Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.410
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 181(7): 1502-1517.e23, 2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32559462

RESUMO

RNA viruses are a major human health threat. The life cycles of many highly pathogenic RNA viruses like influenza A virus (IAV) and Lassa virus depends on host mRNA, because viral polymerases cleave 5'-m7G-capped host transcripts to prime viral mRNA synthesis ("cap-snatching"). We hypothesized that start codons within cap-snatched host transcripts could generate chimeric human-viral mRNAs with coding potential. We report the existence of this mechanism of gene origination, which we named "start-snatching." Depending on the reading frame, start-snatching allows the translation of host and viral "untranslated regions" (UTRs) to create N-terminally extended viral proteins or entirely novel polypeptides by genetic overprinting. We show that both types of chimeric proteins are made in IAV-infected cells, generate T cell responses, and contribute to virulence. Our results indicate that during infection with IAV, and likely a multitude of other human, animal and plant viruses, a host-dependent mechanism allows the genesis of hybrid genes.


Assuntos
Capuzes de RNA/genética , Infecções por Vírus de RNA/genética , Proteínas Recombinantes de Fusão/genética , Regiões 5' não Traduzidas/genética , Animais , Bovinos , Linhagem Celular , Cricetinae , Cães , Humanos , Vírus da Influenza A/metabolismo , Camundongos , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Fases de Leitura Aberta/genética , Capuzes de RNA/metabolismo , Infecções por Vírus de RNA/metabolismo , Vírus de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Transcrição Gênica/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
2.
Mol Cell ; 80(6): 980-995.e13, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33202249

RESUMO

Ribosomes have been suggested to directly control gene regulation, but regulatory roles for ribosomal RNA (rRNA) remain largely unexplored. Expansion segments (ESs) consist of multitudes of tentacle-like rRNA structures extending from the core ribosome in eukaryotes. ESs are remarkably variable in sequence and size across eukaryotic evolution with largely unknown functions. In characterizing ribosome binding to a regulatory element within a Homeobox (Hox) 5' UTR, we identify a modular stem-loop within this element that binds to a single ES, ES9S. Engineering chimeric, "humanized" yeast ribosomes for ES9S reveals that an evolutionary change in the sequence of ES9S endows species-specific binding of Hoxa9 mRNA to the ribosome. Genome editing to site-specifically disrupt the Hoxa9-ES9S interaction demonstrates the functional importance for such selective mRNA-rRNA binding in translation control. Together, these studies unravel unexpected gene regulation directly mediated by rRNA and how ribosome evolution drives translation of critical developmental regulators.


Assuntos
Proteínas de Homeodomínio/genética , Biossíntese de Proteínas/genética , RNA Ribossômico/ultraestrutura , Ribossomos/genética , Regiões 5' não Traduzidas/genética , Regulação da Expressão Gênica/genética , Genes Homeobox/genética , Proteínas de Homeodomínio/ultraestrutura , Conformação de Ácido Nucleico , RNA Mensageiro/genética , RNA Ribossômico/genética , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Especificidade da Espécie
3.
Genes Dev ; 34(17-18): 1107-1109, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873576

RESUMO

Pathomechanistic studies of neurodegenerative diseases have documented the toxic effects of mutant protein expression, misfolding, and aggregation. However, alterations in the expression of the corresponding wild-type (WT) gene, due to either variations in copy number or transcriptional regulation, have also been linked to Alzheimer's and Parkinson's diseases. Another striking example of this mutant and WT duality is spinocerebellar ataxia type 1 (SCA1) caused by an ATXN1 polyglutamine protein, although subtle variations in WT AXTN1 levels also lead to ataxia. In this issue of Genes & Development, Nitschke and colleagues (pp. 1147-1160) delve into posttranscriptional events that fine-tune ATXN1 expression and uncover a key role for 5' untranslated region (5' UTR)-miR760 interactions. Thus, this study not only provides significant insights into the complexities of modulating the expression of a dosage-sensitive gene but also highlights the critical importance of identifying noncoding polymorphisms as disease risk factors.


Assuntos
Ataxina-1/genética , Regulação da Expressão Gênica , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/prevenção & controle , Regiões 5' não Traduzidas/genética , Animais , Ataxina-1/metabolismo , Dosagem de Genes , Predisposição Genética para Doença , Humanos , Polimorfismo Genético , Fatores de Risco , Ataxias Espinocerebelares/fisiopatologia
4.
Genes Dev ; 34(17-18): 1147-1160, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763910

RESUMO

Identifying modifiers of dosage-sensitive genes involved in neurodegenerative disorders is imperative to discover novel genetic risk factors and potential therapeutic entry points. In this study, we focus on Ataxin-1 (ATXN1), a dosage-sensitive gene involved in the neurodegenerative disease spinocerebellar ataxia type 1 (SCA1). While the precise maintenance of ATXN1 levels is essential to prevent disease, the mechanisms that regulate ATXN1 expression remain largely unknown. We demonstrate that ATXN1's unusually long 5' untranslated region (5' UTR) negatively regulates its expression via posttranscriptional mechanisms. Based on recent reports that microRNAs (miRNAs) can interact with both 3' and 5' UTRs to regulate their target genes, we identify miR760 as a negative regulator that binds to a conserved site in ATXN1's 5' UTR to induce RNA degradation and translational inhibition. We found that delivery of Adeno-associated virus (AAV)-expressing miR760 in the cerebellum reduces ATXN1 levels in vivo and mitigates motor coordination deficits in a mouse model of SCA1. These findings provide new insights into the regulation of ATXN1 levels, present additional evidence for miRNA-mediated gene regulation via 5' UTR binding, and raise the possibility that noncoding mutations in the ATXN1 locus may act as risk factors for yet to be discovered progressive ataxias.


Assuntos
Regiões 5' não Traduzidas/genética , Ataxina-1/genética , Regulação da Expressão Gênica/genética , MicroRNAs/metabolismo , Ataxias Espinocerebelares/genética , Animais , Ataxina-1/metabolismo , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Mutação , Fatores de Risco , Ataxias Espinocerebelares/fisiopatologia
5.
Nature ; 594(7862): 240-245, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33979833

RESUMO

The coronavirus SARS-CoV-2 is the cause of the ongoing pandemic of COVID-191. Coronaviruses have developed a variety of mechanisms to repress host mRNA translation to allow the translation of viral mRNA, and concomitantly block the cellular innate immune response2,3. Although several different proteins of SARS-CoV-2 have previously been implicated in shutting off host expression4-7, a comprehensive picture of the effects of SARS-CoV-2 infection on cellular gene expression is lacking. Here we combine RNA sequencing, ribosome profiling and metabolic labelling of newly synthesized RNA to comprehensively define the mechanisms that are used by SARS-CoV-2 to shut off cellular protein synthesis. We show that infection leads to a global reduction in translation, but that viral transcripts are not preferentially translated. Instead, we find that infection leads to the accelerated degradation of cytosolic cellular mRNAs, which facilitates viral takeover of the mRNA pool in infected cells. We reveal that the translation of transcripts that are induced in response to infection (including innate immune genes) is impaired. We demonstrate this impairment is probably mediated by inhibition of nuclear mRNA export, which prevents newly transcribed cellular mRNA from accessing ribosomes. Overall, our results uncover a multipronged strategy that is used by SARS-CoV-2 to take over the translation machinery and to suppress host defences.


Assuntos
COVID-19/metabolismo , COVID-19/virologia , Interações Hospedeiro-Patógeno , Biossíntese de Proteínas , SARS-CoV-2/patogenicidade , Regiões 5' não Traduzidas/genética , COVID-19/genética , COVID-19/imunologia , Linhagem Celular , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata/genética , Biossíntese de Proteínas/genética , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Ribossomos/metabolismo , Proteínas não Estruturais Virais/metabolismo
6.
Development ; 150(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36846898

RESUMO

Gene expression regulation in eukaryotes is a multi-level process, including transcription, mRNA translation and protein turnover. Many studies have reported sophisticated transcriptional regulation during neural development, but the global translational dynamics are still ambiguous. Here, we differentiate human embryonic stem cells (ESCs) into neural progenitor cells (NPCs) with high efficiency and perform ribosome sequencing and RNA sequencing on both ESCs and NPCs. Data analysis reveals that translational controls engage in many crucial pathways and contribute significantly to regulation of neural fate determination. Furthermore, we show that the sequence characteristics of the untranslated region (UTR) might regulate translation efficiency. Specifically, genes with short 5'UTR and intense Kozak sequence are associated with high translation efficiency in human ESCs, whereas genes with long 3'UTR are related to high translation efficiency in NPCs. In addition, we have identified four biasedly used codons (GAC, GAT, AGA and AGG) and dozens of short open reading frames during neural progenitor differentiation. Thus, our study reveals the translational landscape during early human neural differentiation and provides insights into the regulation of cell fate determination at the translational level.


Assuntos
Biossíntese de Proteínas , Ribossomos , Humanos , Ribossomos/metabolismo , Regulação da Expressão Gênica , Diferenciação Celular/genética , Regiões 5' não Traduzidas/genética , Fases de Leitura Aberta
7.
EMBO Rep ; 25(8): 3263-3275, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866979

RESUMO

As a hallmark of senescent cells, the derepression of Long Interspersed Elements 1 (LINE1) transcription results in accumulated LINE1 cDNA, which triggers the secretion of the senescence-associated secretory phenotype (SASP) and paracrine senescence in a cGAS-STING pathway-dependent manner. However, transcription factors that govern senescence-associated LINE1 reactivation remain ill-defined. Here, we predict several transcription factors that bind to human LINE1 elements to regulate their transcription by analyzing the conserved binding motifs in the 5'-untranslated regions (UTR) of the commonly upregulated LINE1 elements in different types of senescent cells. Further analysis reveals that PAX5 directly binds to LINE1 5'-UTR and the binding is enhanced in senescent cells. The enrichment of PAX5 at the 5'-UTR promotes cellular senescence and SASP by activating LINE1. We also demonstrate that the longevity gene SIRT6 suppresses PAX5 transcription by directly binding to the PAX5 promoter, and overexpressing PAX5 abrogates the suppressive effect of SIRT6 on stress-dependent cellular senescence. Our work suggests that PAX5 could serve as a potential target for drug development aiming to suppress LINE1 activation and treat senescence-associated diseases.


Assuntos
Senescência Celular , Elementos Nucleotídeos Longos e Dispersos , Fator de Transcrição PAX5 , Humanos , Regiões 5' não Traduzidas/genética , Regulação da Expressão Gênica , Fator de Transcrição PAX5/genética , Fator de Transcrição PAX5/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Retroelementos/genética , Fenótipo Secretor Associado à Senescência/genética
8.
Nature ; 585(7823): 124-128, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32848247

RESUMO

Tight coupling of transcription and translation is considered a defining feature of bacterial gene expression1,2. The pioneering ribosome can both physically associate and kinetically coordinate with RNA polymerase (RNAP)3-11, forming a signal-integration hub for co-transcriptional regulation that includes translation-based attenuation12,13 and RNA quality control2. However, it remains unclear whether transcription-translation coupling-together with its broad functional consequences-is indeed a fundamental characteristic of bacteria other than Escherichia coli. Here we show that RNAPs outpace pioneering ribosomes in the Gram-positive model bacterium Bacillus subtilis, and that this 'runaway transcription' creates alternative rules for both global RNA surveillance and translational control of nascent RNA. In particular, uncoupled RNAPs in B. subtilis explain the diminished role of Rho-dependent transcription termination, as well as the prevalence of mRNA leaders that use riboswitches and RNA-binding proteins. More broadly, we identified widespread genomic signatures of runaway transcription in distinct phyla across the bacterial domain. Our results show that coupled RNAP-ribosome movement is not a general hallmark of bacteria. Instead, translation-coupled transcription and runaway transcription constitute two principal modes of gene expression that determine genome-specific regulatory mechanisms in prokaryotes.


Assuntos
Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Biossíntese de Proteínas , Transcrição Gênica , Regiões 5' não Traduzidas/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Filogenia , RNA Bacteriano/biossíntese , RNA Bacteriano/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fator Rho/metabolismo , Ribossomos/metabolismo , Riboswitch/genética
9.
Plant J ; 119(5): 2437-2449, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39031552

RESUMO

Achieving optimally balanced gene expression within synthetic operons requires regulatory elements capable of providing a spectrum of expression levels. In this study, we investigate the expression of gfp reporter gene in tobacco chloroplasts, guided by variants of the plastid atpH 5' UTR, which harbors a binding site for PPR10, a protein that activates atpH at the posttranscriptional level. Our findings reveal that endogenous tobacco PPR10 confers distinct levels of reporter activation when coupled with the tobacco and maize atpH 5' UTRs in different design contexts. Notably, high GFP expression was not coupled to the stabilization of monocistronic gfp transcripts in dicistronic reporter lines, adding to the evidence that PPR10 activates translation via a mechanism that is independent of its stabilization of monocistronic transcripts. Furthermore, the incorporation of a tRNA upstream of the UTR nearly abolishes gfp mRNA (and GFP protein), presumably by promoting such rapid RNA cleavage and 5' exonucleolytic degradation that PPR10 had insufficient time to bind and protect gfp RNA, resulting in a substantial reduction in GFP accumulation. When combined with a mutant atpH 5' UTR, the tRNA leads to an exceptionally low level of transgene expression. Collectively, this approach allows for tuning of reporter gene expression across a wide range, spanning from a mere 0.02-25% of the total soluble cellular protein. These findings highlight the potential of employing cis-elements from heterologous species and expand the toolbox available for plastid synthetic biology applications requiring multigene expression at varying levels.


Assuntos
Regiões 5' não Traduzidas , Cloroplastos , Regulação da Expressão Gênica de Plantas , Nicotiana , Óperon , Nicotiana/genética , Nicotiana/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Óperon/genética , Regiões 5' não Traduzidas/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Fluorescência Verde/genética , Genes Reporter , Plantas Geneticamente Modificadas , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
10.
Mol Microbiol ; 121(6): 1217-1227, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38725184

RESUMO

The hmuR operon encodes proteins for the uptake and utilization of heme as a nutritional iron source in Bradyrhizobium japonicum. The hmuR operon is transcriptionally activated by the Irr protein and is also positively controlled by HmuP by an unknown mechanism. An hmuP mutant does not express the hmuR operon genes nor does it grow on heme. Here, we show that hmuR expression from a heterologous promoter still requires hmuP, suggesting that HmuP does not regulate at the transcriptional level. Replacement of the 5' untranslated region (5'UTR) of an HmuP-independent gene with the hmuR 5'UTR conferred HmuP-dependent expression on that gene. Recombinant HmuP bound an HmuP-responsive RNA element (HPRE) within the hmuR 5'UTR. A 2 nt substitution predicted to destabilize the secondary structure of the HPRE abolished both HmuP binding activity in vitro and hmuR expression in cells. However, deletion of the HPRE partially restored hmuR expression in an hmuP mutant, and it rescued growth of the hmuP mutant on heme. These findings suggest that the HPRE is a negative regulatory RNA element that is suppressed when bound by HmuP to express the hmuR operon.


Assuntos
Regiões 5' não Traduzidas , Proteínas de Bactérias , Bradyrhizobium , Regulação Bacteriana da Expressão Gênica , Óperon , Proteínas de Ligação a RNA , Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Óperon/genética , Regiões 5' não Traduzidas/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Heme/metabolismo , Regiões Promotoras Genéticas , RNA Bacteriano/metabolismo , RNA Bacteriano/genética , Ligação Proteica
11.
RNA ; 29(5): 630-643, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36653114

RESUMO

p53 protein is a key regulator of cellular homeostasis by coordinating the framework of antiproliferative pathways as a response to various stress factors. Although the main mechanism of stress-dependent induction of p53 protein relies on post-translational modifications influencing its stability and activity, a growing amount of evidence suggests that complex regulation of p53 expression occurs also at the mRNA level. This study explores structural determinants of long-range RNA-RNA interactions in p53 mRNA, crucial for stress-dependent regulation of p53 protein translation. We demonstrate that the 8-nt bulge motif plays a key structural role in base-pairing of complementary sequences from the 5' and 3' untranslated regions of p53 mRNA. We also show that one of the p53 translation regulators, nucleolin, displays an RNA chaperone activity and facilitates the association of sequences involved in the formation of long-range interactions in p53 mRNA. Nucleolin promotes base-pairing of complementary sequences through the bulge motif, because mutations of this region reduce or inhibit pairing while compensatory mutations restore this interaction. Mutational analysis of nucleolin reveals that all four RNA recognition motifs are indispensable for optimal RNA chaperone activity of nucleolin. These observations help to decipher the unique mechanism of p53 protein translation regulation pointing to bulge motif and nucleolin as the critical factors during intramolecular RNA-RNA recognition in p53 mRNA.


Assuntos
Fosfoproteínas , Proteína Supressora de Tumor p53 , Proteína Supressora de Tumor p53/genética , RNA Mensageiro/metabolismo , Regiões 3' não Traduzidas , Regiões 5' não Traduzidas/genética , Nucleolina
12.
RNA ; 29(3): 282-299, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36517212

RESUMO

The eukaryotic initiation factor 4G2 (eIF4G2, DAP5, Nat1, p97) was discovered in 1997. Over the past two decades, dozens of papers have presented contradictory data on eIF4G2 function. Since its identification, eIF4G2 has been assumed to participate in noncanonical translation initiation mechanisms, but recent results indicate that it can be involved in scanning as well. In particular, eIF4G2 provides leaky scanning through some upstream open reading frames (uORFs), which are typical for long 5' UTRs of mRNAs from higher eukaryotes. It is likely the protein can also help the ribosome overcome other impediments during scanning of the 5' UTRs of animal mRNAs. This may explain the need for eIF4G2 in higher eukaryotes, as many mRNAs that encode regulatory proteins have rather long and highly structured 5' UTRs. Additionally, they often bind to various proteins, which also hamper the movement of scanning ribosomes. This review discusses the suggested mechanisms of eIF4G2 action, denotes obscure or inconsistent results, and proposes ways to uncover other fundamental mechanisms in which this important protein factor may be involved in higher eukaryotes.


Assuntos
Fator de Iniciação Eucariótico 4G , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , Animais , Regiões 5' não Traduzidas/genética , Eucariotos/genética , Fator de Iniciação Eucariótico 4G/genética , Fator de Iniciação Eucariótico 4G/metabolismo , Proteínas/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
13.
J Virol ; 98(2): e0150423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289119

RESUMO

Coxsackievirus B3 (CVB3) is known to cause acute myocarditis and pancreatitis in humans. We investigated the microRNAs (miRNAs) that can potentially govern the viral life cycle by binding to the untranslated regions (UTRs) of CVB3 RNA. MicroRNA-22-3p was short-listed, as its potential binding site overlapped with the region crucial for recruiting internal ribosome entry site trans-acting factors (ITAFs) and ribosomes. We demonstrate that miR-22-3p binds CVB3 5' UTR, hinders recruitment of key ITAFs on viral mRNA, disrupts the spatial structure required for ribosome recruitment, and ultimately blocks translation. Likewise, cells lacking miR-22-3p exhibited heightened CVB3 infection compared to wild type, confirming its role in controlling infection. Interestingly, miR-22-3p level was found to be increased at 4 hours post-infection, potentially due to the accumulation of viral 2A protease in the early phase of infection. 2Apro enhances the miR-22-3p level to dislodge the ITAFs from the SD-like sequence, rendering the viral RNA accessible for binding of replication factors to switch to replication. Furthermore, one of the cellular targets of miR-22-3p, protocadherin-1 (PCDH1), was significantly downregulated during CVB3 infection. Partial silencing of PCDH1 reduced viral replication, demonstrating its proviral role. Interestingly, upon CVB3 infection in mice, miR-22-3p level was found to be downregulated only in the small intestine, the primary target organ, indicating its possible role in influencing tissue tropism. It appears miR-22-3p plays a dual role during infection by binding viral RNA to aid its life cycle as a viral strategy and by targeting a proviral protein to restrict viral replication as a host response.IMPORTANCECVB3 infection is associated with the development of end-stage heart diseases. Lack of effective anti-viral treatments and vaccines for CVB3 necessitates comprehensive understanding of the molecular players during CVB3 infection. miRNAs have emerged as promising targets for anti-viral strategies. Here, we demonstrate that miR-22-3p binds to 5' UTR and inhibits viral RNA translation at the later stage of infection to promote viral RNA replication. Conversely, as host response, it targets PCDH1, a proviral factor, to discourage viral propagation. miR-22-3p also influences CVB3 tissue tropism. Deciphering the multifaced role of miR-22-3p during CVB3 infection unravels the necessary molecular insights, which can be exploited for novel intervening strategies to curb infection and restrict viral pathogenesis.


Assuntos
Regiões 5' não Traduzidas , Infecções por Coxsackievirus , Enterovirus Humano B , Interações entre Hospedeiro e Microrganismos , MicroRNAs , Biossíntese de Proteínas , RNA Viral , Animais , Humanos , Camundongos , Regiões 5' não Traduzidas/genética , Antivirais/metabolismo , Infecções por Coxsackievirus/genética , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/genética , Enterovirus Humano B/patogenicidade , Enterovirus Humano B/fisiologia , Células HeLa , Intestino Delgado/metabolismo , Intestino Delgado/virologia , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Tropismo Viral/genética , Replicação Viral/genética , Cisteína Endopeptidases/metabolismo , Protocaderinas/deficiência , Protocaderinas/genética , Miocardite , Interações entre Hospedeiro e Microrganismos/genética
14.
Plant Physiol ; 195(3): 2073-2093, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38563472

RESUMO

The Arabidopsis (Arabidopsis thaliana) constitutive triple response1-10 (ctr1-10) mutant produces a reduced level of CTR1 protein and exhibits a weak ctr1 mutant phenotype. Sequence analysis revealed highly active translation of the upstream open reading frame (uORF) at the extended 5'-UTR of the ctr1-10 mRNA, resulting from T-DNA insertion. Enhancer screening for ctr1-10 isolated the fragile histidine triad-1 (fhit-1) mutation. The fhit-1 ctr1-10 mutant phenotypically resembled strong ctr1 mutants and barely produced CTR1, and the fhit-1 mutation reduced the translation efficiency of ctr1-10 but not that of CTR1 mRNA. The human (Homo sapiens) Fhit that involves tumorigenesis and genome instability has the in vitro dinucleotide 5',5'″-P1, P3-triphosphate hydrolase activity, and expression of the human HsFHIT or the hydrolase-defective HsFHITH96N transgene reversed the fhit-1 ctr1-10 mutant phenotype and restored CTR1 levels. Genetic editing that in situ disrupts individual upstream ATG codons proximal to the ctr1-10 mORF elevated CTR1 levels in ctr1-10 plants independent of FHIT. EUKARYOTIC INITIATION FACTOR3G (eIF3G), which is involved in translation and reinitiation, interacted with FHIT, and both were associated with the polysome. We propose that FHIT resumes early terminated ctr1-10 mORF translation in the face of active and complex uORF translation. Our study unveils a niche that may lead to investigations on the molecular mechanism of Fhit-like proteins in translation reinitiation. The biological significance of FHIT-regulated translation is discussed.


Assuntos
Hidrolases Anidrido Ácido , Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , Biossíntese de Proteínas , RNA Mensageiro , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases Anidrido Ácido/genética , Hidrolases Anidrido Ácido/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mutação/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Regiões 5' não Traduzidas/genética , Humanos , Fenótipo , Fases de Leitura Aberta/genética
15.
Nature ; 566(7742): 100-104, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30700908

RESUMO

Whether post-transcriptional regulation of gene expression controls differentiation of stem cells for tissue renewal remains unknown. Quiescent stem cells exhibit a low level of protein synthesis1, which is key to maintaining the pool of fully functional stem cells, not only in the brain but also in the bone marrow and hair follicles2-6. Neurons also maintain a subset of messenger RNAs in a translationally silent state, which react 'on demand' to intracellular and extracellular signals. This uncoupling of general availability of mRNA from translation into protein facilitates immediate responses to environmental changes and avoids excess production of proteins, which is the most energy-consuming process within the cell. However, when post-transcriptional regulation is acquired and how protein synthesis changes along the different steps of maturation are not known. Here we show that protein synthesis undergoes highly dynamic changes when stem cells differentiate to neurons in vivo. Examination of individual transcripts using RiboTag mouse models reveals that whereas stem cells translate abundant transcripts with little discrimination, translation becomes increasingly regulated with the onset of differentiation. The generation of neurogenic progeny involves translational repression of a subset of mRNAs, including mRNAs that encode the stem cell identity factors SOX2 and PAX6, and components of the translation machinery, which are enriched in a pyrimidine-rich motif. The decrease of mTORC1 activity as stem cells exit the cell cycle selectively blocks translation of these transcripts. Our results reveal a control mechanism by which the cell cycle is coupled to post-transcriptional repression of key stem cell identity factors, thereby promoting exit from stemness.


Assuntos
Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Diferenciação Celular/genética , Regulação da Expressão Gênica , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Biossíntese de Proteínas , Transcrição Gênica , Regiões 5' não Traduzidas/genética , Animais , Ciclo Celular/genética , Feminino , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Neurogênese/genética , Fatores de Tempo
16.
Nature ; 565(7741): 612-617, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30651641

RESUMO

Introns are ubiquitous features of all eukaryotic cells. Introns need to be removed from nascent messenger RNA through the process of splicing to produce functional proteins. Here we show that the physical presence of introns in the genome promotes cell survival under starvation conditions. A systematic deletion set of all known introns in budding yeast genes indicates that, in most cases, cells with an intron deletion are impaired when nutrients are depleted. This effect of introns on growth is not linked to the expression of the host gene, and was reproduced even when translation of the host mRNA was blocked. Transcriptomic and genetic analyses indicate that introns promote resistance to starvation by enhancing the repression of ribosomal protein genes that are downstream of the nutrient-sensing TORC1 and PKA pathways. Our results reveal functions of introns that may help to explain their evolutionary preservation in genes, and uncover regulatory mechanisms of cell adaptations to starvation.


Assuntos
Íntrons/genética , Viabilidade Microbiana/genética , Nutrientes/deficiência , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Regiões 5' não Traduzidas/genética , Respiração Celular , Meios de Cultura/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Privação de Alimentos , Regulação Fúngica da Expressão Gênica , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Viabilidade Microbiana/efeitos dos fármacos , Biossíntese de Proteínas , Proteínas Ribossômicas/genética , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Deleção de Sequência/genética , Transdução de Sinais , Transcriptoma/genética
17.
Mol Cell ; 68(3): 504-514.e7, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29107534

RESUMO

In eukaryotic cells, protein synthesis typically begins with the binding of eIF4F to the 7-methylguanylate (m7G) cap found on the 5' end of the majority of mRNAs. Surprisingly, overall translational output remains robust under eIF4F inhibition. The broad spectrum of eIF4F-resistant translatomes is incompatible with cap-independent translation mediated by internal ribosome entry sites (IRESs). Here, we report that N6-methyladenosine (m6A) facilitates mRNA translation that is resistant to eIF4F inactivation. Depletion of the methyltransferase METTL3 selectively inhibits translation of mRNAs bearing 5' UTR methylation, but not mRNAs with 5' terminal oligopyrimidine (TOP) elements. We identify ABCF1 as a critical mediator of m6A-promoted translation under both stress and physiological conditions. Supporting the role of ABCF1 in m6A-facilitated mRNA translation, ABCF1-sensitive transcripts largely overlap with METTL3-dependent mRNA targets. By illustrating the scope and mechanism of eIF4F-independent mRNA translation, these findings reshape our current perceptions of cellular translational pathways.


Assuntos
Adenosina/análogos & derivados , Fator de Iniciação 4F em Eucariotos/metabolismo , Iniciação Traducional da Cadeia Peptídica/efeitos dos fármacos , Capuzes de RNA/genética , RNA Mensageiro/metabolismo , Regiões 5' não Traduzidas/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Adenosina/farmacologia , Fator de Iniciação 4F em Eucariotos/genética , Células HeLa , Humanos , Sítios Internos de Entrada Ribossomal , Metiltransferases/genética , Metiltransferases/metabolismo , Capuzes de RNA/efeitos dos fármacos , RNA Mensageiro/genética
18.
PLoS Genet ; 18(10): e1010460, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36315596

RESUMO

Upstream open reading frames (uORFs) are present in over half of all human mRNAs. uORFs can potently regulate the translation of downstream open reading frames through several mechanisms: siphoning away scanning ribosomes, regulating re-initiation, and allowing interactions between scanning and elongating ribosomes. However, the consequences of these different mechanisms for the regulation of protein expression remain incompletely understood. Here, we performed systematic measurements on the uORF-containing 5' UTR of the cytomegaloviral UL4 mRNA to test alternative models of uORF-mediated regulation in human cells. We find that a terminal diproline-dependent elongating ribosome stall in the UL4 uORF prevents decreases in main ORF protein expression when ribosome loading onto the mRNA is reduced. This uORF-mediated buffering is insensitive to the location of the ribosome stall along the uORF. Computational kinetic modeling based on our measurements suggests that scanning ribosomes dissociate rather than queue when they collide with stalled elongating ribosomes within the UL4 uORF. We identify several human uORFs that repress main ORF protein expression via a similar terminal diproline motif. We propose that ribosome stalls in uORFs provide a general mechanism for buffering against reductions in main ORF translation during stress and developmental transitions.


Assuntos
Processamento de Proteína Pós-Traducional , Ribossomos , Humanos , Fases de Leitura Aberta/genética , Ribossomos/genética , Ribossomos/metabolismo , Regiões 5' não Traduzidas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biossíntese de Proteínas/genética
19.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35149555

RESUMO

SARS-CoV-2 is a highly pathogenic virus that evades antiviral immunity by interfering with host protein synthesis, mRNA stability, and protein trafficking. The SARS-CoV-2 nonstructural protein 1 (Nsp1) uses its C-terminal domain to block the messenger RNA (mRNA) entry channel of the 40S ribosome to inhibit host protein synthesis. However, how SARS-CoV-2 circumvents Nsp1-mediated suppression for viral protein synthesis and if the mechanism can be targeted therapeutically remain unclear. Here, we show that N- and C-terminal domains of Nsp1 coordinate to drive a tuned ratio of viral to host translation, likely to maintain a certain level of host fitness while maximizing replication. We reveal that the stem-loop 1 (SL1) region of the SARS-CoV-2 5' untranslated region (5' UTR) is necessary and sufficient to evade Nsp1-mediated translational suppression. Targeting SL1 with locked nucleic acid antisense oligonucleotides inhibits viral translation and makes SARS-CoV-2 5' UTR vulnerable to Nsp1 suppression, hindering viral replication in vitro at a nanomolar concentration, as well as providing protection against SARS-CoV-2-induced lethality in transgenic mice expressing human ACE2. Thus, SL1 allows Nsp1 to switch infected cells from host to SARS-CoV-2 translation, presenting a therapeutic target against COVID-19 that is conserved among immune-evasive variants. This unique strategy of unleashing a virus' own virulence mechanism against itself could force a critical trade-off between drug resistance and pathogenicity.


Assuntos
Regiões 5' não Traduzidas/genética , Evasão da Resposta Imune/genética , Biossíntese de Proteínas , SARS-CoV-2/genética , Proteínas não Estruturais Virais/genética , Animais , Sequência de Bases , Chlorocebus aethiops , Células HEK293 , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Evasão da Resposta Imune/efeitos dos fármacos , Camundongos Transgênicos , Modelos Biológicos , Oligonucleotídeos Antissenso/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Células Vero , Replicação Viral/efeitos dos fármacos
20.
J Biol Chem ; 299(5): 104658, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36997088

RESUMO

Eukaryotic initiation factor 3d (eIF3d), a known RNA-binding subunit of the eIF3 complex, is a 66 to 68-kDa protein with an RNA-binding motif and a cap-binding domain. Compared with other eIF3 subunits, eIF3d is relatively understudied. However, recent progress in studying eIF3d has revealed a number of intriguing findings on its role in maintaining eIF3 complex integrity, global protein synthesis, and in biological and pathological processes. It has also been reported that eIF3d has noncanonical functions in regulating translation of a subset of mRNAs by binding to 5'-UTRs or interacting with other proteins independent of the eIF3 complex and additional functions in regulating protein stability. The noncanonical regulation of mRNA translation or protein stability may contribute to the role of eIF3d in biological processes such as metabolic stress adaptation and in disease onset and progression including severe acute respiratory syndrome coronavirus 2 infection, tumorigenesis, and acquired immune deficiency syndrome. In this review, we critically evaluate the recent studies on these aspects of eIF3d and assess prospects in understanding the function of eIF3d in regulating protein synthesis and in biological and pathological processes.


Assuntos
Progressão da Doença , Fator de Iniciação 3 em Eucariotos , Biossíntese de Proteínas , Capuzes de RNA , Humanos , COVID-19 , Fator de Iniciação 3 em Eucariotos/metabolismo , Capuzes de RNA/metabolismo , Síndrome da Imunodeficiência Adquirida , Carcinogênese , Regiões 5' não Traduzidas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA