone induced significantly higher levels of IL-1ß, IL-6, and IL-10, likely overcoming any protective effects that might have been afforded by anti-IFN-γ treatment. The use of TNF-deficient mice and those that express only membrane-associated but not secreted TNF revealed that CrmD is critically dependent on host TNF for its function. In vitro, recombinant Crm proteins from different orthopoxviruses bound to membrane-associated TNF and dampened inflammatory gene expression through reverse signaling. CrmD does not affect virus replication; however, it provides the host advantage by enabling survival. Host survival would facilitate virus spread, which would also provide an advantage to the virus.


Assuntos
Vírus da Ectromelia/fisiologia , Interações Hospedeiro-Patógeno , Receptores do Fator de Necrose Tumoral/metabolismo , Infecções Respiratórias/virologia , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Feminino , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções Respiratórias/patologia , Carga Viral
16.
Genes Dev ; 29(8): 785-90, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25838500

RESUMO

The amyloid precursor protein (APP) has garnered considerable attention due to its genetic links to Alzheimer's disease. Death receptor 6 (DR6) was recently shown to bind APP via the protein extracellular regions, stimulate axonal pruning, and inhibit synapse formation. Here, we report the crystal structure of the DR6 ectodomain in complex with the E2 domain of APP and show that it supports a model for APP-induced dimerization and activation of cell surface DR6.


Assuntos
Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Modelos Moleculares , Receptores do Fator de Necrose Tumoral/química , Receptores do Fator de Necrose Tumoral/metabolismo , Animais , Cristalização , Dimerização , Células HEK293 , Humanos , Camundongos , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Transdução de Sinais
17.
J Biol Chem ; 297(3): 101097, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34418432

RESUMO

Tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) plays context-specific roles in multiple receptor-mediated signaling pathways in different cell types. Mice lacking TRAF3 in T cells display defective T-cell-mediated immune responses to immunization and infection and demonstrate defective early signaling via the TCR complex. However, the role of TRAF3 in the function of GITR/TNFRSF18, an important costimulatory member of the TNFR superfamily, is unclear. Here we investigated the impact of T cell TRAF3 status on both GITR expression and activation of specific kinases in the GITR signaling pathway in T cells. Our results indicate that TRAF3 negatively regulates GITR functions in several ways. First, expression of GITR protein was elevated in TRAF3-deficient T cells, resulting from both transcriptional and posttranslational regulation that led to greater GITR transcript levels, as well as enhanced GITR protein stability. TRAF3 associated with T cell GITR in a manner dependent upon GITR ligation. TRAF3 also inhibited several events of the GITR mediated early signaling cascade, in a manner independent of recruitment of phosphatases, a mechanism by which TRAF3 inhibits signaling through several other cytokine receptors. These results add new information to our understanding of GITR signaling and function in T cells, which is relevant to the potential use of GITR to enhance immune therapies.


Assuntos
Receptores Coestimuladores e Inibidores de Linfócitos T/metabolismo , Proteína Relacionada a TNFR Induzida por Glucocorticoide/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Animais , Feminino , Proteína Relacionada a TNFR Induzida por Glucocorticoide/fisiologia , Interleucina-2/metabolismo , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/metabolismo , Fator 3 Associado a Receptor de TNF/fisiologia
18.
EMBO J ; 37(7)2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29459438

RESUMO

Death receptor 6 (DR6) is an orphan member of the TNF receptor superfamily and controls cell death and differentiation in a cell-autonomous manner in different cell types. Here, we report an additional non-cell-autonomous function for DR6 in the peripheral nervous system (PNS). DR6-knockout (DR6 KO) mice showed precocious myelination in the PNS Using an in vitro myelination assay, we demonstrate that neuronal DR6 acts in trans on Schwann cells (SCs) and reduces SC proliferation and myelination independently of its cytoplasmic death domain. Mechanistically, DR6 was found to be cleaved in neurons by "a disintegrin and metalloprotease 10" (ADAM10), releasing the soluble DR6 ectodomain (sDR6). Notably, in the in vitro myelination assay, sDR6 was sufficient to rescue the DR6 KO phenotype. Thus, in addition to the cell-autonomous receptor function of full-length DR6, the proteolytically released sDR6 can unexpectedly also act as a paracrine signaling factor in the PNS in a non-cell-autonomous manner during SC proliferation and myelination. This new mode of DR6 signaling will be relevant in future attempts to target DR6 in disease settings.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proliferação de Células , Proteínas de Membrana/metabolismo , Neurônios/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Células de Schwann/metabolismo , Animais , Morte Celular , Linhagem Celular , Citoplasma/metabolismo , Domínio de Morte , Desintegrinas/metabolismo , Feminino , Células HEK293 , Humanos , Hibridomas , Masculino , Metaloproteases/metabolismo , Camundongos , Camundongos Knockout , Bainha de Mielina/metabolismo , Comunicação Parácrina , Fenótipo , Receptores do Fator de Necrose Tumoral/genética , Células de Schwann/ultraestrutura , Especificidade por Substrato
19.
PLoS Pathog ; 16(2): e1008361, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32101593

RESUMO

Monocytes exist in two major populations, termed Ly6Chi and Ly6Clow monocytes. Compared to Ly6Chi monocytes, less is known about Ly6Clow monocyte recruitment and mechanisms involved in the recruitment of this subset. Furthermore, the role of Ly6Clow monocytes during infections is largely unknown. Here, using intravital microscopy, we demonstrate that Ly6Clow monocytes are predominantly recruited to the brain vasculature following intravenous infection with Cryptococcus neoformans, a fungal pathogen causing meningoencephalitis. The recruitment depends primarily on the interaction of VCAM1 expressed on the brain endothelium with VLA4 expressed on Ly6Clow monocytes. Furthermore, TNFR signaling is essential for the recruitment through enhancing VLA4 expression on Ly6Clow monocytes. Interestingly, the recruited Ly6Clow monocytes internalized C. neoformans and carried the organism while crawling on and adhering to the luminal wall of brain vasculature and migrating to the brain parenchyma. Our study reveals a substantial recruitment of Ly6Clow monocytes to the brain and highlights important properties of this subset during infection.


Assuntos
Criptococose/imunologia , Monócitos/imunologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Encéfalo/imunologia , Criptococose/metabolismo , Cryptococcus neoformans/metabolismo , Cryptococcus neoformans/patogenicidade , Modelos Animais de Doenças , Feminino , Integrina alfa4beta1/metabolismo , Masculino , Meningoencefalite/metabolismo , Meningoencefalite/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Micoses/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais
20.
Cytokine ; 156: 155892, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35653895

RESUMO

The intestinal mucosa protects the body from physical damage, pathogens, and antigens. However, inflammatory bowel diseases (IBDs) patients suffer from poor mucosal tissue function, including the lack of an effective cellular and/or mucus barrier. We investigated the mucus producing human colonic epithelial cell line HT29-MTX E12 to study its suitability as an in vitro model of cell/mucus barrier adaption during IBD. It was found that the proinflammatory cytokine interferon-gamma (IFN-γ), but not tumor necrosis factor-alpha (TNF-α), reduced cell viability. IFN-γ and TNF-α were found to synergize to decrease barrier function, as measured by trans-epithelial electric resistance (TER) and molecular flux assays. Cells cultured under an air-liquid interface produced an adherent mucus layer, and under these conditions reduced barrier function was found after cytokine exposure. Furthermore, IFN-γ, but not TNF-α treatment, upregulated the IFN-γ receptor 1 (IFNGR1) and TNF-α receptor super family 1A (TNFRSF1A) subunit mRNA in vitro. Co-stimulation resulted in increased mRNA expression of CLDN 2 and 5, two gene known to play a role in epithelial barrier integrity. Analysis of IBD patient samples revealed IFNGR1 and TNFRSF mRNA increased coincidently with guanylate binding protein 1 (GBP1) expression, an indicator of NFkB activity. Lastly, CLDN2 was found at higher levels in IBD patients while HNF4a was suppressed with disease. In conclusion, IFN-γ and TNF-α degrade epithelial/mucus barriers coincident with changes in CLDN gene and cytokine receptor subunit mRNA expression in HT29-MTX E12 cells. These changes largely reflect those observed in IBD patient samples.


Assuntos
Doenças Inflamatórias Intestinais , Interferon gama , Citocinas/metabolismo , Células HT29 , Humanos , Interferon gama/metabolismo , Interferon gama/farmacologia , Mucosa Intestinal/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de Citocinas/metabolismo , Receptores de Interferon/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptor de Interferon gama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA