Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.670
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 626(7999): 617-625, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081298

RESUMO

The outer membrane in Gram-negative bacteria consists of an asymmetric phospholipid-lipopolysaccharide bilayer that is densely packed with outer-membrane ß-barrel proteins (OMPs) and lipoproteins1. The architecture and composition of this bilayer is closely monitored and is essential to cell integrity and survival2-4. Here we find that SlyB, a lipoprotein in the PhoPQ stress regulon, forms stable stress-induced complexes with the outer-membrane proteome. SlyB comprises a 10 kDa periplasmic ß-sandwich domain and a glycine zipper domain that forms a transmembrane α-helical hairpin with discrete phospholipid- and lipopolysaccharide-binding sites. After loss in lipid asymmetry, SlyB oligomerizes into ring-shaped transmembrane complexes that encapsulate ß-barrel proteins into lipid nanodomains of variable size. We find that the formation of SlyB nanodomains is essential during lipopolysaccharide destabilization by antimicrobial peptides or acute cation shortage, conditions that result in a loss of OMPs and compromised outer-membrane barrier function in the absence of a functional SlyB. Our data reveal that SlyB is a compartmentalizing transmembrane guard protein that is involved in cell-envelope proteostasis and integrity, and suggest that SlyB represents a larger family of broadly conserved lipoproteins with 2TM glycine zipper domains with the ability to form lipid nanodomains.


Assuntos
Proteínas da Membrana Bacteriana Externa , Membrana Celular , Bactérias Gram-Negativas , Bicamadas Lipídicas , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Glicina/metabolismo , Lipopolissacarídeos/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Fosfolipídeos/metabolismo , Sítios de Ligação , Proteostase , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteoma/química , Proteoma/metabolismo , Regulon , Domínios Proteicos , Peptídeos Antimicrobianos/metabolismo , Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/citologia , Bactérias Gram-Negativas/metabolismo
2.
Annu Rev Cell Dev Biol ; 31: 31-54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26443190

RESUMO

A central question in cell and developmental biology is how the information encoded in the genome is differentially interpreted to generate a diverse array of cell types. A growing body of research on posttranscriptional gene regulation is revealing that both global protein synthesis rates and the translation of specific mRNAs are highly specialized in different cell types. How this exquisite translational regulation is achieved is the focus of this review. Two levels of regulation are discussed: the translation machinery and cis-acting elements within mRNAs. Recent evidence shows that the ribosome itself directs how the genome is translated in time and space and reveals surprising functional specificity in individual components of the core translation machinery. We are also just beginning to appreciate the rich regulatory information embedded in the untranslated regions of mRNAs, which direct the selective translation of transcripts. These hidden RNA regulons may interface with a myriad of RNA-binding proteins and specialized translation machinery to provide an additional layer of regulation to how transcripts are spatiotemporally expressed. Understanding this largely unexplored world of translational codes hardwired in the core translation machinery is an exciting new research frontier fundamental to our understanding of gene regulation, organismal development, and evolution.


Assuntos
Genoma/genética , Biossíntese de Proteínas/genética , RNA/genética , Regulon/genética , Ribossomos/genética , Animais , Regulação da Expressão Gênica/genética , Humanos , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética
3.
Annu Rev Microbiol ; 77: 23-43, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36944261

RESUMO

Small regulatory RNA (sRNAs) are key mediators of posttranscriptional gene control in bacteria. Assisted by RNA-binding proteins, a single sRNA often modulates the expression of dozens of genes, and thus sRNAs frequently adopt central roles in regulatory networks. Posttranscriptional regulation by sRNAs comes with several unique features that cannot be achieved by transcriptional regulators. However, for optimal network performance, transcriptional and posttranscriptional control mechanisms typically go hand-in-hand. This view is reflected by the ever-growing class of mixed network motifs involving sRNAs and transcription factors, which are ubiquitous in biology and whose regulatory properties we are beginning to understand. In addition, sRNA activity can be antagonized by base-pairing with sponge RNAs, adding yet another layer of complexity to these networks. In this article, we summarize the regulatory concepts underlying sRNA-mediated gene control in bacteria and discuss how sRNAs shape the output of a network, focusing on several key examples.


Assuntos
RNA Bacteriano , Pequeno RNA não Traduzido , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Regulon , Pequeno RNA não Traduzido/genética , Pequeno RNA não Traduzido/metabolismo , Regulação Bacteriana da Expressão Gênica , Bactérias/genética , Bactérias/metabolismo , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo
4.
Cell ; 155(7): 1507-20, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24360274

RESUMO

A key finding of the ENCODE project is that the enhancer landscape of mammalian cells undergoes marked alterations during ontogeny. However, the nature and extent of these changes are unclear. As part of the NIH Mouse Regulome Project, we here combined DNaseI hypersensitivity, ChIP-seq, and ChIA-PET technologies to map the promoter-enhancer interactomes of pluripotent ES cells and differentiated B lymphocytes. We confirm that enhancer usage varies widely across tissues. Unexpectedly, we find that this feature extends to broadly transcribed genes, including Myc and Pim1 cell-cycle regulators, which associate with an entirely different set of enhancers in ES and B cells. By means of high-resolution CpG methylomes, genome editing, and digital footprinting, we show that these enhancers recruit lineage-determining factors. Furthermore, we demonstrate that the turning on and off of enhancers during development correlates with promoter activity. We propose that organisms rely on a dynamic enhancer landscape to control basic cellular functions in a tissue-specific manner.


Assuntos
Linfócitos B/metabolismo , Células-Tronco Embrionárias/metabolismo , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica no Desenvolvimento , Regiões Promotoras Genéticas , Regulon , Animais , Linhagem da Célula , Células Cultivadas , Ilhas de CpG , Metilação de DNA , Técnicas Genéticas , Camundongos , Especificidade de Órgãos , RNA Longo não Codificante/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
5.
Genes Dev ; 33(5-6): 288-293, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30804227

RESUMO

The yeast Sfp1 protein regulates both cell division and growth but how it coordinates these processes is poorly understood. We demonstrate that Sfp1 directly controls genes required for ribosome production and many other growth-promoting processes. Remarkably, the complete set of Sfp1 target genes is revealed only by a combination of ChIP (chromatin immunoprecipitation) and ChEC (chromatin endogenous cleavage) methods, which uncover two promoter binding modes, one requiring a cofactor and the other a DNA-recognition motif. Glucose-regulated Sfp1 binding at cell cycle "START" genes suggests that Sfp1 controls cell size by coordinating expression of genes implicated in mass accumulation and cell division.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Regiões Promotoras Genéticas/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/genética , Glucose/metabolismo , Ligação Proteica , RNA Polimerase II/metabolismo , Regulon/genética , Proteínas de Saccharomyces cerevisiae/genética
6.
Development ; 150(23)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38032088

RESUMO

Heart development is a complex process that requires asymmetric positioning of the heart, cardiac growth and valve morphogenesis. The mechanisms controlling heart morphogenesis and valve formation are not fully understood. The pro-convertase FurinA functions in heart development across vertebrates. How FurinA activity is regulated during heart development is unknown. Through computational analysis of the zebrafish transcriptome, we identified an RNA motif in a variant FurinA transcript harbouring a long 3' untranslated region (3'UTR). The alternative 3'UTR furina isoform is expressed prior to organ positioning. Somatic deletions in the furina 3'UTR lead to embryonic left-right patterning defects. Reporter localisation and RNA-binding assays show that the furina 3'UTR forms complexes with the conserved RNA-binding translational repressor, Ybx1. Conditional ybx1 mutant embryos show premature and increased Furin reporter expression, abnormal cardiac morphogenesis and looping defects. Mutant ybx1 hearts have an expanded atrioventricular canal, abnormal sino-atrial valves and retrograde blood flow from the ventricle to the atrium. This is similar to observations in humans with heart valve regurgitation. Thus, the furina 3'UTR element/Ybx1 regulon is important for translational repression of FurinA and regulation of heart development.


Assuntos
Regulon , Peixe-Zebra , Animais , Humanos , Regiões 3' não Traduzidas , Regulon/genética , Morfogênese/genética , Valvas Cardíacas , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Pró-Proteína Convertases/genética , Pró-Proteína Convertases/metabolismo
7.
Nat Rev Genet ; 21(11): 699-714, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32665585

RESUMO

Despite enormous progress in understanding the fundamentals of bacterial gene regulation, our knowledge remains limited when compared with the number of bacterial genomes and regulatory systems to be discovered. Derived from a small number of initial studies, classic definitions for concepts of gene regulation have evolved as the number of characterized promoters has increased. Together with discoveries made using new technologies, this knowledge has led to revised generalizations and principles. In this Expert Recommendation, we suggest precise, updated definitions that support a logical, consistent conceptual framework of bacterial gene regulation, focusing on transcription initiation. The resulting concepts can be formalized by ontologies for computational modelling, laying the foundation for improved bioinformatics tools, knowledge-based resources and scientific communication. Thus, this work will help researchers construct better predictive models, with different formalisms, that will be useful in engineering, synthetic biology, microbiology and genetics.


Assuntos
Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Iniciação da Transcrição Genética , Óperon , Regiões Promotoras Genéticas , Regulon , Fatores de Transcrição/fisiologia
8.
Cell ; 144(6): 886-96, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21414481

RESUMO

Regulatory circuits controlling gene expression constantly rewire to adapt to environmental stimuli, differentiation cues, and disease. We review our current understanding of the temporal dynamics of gene expression in eukaryotes and prokaryotes and the molecular mechanisms that shape them. We delineate several prototypical temporal patterns, including "impulse" (or single-pulse) patterns in response to transient environmental stimuli, sustained (or state-transitioning) patterns in response to developmental cues, and oscillating patterns. We focus on impulse responses and their higher-order temporal organization in regulons and cascades and describe how core protein circuits and cis-regulatory sequences in promoters integrate with chromatin architecture to generate these responses.


Assuntos
Regulação da Expressão Gênica , Transcrição Gênica , Animais , Cromatina/metabolismo , Humanos , Sequências Reguladoras de Ácido Nucleico , Regulon , Fatores de Transcrição/metabolismo
9.
Nature ; 582(7811): 246-252, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32499648

RESUMO

A wealth of specialized neuroendocrine command systems intercalated within the hypothalamus control the most fundamental physiological needs in vertebrates1,2. Nevertheless, we lack a developmental blueprint that integrates the molecular determinants of neuronal and glial diversity along temporal and spatial scales of hypothalamus development3. Here we combine single-cell RNA sequencing of 51,199 mouse cells of ectodermal origin, gene regulatory network (GRN) screens in conjunction with genome-wide association study-based disease phenotyping, and genetic lineage reconstruction to show that nine glial and thirty-three neuronal subtypes are generated by mid-gestation under the control of distinct GRNs. Combinatorial molecular codes that arise from neurotransmitters, neuropeptides and transcription factors are minimally required to decode the taxonomical hierarchy of hypothalamic neurons. The differentiation of γ-aminobutyric acid (GABA) and dopamine neurons, but not glutamate neurons, relies on quasi-stable intermediate states, with a pool of GABA progenitors giving rise to dopamine cells4. We found an unexpected abundance of chemotropic proliferation and guidance cues that are commonly implicated in dorsal (cortical) patterning5 in the hypothalamus. In particular, loss of SLIT-ROBO signalling impaired both the production and positioning of periventricular dopamine neurons. Overall, we identify molecular principles that shape the developmental architecture of the hypothalamus and show how neuronal heterogeneity is transformed into a multimodal neural unit to provide virtually infinite adaptive potential throughout life.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Hipotálamo/citologia , Hipotálamo/embriologia , Morfogênese , Animais , Diferenciação Celular , Linhagem da Célula , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Ectoderma/citologia , Ectoderma/metabolismo , Feminino , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Ácido Glutâmico/metabolismo , Hipotálamo/metabolismo , Masculino , Camundongos , Morfogênese/genética , Proteínas do Tecido Nervoso/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neuropeptídeos/metabolismo , Neurotransmissores/metabolismo , Receptores Imunológicos/metabolismo , Regulon/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ácido gama-Aminobutírico/metabolismo , Proteínas Roundabout
10.
Proc Natl Acad Sci U S A ; 120(34): e2301731120, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37590419

RESUMO

Fungal pathogens depend on sophisticated gene expression programs for successful infection. A crucial component is RNA regulation mediated by RNA-binding proteins (RBPs). However, little is known about the spatiotemporal RNA control mechanisms during fungal pathogenicity. Here, we discover that the RBP Khd4 defines a distinct mRNA regulon to orchestrate membrane trafficking during pathogenic development of Ustilago maydis. By establishing hyperTRIBE for fungal RBPs, we generated a comprehensive transcriptome-wide map of Khd4 interactions in vivo. We identify a defined set of target mRNAs enriched for regulatory proteins involved, e.g., in GTPase signaling. Khd4 controls the stability of target mRNAs via its cognate regulatory element AUACCC present in their 3' untranslated regions. Studying individual examples reveals a unique link between Khd4 and vacuole maturation. Thus, we uncover a distinct role for an RNA stability factor defining a specific mRNA regulon for membrane trafficking during pathogenicity.


Assuntos
Estabilidade de RNA , Regulon , RNA Mensageiro/genética , Regulon/genética , Regiões 3' não Traduzidas/genética
11.
Proc Natl Acad Sci U S A ; 120(2): e2212151120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36608289

RESUMO

Cells cope with and adapt to ever-changing environmental conditions. Sophisticated regulatory networks allow cells to adjust to these fluctuating environments. One such archetypal system is the Saccharomyces cerevisiae Pho regulon. When external inorganic phosphate (Pi) concentration is low, the Pho regulon activates, expressing genes that scavenge external and internal Pi. However, the precise mechanism controlling this regulon remains elusive. We conducted a systems analysis of the Pho regulon on the single-cell level under well-controlled environmental conditions. This analysis identified a robust, perfectly adapted Pho regulon state in intermediate Pi conditions, and we identified an intermediate nuclear localization state of the transcriptional master regulator Pho4p. The existence of an intermediate nuclear Pho4p state unifies and resolves outstanding incongruities associated with the Pho regulon, explains the observed programmatic states of the Pho regulon, and improves our general understanding of how nature evolves and controls sophisticated gene regulatory networks. We further propose that robustness and perfect adaptation are not achieved through complex network-centric control but by simple transport biophysics. The ubiquity of multitransporter systems suggests that similar mechanisms could govern the function of other regulatory networks as well.


Assuntos
Fosfatos , Saccharomyces cerevisiae , Fosfatos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regulon/genética , Aclimatação , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo
12.
Genes Dev ; 32(15-16): 1020-1034, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30068703

RESUMO

RNA-binding proteins (RBPs) are expressed broadly during both development and malignant transformation, yet their mechanistic roles in epithelial homeostasis or as drivers of tumor initiation and progression are incompletely understood. Here we describe a novel interplay between RBPs LIN28B and IMP1 in intestinal epithelial cells. Ribosome profiling and RNA sequencing identified IMP1 as a principle node for gene expression regulation downstream from LIN28B In vitro and in vivo data demonstrate that epithelial IMP1 loss increases expression of WNT target genes and enhances LIN28B-mediated intestinal tumorigenesis, which was reversed when we overexpressed IMP1 independently in vivo. Furthermore, IMP1 loss in wild-type or LIN28B-overexpressing mice enhances the regenerative response to irradiation. Together, our data provide new evidence for the opposing effects of the LIN28B-IMP1 axis on post-transcriptional regulation of canonical WNT signaling, with implications in intestinal homeostasis, regeneration and tumorigenesis.


Assuntos
Carcinogênese , Regulação da Expressão Gênica , Mucosa Intestinal/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regulon , Via de Sinalização Wnt , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Humanos , Mucosa Intestinal/fisiologia , Camundongos , Camundongos Transgênicos , Oncogenes , Biossíntese de Proteínas , Proteínas de Ligação a RNA/fisiologia , Regeneração , Células-Tronco/metabolismo
13.
Annu Rev Microbiol ; 74: 655-671, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32689914

RESUMO

Human-adapted bacterial pathogens use a mechanism called phase variation to randomly switch the expression of individual genes to generate a phenotypically diverse population to adapt to challenges within and between human hosts. There are increasing reports of restriction-modification systems that exhibit phase-variable expression. The outcome of phase variation of these systems is global changes in DNA methylation. Analysis of phase-variable Type I and Type III restriction-modification systems in multiple human-adapted bacterial pathogens has demonstrated that global changes in methylation regulate the expression of multiple genes. These systems are called phasevarions (phase-variable regulons). Phasevarion switching alters virulence phenotypes and facilitates evasion of host immune responses. This review describes the characteristics of phasevarions and implications for pathogenesis and immune evasion. We present and discuss examples of phasevarion systems in the major human pathogens Haemophilus influenzae, Neisseria meningitidis, Neisseria gonorrhoeae, Helicobacter pylori, Moraxella catarrhalis, and Streptococcus pneumoniae.


Assuntos
Bactérias/genética , Bactérias/patogenicidade , Epigênese Genética , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Metilação de DNA , Enzimas de Restrição-Modificação do DNA/genética , Enzimas de Restrição-Modificação do DNA/metabolismo , Humanos , Regulon , Virulência
14.
Plant Cell ; 34(12): 4897-4919, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36073948

RESUMO

Signals emanating from chloroplasts influence nuclear gene expression, but roles of retrograde signals during chloroplast development are unclear. To address this gap, we analyzed transcriptomes of non-photosynthetic maize mutants and compared them to transcriptomes of stages of normal leaf development. The transcriptomes of two albino mutants lacking plastid ribosomes resembled transcriptomes at very early stages of normal leaf development, whereas the transcriptomes of two chlorotic mutants with thylakoid targeting or plastid transcription defects resembled those at a slightly later stage. We identified ∼2,700 differentially expressed genes, which fall into six major categories based on the polarity and mutant-specificity of the change. Downregulated genes were generally expressed late in normal development and were enriched in photosynthesis genes, whereas upregulated genes act early and were enriched for functions in chloroplast biogenesis and cytosolic translation. We showed further that target-of-rapamycin (TOR) signaling was elevated in mutants lacking plastid ribosomes and declined in concert with plastid ribosome buildup during normal leaf development. Our results implicate three plastid signals as coordinators of photosynthetic differentiation. One signal requires plastid ribosomes and activates photosynthesis genes. A second signal reflects attainment of chloroplast maturity and represses chloroplast biogenesis genes. A third signal, the consumption of nutrients by developing chloroplasts, represses TOR, promoting termination of cell proliferation during leaf development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Zea mays/genética , Zea mays/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/genética , Regulon , Cloroplastos/genética , Cloroplastos/metabolismo , Plastídeos/metabolismo , Fotossíntese/genética , Proteínas de Arabidopsis/metabolismo
15.
PLoS Comput Biol ; 20(1): e1011824, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38252668

RESUMO

The transcriptional regulatory network (TRN) of E. coli consists of thousands of interactions between regulators and DNA sequences. Regulons are typically determined either from resource-intensive experimental measurement of functional binding sites, or inferred from analysis of high-throughput gene expression datasets. Recently, independent component analysis (ICA) of RNA-seq compendia has shown to be a powerful method for inferring bacterial regulons. However, it remains unclear to what extent regulons predicted by ICA structure have a biochemical basis in promoter sequences. Here, we address this question by developing machine learning models that predict inferred regulon structures in E. coli based on promoter sequence features. Models were constructed successfully (cross-validation AUROC > = 0.8) for 85% (40/47) of ICA-inferred E. coli regulons. We found that: 1) The presence of a high scoring regulator motif in the promoter region was sufficient to specify regulatory activity in 40% (19/47) of the regulons, 2) Additional features, such as DNA shape and extended motifs that can account for regulator multimeric binding, helped to specify regulon structure for the remaining 60% of regulons (28/47); 3) investigating regulons where initial machine learning models failed revealed new regulator-specific sequence features that improved model accuracy. Finally, we found that strong regulatory binding sequences underlie both the genes shared between ICA-inferred and experimental regulons as well as genes in the E. coli core pan-regulon of Fur. This work demonstrates that the structure of ICA-inferred regulons largely can be understood through the strength of regulator binding sites in promoter regions, reinforcing the utility of top-down inference for regulon discovery.


Assuntos
Escherichia coli , Regulon , Regulon/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Bactérias/genética , Sítios de Ligação/genética , Regiões Promotoras Genéticas/genética , Regulação Bacteriana da Expressão Gênica/genética , Proteínas de Bactérias/metabolismo
16.
Nature ; 572(7770): 528-532, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31391582

RESUMO

During post-implantation development of the mouse embryo, descendants of the inner cell mass in the early epiblast transit from the naive to primed pluripotent state1. Concurrently, germ layers are formed and cell lineages are specified, leading to the establishment of the blueprint for embryogenesis. Fate-mapping and lineage-analysis studies have revealed that cells in different regions of the germ layers acquire location-specific cell fates during gastrulation2-5. The regionalization of cell fates preceding the formation of the basic body plan-the mechanisms of which are instrumental for understanding embryonic programming and stem-cell-based translational study-is conserved in vertebrate embryos6-8. However, a genome-wide molecular annotation of lineage segregation and tissue architecture of the post-implantation embryo has yet to be undertaken. Here we report a spatially resolved transcriptome of cell populations at defined positions in the germ layers during development from pre- to late-gastrulation stages. This spatiotemporal transcriptome provides high-resolution digitized in situ gene-expression profiles, reveals the molecular genealogy of tissue lineages and defines the continuum of pluripotency states in time and space. The transcriptome further identifies the networks of molecular determinants that drive lineage specification and tissue patterning, supports a role of Hippo-Yap signalling in germ-layer development and reveals the contribution of visceral endoderm to the endoderm in the early mouse embryo.


Assuntos
Linhagem da Célula , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Camadas Germinativas/metabolismo , Via de Sinalização Hippo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Serina-Treonina Quinases/metabolismo , Regulon/genética , Transdução de Sinais , Transcriptoma/genética , Proteínas de Sinalização YAP
17.
Mol Cell ; 68(1): 144-157.e5, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28965817

RESUMO

Within cells, soluble RNPs can switch states to coassemble and condense into liquid or solid bodies. Although these phase transitions have been reconstituted in vitro, for endogenous bodies the diversity of the components, the specificity of the interaction networks, and the function of the coassemblies remain to be characterized. Here, by developing a fluorescence-activated particle sorting (FAPS) method to purify cytosolic processing bodies (P-bodies) from human epithelial cells, we identified hundreds of proteins and thousands of mRNAs that structure a dense network of interactions, separating P-body from non-P-body RNPs. mRNAs segregating into P-bodies are translationally repressed, but not decayed, and this repression explains part of the poor genome-wide correlation between RNA and protein abundance. P-bodies condense thousands of mRNAs that strikingly encode regulatory processes. Thus, we uncovered how P-bodies, by condensing and segregating repressed mRNAs, provide a physical substrate for the coordinated regulation of posttranscriptional mRNA regulons.


Assuntos
Regulação da Expressão Gênica , Proteoma/genética , RNA Mensageiro/genética , Regulon , Ribonucleoproteínas/genética , Fracionamento Celular , Citoplasma/metabolismo , Grânulos Citoplasmáticos/química , Grânulos Citoplasmáticos/metabolismo , Ontologia Genética , Células HEK293 , Células HeLa , Humanos , Anotação de Sequência Molecular , Transição de Fase , Biossíntese de Proteínas , Proteoma/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo
18.
Nucleic Acids Res ; 51(20): 10934-10949, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37843125

RESUMO

Gene regulation plays a critical role in the cellular processes that underlie human health and disease. The regulatory relationship between transcription factors (TFs), key regulators of gene expression, and their target genes, the so called TF regulons, can be coupled with computational algorithms to estimate the activity of TFs. However, to interpret these findings accurately, regulons of high reliability and coverage are needed. In this study, we present and evaluate a collection of regulons created using the CollecTRI meta-resource containing signed TF-gene interactions for 1186 TFs. In this context, we introduce a workflow to integrate information from multiple resources and assign the sign of regulation to TF-gene interactions that could be applied to other comprehensive knowledge bases. We find that the signed CollecTRI-derived regulons outperform other public collections of regulatory interactions in accurately inferring changes in TF activities in perturbation experiments. Furthermore, we showcase the value of the regulons by examining TF activity profiles in three different cancer types and exploring TF activities at the level of single-cells. Overall, the CollecTRI-derived TF regulons enable the accurate and comprehensive estimation of TF activities and thereby help to interpret transcriptomics data.


Assuntos
Regulação da Expressão Gênica , Regulon , Fatores de Transcrição , Humanos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Reprodutibilidade dos Testes , Fatores de Transcrição/metabolismo
19.
Nucleic Acids Res ; 51(8): 3618-3630, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37026477

RESUMO

While global transcription factors (TFs) have been studied extensively in Escherichia coli model strains, conservation and diversity in TF regulation between strains is still unknown. Here we use a combination of ChIP-exo-to define ferric uptake regulator (Fur) binding sites-and differential gene expression-to define the Fur regulon in nine E. coli strains. We then define a pan-regulon consisting of 469 target genes that includes all Fur target genes in all nine strains. The pan-regulon is then divided into the core regulon (target genes found in all the strains, n = 36), the accessory regulon (target found in two to eight strains, n = 158) and the unique regulon (target genes found in one strain, n = 275). Thus, there is a small set of Fur regulated genes common to all nine strains, but a large number of regulatory targets unique to a particular strain. Many of the unique regulatory targets are genes unique to that strain. This first-established pan-regulon reveals a common core of conserved regulatory targets and significant diversity in transcriptional regulation amongst E. coli strains, reflecting diverse niche specification and strain history.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Regulon , Proteínas Repressoras , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Ferro/metabolismo , Regulon/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fatores de Transcrição
20.
PLoS Genet ; 18(5): e1010198, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35613247

RESUMO

Competence for DNA transformation is a major strategy for bacterial adaptation and survival. Yet, this successful tactic is energy-consuming, shifts dramatically the metabolism, and transitory impairs the regular cell-cycle. In streptococci, complex regulatory pathways control competence deactivation to narrow its development to a sharp window of time, a process known as competence shut-off. Although characterized in streptococci whose competence is activated by the ComCDE signaling pathway, it remains unclear for those controlled by the ComRS system. In this work, we investigate competence shut-off in the major human gut commensal Streptococcus salivarius. Using a deterministic mathematical model of the ComRS system, we predicted a negative player under the control of the central regulator ComX as involved in ComS/XIP pheromone degradation through a negative feedback loop. The individual inactivation of peptidase genes belonging to the ComX regulon allowed the identification of PepF as an essential oligoendopeptidase in S. salivarius. By combining conditional mutants, transcriptional analyses, and biochemical characterization of pheromone degradation, we validated the reciprocal role of PepF and XIP in ComRS shut-off. Notably, engineering cleavage site residues generated ultra-resistant peptides producing high and long-lasting competence activation. Altogether, this study reveals a proteolytic shut-off mechanism of competence in the salivarius group and suggests that this mechanism could be shared by other ComRS-containing streptococci.


Assuntos
Proteínas de Bactérias , Regulon , Proteínas de Bactérias/metabolismo , Competência de Transformação por DNA/genética , Regulação Bacteriana da Expressão Gênica , Humanos , Peptídeos/genética , Feromônios/genética , Feromônios/metabolismo , Regulon/genética , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA