Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.957
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 177(5): 1262-1279.e25, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31056284

RESUMO

Ferroptosis, a non-apoptotic form of programmed cell death, is triggered by oxidative stress in cancer, heat stress in plants, and hemorrhagic stroke. A homeostatic transcriptional response to ferroptotic stimuli is unknown. We show that neurons respond to ferroptotic stimuli by induction of selenoproteins, including antioxidant glutathione peroxidase 4 (GPX4). Pharmacological selenium (Se) augments GPX4 and other genes in this transcriptional program, the selenome, via coordinated activation of the transcription factors TFAP2c and Sp1 to protect neurons. Remarkably, a single dose of Se delivered into the brain drives antioxidant GPX4 expression, protects neurons, and improves behavior in a hemorrhagic stroke model. Altogether, we show that pharmacological Se supplementation effectively inhibits GPX4-dependent ferroptotic death as well as cell death induced by excitotoxicity or ER stress, which are GPX4 independent. Systemic administration of a brain-penetrant selenopeptide activates homeostatic transcription to inhibit cell death and improves function when delivered after hemorrhagic or ischemic stroke.


Assuntos
Isquemia Encefálica , Peptídeos Penetradores de Células/farmacologia , Ferroptose/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hemorragias Intracranianas , Neurônios , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/biossíntese , Selênio/farmacologia , Acidente Vascular Cerebral , Transcrição Gênica/efeitos dos fármacos , Animais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Hemorragias Intracranianas/tratamento farmacológico , Hemorragias Intracranianas/metabolismo , Hemorragias Intracranianas/patologia , Masculino , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Fator de Transcrição Sp1/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Fator de Transcrição AP-2/metabolismo
2.
Mol Cell ; 68(4): 797-807.e7, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-29149600

RESUMO

DNA lesions caused by UV damage are thought to be repaired solely by the nucleotide excision repair (NER) pathway in human cells. Patients carrying mutations within genes functioning in this pathway display a range of pathologies, including an increased susceptibility to cancer, premature aging, and neurological defects. There are currently no curative therapies available. Here we performed a high-throughput chemical screen for agents that could alleviate the cellular sensitivity of NER-deficient cells to UV-induced DNA damage. This led to the identification of the clinically approved anti-diabetic drug acetohexamide, which promoted clearance of UV-induced DNA damage without the accumulation of chromosomal aberrations, hence promoting cellular survival. Acetohexamide exerted this protective function by antagonizing expression of the DNA glycosylase, MUTYH. Together, our data reveal the existence of an NER-independent mechanism to remove UV-induced DNA damage and prevent cell death.


Assuntos
Dano ao DNA , DNA Glicosilases/metabolismo , Reparo do DNA/efeitos da radiação , Raios Ultravioleta , Acetoexamida/farmacologia , Linhagem Celular Tumoral , DNA Glicosilases/biossíntese , DNA Glicosilases/genética , Reparo do DNA/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Humanos , Masculino
3.
Drug Metab Dispos ; 52(11): 1139-1151, 2024 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-38777597

RESUMO

Hydrolases represent an essential class of enzymes indispensable for the metabolism of various clinically essential medications. Individuals exhibit marked differences in the expression and activation of hydrolases, resulting in significant variability in the pharmacokinetics (PK) and pharmacodynamics (PD) of drugs metabolized by these enzymes. The regulation of hydrolase expression and activity involves both genetic polymorphisms and nongenetic factors. This review examines the current understanding of genetic and nongenetic regulators of six clinically significant hydrolases, including carboxylesterase (CES)-1 CES2, arylacetamide deacetylase (AADAC), paraoxonase (PON)-1 PON3, and cathepsin A (CTSA). We explore genetic variants linked to the expression and activity of the hydrolases and their effects on the PK and PD of their substrate drugs. Regarding nongenetic regulators, we focus on the inhibitors and inducers of these enzymes. Additionally, we examine the developmental expression patterns and gender differences in the hydrolases when pertinent information was available. Many genetic and nongenetic regulators were found to be associated with the expression and activity of the hydrolases and PK and PD. However, hydrolases remain generally understudied compared with other drug-metabolizing enzymes, such as cytochrome P450s. The clinical significance of genetic and nongenetic regulators has not yet been firmly established for the majority of hydrolases. Comprehending the mechanisms that underpin the regulation of these enzymes holds the potential to refine therapeutic regimens, thereby enhancing the efficacy and safety of drugs metabolized by the hydrolases. SIGNIFICANCE STATEMENT: Hydrolases play a crucial role in the metabolism of numerous clinically important medications. Genetic polymorphisms and nongenetic regulators can affect hydrolases' expression and activity, consequently influencing the exposure and clinical outcomes of hydrolase substrate drugs. A comprehensive understanding of hydrolase regulation can refine therapeutic regimens, ultimately enhancing the efficacy and safety of drugs metabolized by the enzymes.


Assuntos
Hidrolases , Humanos , Hidrolases/genética , Hidrolases/metabolismo , Arildialquilfosfatase/genética , Arildialquilfosfatase/metabolismo , Preparações Farmacêuticas/metabolismo , Polimorfismo Genético/genética , Farmacocinética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Animais
4.
PLoS Biol ; 19(4): e3001190, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33844686

RESUMO

Chemical insecticides have been heavily employed as the most effective measure for control of agricultural and medical pests, but evolution of resistance by pests threatens the sustainability of this approach. Resistance-conferring mutations sometimes impose fitness costs, which may drive subsequent evolution of compensatory modifier mutations alleviating the costs of resistance. However, how modifier mutations evolve and function to overcome the fitness cost of resistance still remains unknown. Here we show that overexpression of P450s not only confers imidacloprid resistance in the brown planthopper, Nilaparvata lugens, the most voracious pest of rice, but also leads to elevated production of reactive oxygen species (ROS) through metabolism of imidacloprid and host plant compounds. The inevitable production of ROS incurs a fitness cost to the pest, which drives the increase or fixation of the compensatory modifier allele T65549 within the promoter region of N. lugens peroxiredoxin (NlPrx) in the pest populations. T65549 allele in turn upregulates the expression of NlPrx and thus increases resistant individuals' ability to clear the cost-incurring ROS of any source. The frequent involvement of P450s in insecticide resistance and their capacity to produce ROS while metabolizing their substrates suggest that peroxiredoxin or other ROS-scavenging genes may be among the common modifier genes for alleviating the fitness cost of insecticide resistance.


Assuntos
Hemípteros/efeitos dos fármacos , Resistência a Inseticidas/efeitos dos fármacos , Neonicotinoides/farmacologia , Nitrocompostos/farmacologia , Oryza/parasitologia , Peroxirredoxinas/fisiologia , Adaptação Biológica/efeitos dos fármacos , Adaptação Biológica/genética , Alelos , Animais , Mapeamento Cromossômico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Genes de Insetos/efeitos dos fármacos , Genes Modificadores/efeitos dos fármacos , Genes Modificadores/fisiologia , Estudos de Associação Genética , Aptidão Genética/efeitos dos fármacos , Hemípteros/fisiologia , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Oryza/efeitos dos fármacos , Peroxirredoxinas/genética , Espécies Reativas de Oxigênio/metabolismo , Testes de Toxicidade
5.
Prostaglandins Other Lipid Mediat ; 174: 106849, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38830400

RESUMO

BACKGROUND AND AIMS: Paraoxonase (PON) proteins have various hydrolytic activities. The PON family is able to detoxify oxidized low-density lipoprotein. Additionally, differentiation of monocytes into macrophages, as the first stage in the development of atherosclerosis, is suppressed by PON 1. The effects of polyphenols including curcumin on PON1 have been investigated in studies. In this study, our main goal is to investigate curcumin's effect on PON1 protein levels, gene expression, and enzyme activity in animal interventional studies. METHODS: The literature was searched through the online databases including PubMed, SCOPUS, Embase, and Google Scholar until May 2022. RESULTS: Curcumin administration can increase the PON1 enzyme activity. Also, it probably has a positive role in increasing the PON1 gene expression. However, concerning the PON1 protein values, results are contradictory. CONCLUSIONS: The findings of this study suggested positive role of curcumin in increasing PON1 enzyme activities, gene expression, and protein levels. DATA AVAILABILITY: Data are available from the corresponding author (Kheirouris@tbzmed.ac.ir).


Assuntos
Arildialquilfosfatase , Curcumina , Animais , Arildialquilfosfatase/genética , Arildialquilfosfatase/metabolismo , Curcumina/administração & dosagem , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos
6.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34330837

RESUMO

Ca2+/calmodulin-dependent protein kinase II alpha subunit (CaMKIIα) is a key neuronal signaling protein and an emerging drug target. The central hub domain regulates the activity of CaMKIIα by organizing the holoenzyme complex into functional oligomers, yet pharmacological modulation of the hub domain has never been demonstrated. Here, using a combination of photoaffinity labeling and chemical proteomics, we show that compounds related to the natural substance γ-hydroxybutyrate (GHB) bind selectively to CaMKIIα. By means of a 2.2-Å x-ray crystal structure of ligand-bound CaMKIIα hub, we reveal the molecular details of the binding site deep within the hub. Furthermore, we show that binding of GHB and related analogs to this site promotes concentration-dependent increases in hub thermal stability believed to alter holoenzyme functionality. Selectively under states of pathological CaMKIIα activation, hub ligands provide a significant and sustained neuroprotection, which is both time and dose dependent. This is demonstrated in neurons exposed to excitotoxicity and in a mouse model of cerebral ischemia with the selective GHB analog, HOCPCA (3-hydroxycyclopent-1-enecarboxylic acid). Together, our results indicate a hitherto unknown mechanism for neuroprotection by a highly specific and unforeseen interaction between the CaMKIIα hub domain and small molecule brain-penetrant GHB analogs. This establishes GHB analogs as powerful tools for investigating CaMKII neuropharmacology in general and as potential therapeutic compounds for cerebral ischemia in particular.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Oxibato de Sódio/metabolismo , Sítios de Ligação , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Ácidos Carboxílicos/farmacologia , Cristalografia por Raios X , Ciclopentanos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Neuroproteção , Ligação Proteica , Domínios Proteicos , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34404725

RESUMO

Ethylene influences plant growth, development, and stress responses via crosstalk with other phytohormones; however, the underlying molecular mechanisms are still unclear. Here, we describe a mechanistic link between the brassinosteroid (BR) and ethylene biosynthesis, which regulates cellular protein homeostasis and stress responses. We demonstrate that as a scaffold, 1-aminocyclopropane-1-carboxylic acid (ACC) synthases (ACS), a rate-limiting enzyme in ethylene biosynthesis, promote the interaction between Seven-in-Absentia of Arabidopsis (SINAT), a RING-domain containing E3 ligase involved in stress response, and ETHYLENE OVERPRODUCER 1 (ETO1) and ETO1-like (EOL) proteins, the E3 ligase adaptors that target a subset of ACS isoforms. Each E3 ligase promotes the degradation of the other, and this reciprocally antagonistic interaction affects the protein stability of ACS. Furthermore, 14-3-3, a phosphoprotein-binding protein, interacts with SINAT in a BR-dependent manner, thus activating reciprocal degradation. Disrupted reciprocal degradation between the E3 ligases compromises the survival of plants in carbon-deficient conditions. Our study reveals a mechanism by which plants respond to stress by modulating the homeostasis of ACS and its cognate E3 ligases.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Proteínas de Transporte/metabolismo , Liases/metabolismo , Estresse Fisiológico/fisiologia , Proteínas 14-3-3/genética , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/fisiologia , Homeostase , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Liases/genética , Isoformas de Proteínas , Estabilidade Proteica
8.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34385311

RESUMO

Death receptor-mediated apoptosis requires the mitochondrial apoptosis pathway in many mammalian cells. In response to death receptor signaling, the truncated BH3-only protein BID can activate the proapoptotic BCL-2 proteins BAX and BAK and trigger the permeabilization of the mitochondria. BAX and BAK are inhibited by prosurvival BCL-2 proteins through retrotranslocation from the mitochondria into the cytosol, but a specific resistance mechanism to truncated BID-dependent apoptosis is unknown. Here, we report that hexokinase 1 and hexokinase 2 inhibit the apoptosis activator truncated BID as well as the effectors BAX and BAK by retrotranslocation from the mitochondria into the cytosol. BCL-2 protein shuttling and protection from TRAIL- and FasL-induced cell death requires mitochondrial hexokinase localization and interactions with the BH3 motifs of BCL-2 proteins but not glucose phosphorylation. Together, our work establishes hexokinase-dependent retrotranslocation of truncated BID as a selective protective mechanism against death receptor-induced apoptosis on the mitochondria.


Assuntos
Apoptose/fisiologia , Hexoquinase/metabolismo , Mitocôndrias/metabolismo , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Antibacterianos/farmacologia , Antibióticos Antineoplásicos/farmacologia , Linhagem Celular , Ciclosporina/farmacologia , Dactinomicina/farmacologia , Doxorrubicina/farmacologia , Inibidores Enzimáticos/farmacologia , Proteína Ligante Fas/farmacologia , Deleção de Genes , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Hexoquinase/genética , Humanos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Proteína Killer-Antagonista Homóloga a bcl-2/genética , Proteína X Associada a bcl-2/genética
9.
Proc Natl Acad Sci U S A ; 118(31)2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34312224

RESUMO

Regulatory T cells (Tregs) play fundamental roles in maintaining peripheral tolerance to prevent autoimmunity and limit legitimate immune responses, a feature hijacked in tumor microenvironments in which the recruitment of Tregs often extinguishes immune surveillance through suppression of T-effector cell signaling and tumor cell killing. The pharmacological tuning of Treg activity without impacting on T conventional (Tconv) cell activity would likely be beneficial in the treatment of various human pathologies. PIP4K2A, 2B, and 2C constitute a family of lipid kinases that phosphorylate PtdIns5P to PtdIns(4,5)P2 They are involved in stress signaling, act as synthetic lethal targets in p53-null tumors, and in mice, the loss of PIP4K2C leads to late onset hyperinflammation. Accordingly, a human single nucleotide polymorphism (SNP) near the PIP4K2C gene is linked with susceptibility to autoimmune diseases. How PIP4Ks impact on human T cell signaling is not known. Using ex vivo human primary T cells, we found that PIP4K activity is required for Treg cell signaling and immunosuppressive activity. Genetic and pharmacological inhibition of PIP4K in Tregs reduces signaling through the PI3K, mTORC1/S6, and MAPK pathways, impairs cell proliferation, and increases activation-induced cell death while sparing Tconv. PIP4K and PI3K signaling regulate the expression of the Treg master transcriptional activator FOXP3 and the epigenetic signaling protein Ubiquitin-like containing PHD and RING finger domains 1 (UHRF1). Our studies suggest that the pharmacological inhibition of PIP4K can reprogram human Treg identity while leaving Tconv cell signaling and T-helper differentiation to largely intact potentially enhancing overall immunological activity.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Linfócitos T Reguladores/fisiologia , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proliferação de Células , Sobrevivência Celular , Clonagem Molecular , Fatores de Transcrição Forkhead/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/imunologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Terapia de Imunossupressão , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Quinazolinas/farmacologia , Transdução de Sinais , Tiofenos/farmacologia , Ubiquitina-Proteína Ligases/genética
10.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602808

RESUMO

Cullin-RING (really intersting new gene) E3 ubiquitin ligases (CRLs) are the largest E3 family and direct numerous protein substrates for proteasomal degradation, thereby impacting a myriad of physiological and pathological processes including cancer. To date, there are no reported small-molecule inhibitors of the catalytic activity of CRLs. Here, we describe high-throughput screening and medicinal chemistry optimization efforts that led to the identification of two compounds, 33-11 and KH-4-43, which inhibit E3 CRL4 and exhibit antitumor potential. These compounds bind to CRL4's core catalytic complex, inhibit CRL4-mediated ubiquitination, and cause stabilization of CRL4's substrate CDT1 in cells. Treatment with 33-11 or KH-4-43 in a panel of 36 tumor cell lines revealed cytotoxicity. The antitumor activity was validated by the ability of the compounds to suppress the growth of human tumor xenografts in mice. Mechanistically, the compounds' cytotoxicity was linked to aberrant accumulation of CDT1 that is known to trigger apoptosis. Moreover, a subset of tumor cells was found to express cullin4 proteins at levels as much as 70-fold lower than those in other tumor lines. The low-cullin4-expressing tumor cells appeared to exhibit increased sensitivity to 33-11/KH-4-43, raising a provocative hypothesis for the role of low E3 abundance as a cancer vulnerability.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Animais , Antineoplásicos/química , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Inibidores Enzimáticos/química , Feminino , Humanos , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Células Tumorais Cultivadas , Ubiquitina/metabolismo , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Proc Natl Acad Sci U S A ; 117(17): 9497-9507, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32300005

RESUMO

Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) is a critical mediator of vascular function. eNOS is tightly regulated at various levels, including transcription, co- and posttranslational modifications, and by various protein-protein interactions. Using stable isotope labeling with amino acids in cell culture (SILAC) and mass spectrometry (MS), we identified several eNOS interactors, including the protein plasminogen activator inhibitor-1 (PAI-1). In cultured human umbilical vein endothelial cells (HUVECs), PAI-1 and eNOS colocalize and proximity ligation assays demonstrate a protein-protein interaction between PAI-1 and eNOS. Knockdown of PAI-1 or eNOS eliminates the proximity ligation assay (PLA) signal in endothelial cells. Overexpression of eNOS and HA-tagged PAI-1 in COS7 cells confirmed the colocalization observations in HUVECs. Furthermore, the source of intracellular PAI-1 interacting with eNOS was shown to be endocytosis derived. The interaction between PAI-1 and eNOS is a direct interaction as supported in experiments with purified proteins. Moreover, PAI-1 directly inhibits eNOS activity, reducing NO synthesis, and the knockdown or antagonism of PAI-1 increases NO bioavailability. Taken together, these findings place PAI-1 as a negative regulator of eNOS and disruptions in eNOS-PAI-1 binding promote increases in NO production and enhance vasodilation in vivo.


Assuntos
Regulação Enzimológica da Expressão Gênica/fisiologia , Óxido Nítrico Sintase Tipo III/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Disponibilidade Biológica , Linhagem Celular , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Óxido Nítrico , Óxido Nítrico Sintase Tipo III/genética , Piperazinas/farmacologia , Inibidor 1 de Ativador de Plasminogênio/genética , Ligação Proteica , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia , para-Aminobenzoatos/farmacologia
12.
Proc Natl Acad Sci U S A ; 117(8): 4053-4060, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32041867

RESUMO

Small molecules can affect many cellular processes. The disambiguation of these effects to identify the causative mechanisms of cell death is extremely challenging. This challenge impacts both clinical development and the interpretation of chemical genetic experiments. CX-5461 was developed as a selective RNA polymerase I inhibitor, but recent evidence suggests that it may cause DNA damage and induce G-quadraplex formation. Here we use three complimentary data mining modalities alongside biochemical and cell biological assays to show that CX-5461 exerts its primary cytotoxic activity through topoisomerase II poisoning. We then show that acquired resistance to CX-5461 in previously sensitive lymphoma cells confers collateral resistance to the topoisomerase II poison doxorubicin. Doxorubicin is already a frontline chemotherapy in a variety of hematopoietic malignancies, and CX-5461 is being tested in relapse/refractory hematopoietic tumors. Our data suggest that the mechanism of cell death induced by CX-5461 is critical for rational clinical development in these patients. Moreover, CX-5461 usage as a specific chemical genetic probe of RNA polymerase I function is challenging to interpret. Our multimodal data-driven approach is a useful way to detangle the intended and unintended mechanisms of drug action across diverse essential cellular processes.


Assuntos
Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Naftiridinas/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Linhagem Celular Tumoral , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Relação Dose-Resposta a Droga , Doxorrubicina/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Linfoma , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Interferência de RNA , Sensibilidade e Especificidade
13.
J Bacteriol ; 204(1): e0039621, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34694901

RESUMO

Pseudomonas aeruginosa forms surface-attached communities that persist in the face of antimicrobial agents and environmental perturbation. Published work has found that extracellular polysaccharide (EPS) production, regulation of motility, and induction of stress response pathways contribute to biofilm tolerance during such insults. However, little is known regarding the mechanism(s) whereby biofilm maintenance is regulated when exposed to such environmental challenges. Here, we provide evidence that the diguanylate cyclase YfiN is important for the regulation of biofilm maintenance when exposed to peroxide. We find that compared to the wild type (WT), static biofilms of the ΔyfiN mutant exhibit a maintenance defect, which can be further exacerbated by exposure to peroxide (H2O2); this defect can be rescued through genetic complementation. Additionally, we found that the ΔyfiN mutant biofilms produce less c-di-GMP than WT and that H2O2 treatment enhanced motility of surface-associated bacteria and increased cell death for the ΔyfiN mutant grown as a biofilm compared to WT biofilms. These data provide evidence that YfiN is required for biofilm maintenance by P. aeruginosa, via c-di-GMP signaling, to limit motility and protect viability in response to peroxide stress. These findings add to the growing recognition that biofilm maintenance by P. aeruginosa is an actively regulated process that is controlled, at least in part, by the wide array of c-di-GMP metabolizing enzymes found in this microbe. IMPORTANCE We build on previous findings that suggest that Pseudomonas aeruginosa utilizes c-di-GMP metabolizing enzymes to actively maintain a mature biofilm. Here, we explore how the diguanylate cyclase YfiN contributes to the regulation of biofilm maintenance during peroxide exposure. We find that mature P. aeruginosa biofilms require YfiN to synthesize c-di-GMP, regulate motility, and ensure viability during peroxide stress. These findings provide further evidence that the modulation of c-di-GMP in response to environmental signals is an important mechanism by which biofilms are maintained.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Fósforo-Oxigênio Liases/metabolismo , Pseudomonas aeruginosa/enzimologia , Proteínas de Bactérias/genética , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Viabilidade Microbiana/efeitos dos fármacos , Mutação , Fósforo-Oxigênio Liases/genética , Pseudomonas aeruginosa/efeitos dos fármacos
14.
J Biol Chem ; 296: 100310, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33482198

RESUMO

The endoplasmic reticulum (ER) contains various enzymes that metabolize fatty acids (FAs). Given that FAs are the components of membranes, FA metabolic enzymes might be associated with regulation of ER membrane functions. However, it remains unclear whether there is the interplay between FA metabolic enzymes and ER membrane proteins. Trans-2-enoyl-CoA reductase (TER) is an FA reductase present in the ER membrane and catalyzes the last step in the FA elongation cycle and sphingosine degradation pathway. Here we identify sarco(endo)plasmic reticulum Ca2+-ATPase 2b (SERCA2b), an ER Ca2+ pump responsible for Ca2+ accumulation in the ER, as a TER-binding protein by affinity purification from HEK293 cell lysates. We show that TER directly binds to SERCA2b by in vitro assays using recombinant proteins. Thapsigargin, a specific SERCA inhibitor, inhibits this binding. TER binds to SERCA2b through its conserved C-terminal region. TER overexpression suppresses SERCA2b ATPase activity in microsomal membranes of HEK293 cells. Depletion of TER increases Ca2+ storage in the ER and accelerates SERCA2b-dependent Ca2+ uptake to the ER after ligand-induced Ca2+ release. Moreover, depletion of TER reduces the Ca2+-dependent nuclear translocation of nuclear factor of activated T cells 4. These results demonstrate that TER is a negative regulator of SERCA2b, implying the direct linkage of FA metabolism and Ca2+ accumulation in the ER.


Assuntos
Retículo Endoplasmático/metabolismo , Ácidos Graxos/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Transporte Ativo do Núcleo Celular/genética , Cálcio/metabolismo , Sinalização do Cálcio/genética , Retículo Endoplasmático/genética , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Ligantes , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Ligação Proteica/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química
15.
J Biol Chem ; 296: 100637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33872597

RESUMO

TBC1D4 is a 160 kDa multidomain Rab GTPase-activating protein (RabGAP) and a downstream target of the insulin- and contraction-activated kinases AKT and AMPK. Phosphorylation of TBC1D4 has been linked to translocation of GLUT4 from storage vesicles (GSVs) to the cell surface. However, its impact on enzymatic activity is not well understood, as previous studies mostly investigated the truncated GAP domain lacking the known phosphorylation sites. In the present study, we expressed and purified recombinant full-length TBC1D4 using a baculovirus system. Size-exclusion chromatography and coimmunoprecipitation experiments revealed that full-length TBC1D4 forms oligomers of ∼600 kDa. Compared with the truncated GAP domain, full-length TBC1D4 displayed similar substrate specificity, but had a markedly higher specific GAP activity toward Rab10. Using high-resolution mass spectrometry, we mapped 19 Ser/Thr phosphorylation sites in TBC1D4. We determined Michaelis-Menten kinetics using in vitro phosphorylation assays with purified kinases and stable isotope-labeled γ-[18O4]-ATP. These data revealed that Ser324 (KM ∼6 µM) and Thr649 (KM ∼25 µM) were preferential sites for phosphorylation by AKT, whereas Ser348, Ser577, Ser595 (KM ∼10 µM), Ser711 (KM ∼79 µM), and Ser764 were found to be preferred targets for AMPK. Phosphorylation of TBC1D4 by AKT or AMPK did not alter the intrinsic RabGAP activity, but did disrupt interaction with insulin-regulated aminopeptidase (IRAP), a resident protein of GSVs implicated in GLUT4 trafficking. These findings provide evidence that insulin and contraction may regulate TBC1D4 function primarily by disrupting the recruitment of the RabGAP to GLUT4 vesicles.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminopeptidases/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Insulina/farmacologia , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Aminopeptidases/genética , Animais , Proteínas Ativadoras de GTPase/genética , Hipoglicemiantes/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética
16.
Plant J ; 106(6): 1647-1659, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33792991

RESUMO

Non-specific phospholipase C (NPC) is involved in plant growth, development and stress responses. To elucidate the mechanism by which NPCs mediate cellular functions, here we show that NPC4 is S-acylated at the C terminus and that acylation determines its plasma membrane (PM) association and function. The acylation of NPC4 was detected using NPC4 isolated from Arabidopsis and reconstituted in vitro. The C-terminal Cys-533 was identified as the S-acylation residue, and the mutation of Cys-533 to Ala-533 in NPC4 (NPC4C533A ) led to the loss of S-acylation and membrane association of NPC4. The knockout of NPC4 impeded the phosphate deficiency-induced decrease of the phosphosphingolipid glycosyl inositol phosphoryl ceramide (GIPC), but introducing NPC4C533A to npc4-1 failed to complement this defect, thereby supporting the hypothesis that the non-acylated NPC4C533A fails to hydrolyze GIPC during phosphate deprivation. Moreover, NPC4C533A failed to complement the primary root growth in npc4-1 under stress. In addition, NPC4 in Brassica napus was S-acylated and mutation of the S-acylating cysteine residue of BnaC01.NPC4 led to the loss of S-acylation and its membrane association. Together, our results reveal that S-acylation of NPC4 in the C terminus is conserved and required for its membrane association, phosphosphingolipid hydrolysis and function in plant stress responses.


Assuntos
Brassica napus/enzimologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fosfatos/farmacologia , Proteínas de Plantas/metabolismo , Fosfolipases Tipo C/metabolismo , Acilação , Membrana Celular/enzimologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Mutação , Fosfatos/administração & dosagem , Proteínas de Plantas/genética , Fosfolipases Tipo C/genética
17.
Plant J ; 106(6): 1541-1556, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33780094

RESUMO

The acidification of plant vacuoles is of great importance for various physiological processes, as a multitude of secondary active transporters utilize the proton gradient established across the vacuolar membrane. Vacuolar-type H+ -translocating ATPases and a pyrophosphatase are thought to enable vacuoles to accumulate protons against their electrochemical potential. However, recent studies pointed to the ATPase located at the trans-Golgi network/early endosome (TGN/EE) to contribute to vacuolar acidification in a manner not understood as of now. Here, we combined experimental data and computational modeling to test different hypotheses for vacuolar acidification mechanisms. For this, we analyzed different models with respect to their ability to describe existing experimental data. To better differentiate between alternative acidification mechanisms, new experimental data have been generated. By fitting the models to the experimental data, we were able to prioritize the hypothesis in which vesicular trafficking of Ca2+ /H+ -antiporters from the TGN/EE to the vacuolar membrane and the activity of ATP-dependent Ca2+ -pumps at the tonoplast might explain the residual acidification observed in Arabidopsis mutants defective in vacuolar proton pump activity. The presented modeling approach provides an integrative perspective on vacuolar pH regulation in Arabidopsis and holds potential to guide further experimental work.


Assuntos
Arabidopsis/metabolismo , Simulação por Computador , Homeostase/fisiologia , Modelos Biológicos , Vacúolos/metabolismo , Antiporters/genética , Antiporters/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/fisiologia , Cálcio , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Endossomos/genética , Endossomos/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Macrolídeos/farmacologia , Mutação , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Rede trans-Golgi/fisiologia
18.
Biochem Biophys Res Commun ; 589: 85-91, 2022 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-34896780

RESUMO

Chemotherapy is the mainstay of treatment for prostate cancer, with paclitaxel being commonly used for hormone-resistant prostate cancer. However, drug resistance often develops and leads to treatment failure in a variety of prostate cancer patients. Therefore, it is necessary to enhance the sensitivity of prostate cancer to chemotherapy. Lovastatin (LV) is a natural compound extracted from Monascus-fermented foods and is an inhibitor of HMG-CoA reductase (HMGCR), which has been approved by the FDA for hyperlipidemia treatment. We have previously found that LV could inhibit the proliferation of refractory cancer cells. Up to now, the effect of LV on chemosensitization and the mechanisms involved have not been evaluated in drug-resistant prostate cancer. In this study, we used prostate cancer cell line PC3 and its paclitaxel-resistant counterpart PC3-TxR as the cell model. Alamar Blue cell viability assay showed that LV and paclitaxel each conferred concentration-dependent inhibition of PC3-TxR cells. When paclitaxel was combined with LV, the proliferation of PC3-TxR cells was synergistically inhibited, as demonstrated by combination index <1. Moreover, colony formation decreased while apoptosis increased in paclitaxel plus LV group compared with paclitaxel alone group. Quantitative RT-PCR showed that the combination of paclitaxel and LV could significantly reduce the expression of CYP2C8, an important drug-metabolizing enzyme. Bioinformatics analysis from the TCGA database showed that CYP2C8 expression was negatively correlated with progression-free survival (PFS) in prostate cancer patients. Our results suggest that LV might increase the sensitivity of resistant prostate cancer cells to paclitaxel through inhibition of CYP2C8 and could be utilized as a chemosensitizer for paclitaxel-resistant prostate cancer cells.


Assuntos
Inibidores do Citocromo P-450 CYP2C8/farmacologia , Citocromo P-450 CYP2C8/metabolismo , Resistencia a Medicamentos Antineoplásicos , Lovastatina/farmacologia , Paclitaxel/farmacologia , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Linhagem Celular Tumoral , Citocromo P-450 CYP2C8/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Sinergismo Farmacológico , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Estimativa de Kaplan-Meier , Masculino , Modelos Biológicos , Prognóstico , Neoplasias da Próstata/genética
19.
Development ; 146(14)2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-31253636

RESUMO

Although it is well established that some organisms can regenerate lost structures, the ability to remodel existing malformed structures has been less well studied. Therefore, in this study we examined the ability of pre-metamorphic Xenopus laevis tadpoles to self-correct malformed craniofacial tissues. We found that tadpoles can adaptively improve and normalize abnormal craniofacial morphology caused by numerous developmental perturbations. We then investigated the tissue-level and molecular mechanisms that mediate the self-correction of craniofacial defects in pre-metamorphic X. laevis tadpoles. Our studies revealed that this adaptive response involves morphological changes and the remodeling of cartilage tissue, prior to metamorphosis. RT-qPCR and RNA-seq analysis of gene expression suggests a thyroid hormone-independent endocrine signaling pathway as the potential mechanism responsible for triggering the adaptive and corrective remodeling response in these larvae that involves mmp1 and mmp13 upregulation. Thus, investigating how malformed craniofacial tissues are naturally corrected in X. laevis tadpoles has provided valuable insights into the maintenance and manipulation of craniofacial morphology in a vertebrate system. These insights may help in the development of novel therapies for developmental craniofacial anomalies in humans.


Assuntos
Adaptação Biológica , Remodelação Óssea/efeitos dos fármacos , Anormalidades Craniofaciais/fisiopatologia , Desenvolvimento Maxilofacial/efeitos dos fármacos , Hormônios Tireóideos/farmacologia , Xenopus laevis/crescimento & desenvolvimento , Adaptação Biológica/efeitos dos fármacos , Adaptação Biológica/genética , Animais , Remodelação Óssea/genética , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Anormalidades Craniofaciais/terapia , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Larva , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Desenvolvimento Maxilofacial/genética , Metamorfose Biológica/efeitos dos fármacos , Metamorfose Biológica/fisiologia , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Fatores de Tempo , Xenopus laevis/embriologia
20.
Toxicol Appl Pharmacol ; 434: 115817, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890640

RESUMO

Acetaminophen (APAP)-induced liver injury is the most frequent cause of acute liver failure in Western countries. Pirfenidone (PFD), an orally bioavailable pyridone derivative, is clinically used for idiopathic pulmonary fibrosis treatment and has antifibrotic, anti-inflammatory, and antioxidant effects. Here we examined the PFD effect on APAP-induced liver injury. In a murine model, APAP caused serum alanine aminotransferase elevation attenuated by PFD treatment. We performed terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling (TUNEL) and vital propidium iodide (PI) stainings simultaneously. APAP induced TUNEL-positive/PI-negative necrosis around the central vein and subsequent TUNEL-negative/PI-positive oncotic necrosis with hemorrhage and caused the upregulation of hypercoagulation- and hypoxia-associated gene expressions. PFD treatment suppressed these findings. Western blotting revealed PFD suppressed APAP-induced c-Jun N-terminal kinase (JNK) phosphorylation despite no effect on JNK phosphatase expressions. In conclusion, simultaneous TUNEL and vital PI staining is useful for discriminating APAP-induced necrosis from typical oncotic necrosis. Our results indicated that PFD attenuated APAP-induced liver injury by suppressing TUNEL-positive necrosis by directly blocking JNK phosphorylation. PFD is promising as a new option to prevent APAP-induced liver injury.


Assuntos
Acetaminofen/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Proteínas Quinases JNK Ativadas por Mitógeno/antagonistas & inibidores , Piridonas/uso terapêutico , Analgésicos não Narcóticos/toxicidade , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA