Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.673
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(11): 2690-2702.e17, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38723627

RESUMO

The quality and quantity of tumor-infiltrating lymphocytes, particularly CD8+ T cells, are important parameters for the control of tumor growth and response to immunotherapy. Here, we show in murine and human cancers that these parameters exhibit circadian oscillations, driven by both the endogenous circadian clock of leukocytes and rhythmic leukocyte infiltration, which depends on the circadian clock of endothelial cells in the tumor microenvironment. To harness these rhythms therapeutically, we demonstrate that efficacy of chimeric antigen receptor T cell therapy and immune checkpoint blockade can be improved by adjusting the time of treatment during the day. Furthermore, time-of-day-dependent T cell signatures in murine tumor models predict overall survival in patients with melanoma and correlate with response to anti-PD-1 therapy. Our data demonstrate the functional significance of circadian dynamics in the tumor microenvironment and suggest the importance of leveraging these features for improving future clinical trial design and patient care.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Linfócitos do Interstício Tumoral , Camundongos Endogâmicos C57BL , Microambiente Tumoral , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos/imunologia , Linhagem Celular Tumoral , Relógios Circadianos , Ritmo Circadiano , Células Endoteliais/imunologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Linfócitos do Interstício Tumoral/imunologia , Melanoma/imunologia , Melanoma/terapia , Melanoma/patologia , Microambiente Tumoral/imunologia
2.
Cell ; 186(15): 3245-3260.e23, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37369203

RESUMO

Terrestrial organisms developed circadian rhythms for adaptation to Earth's quasi-24-h rotation. Achieving precise rhythms requires diurnal oscillation of fundamental biological processes, such as rhythmic shifts in the cellular translational landscape; however, regulatory mechanisms underlying rhythmic translation remain elusive. Here, we identified mammalian ATXN2 and ATXN2L as cooperating master regulators of rhythmic translation, through oscillating phase separation in the suprachiasmatic nucleus along circadian cycles. The spatiotemporal oscillating condensates facilitate sequential initiation of multiple cycling processes, from mRNA processing to protein translation, for selective genes including core clock genes. Depleting ATXN2 or 2L induces opposite alterations to the circadian period, whereas the absence of both disrupts translational activation cycles and weakens circadian rhythmicity in mice. Such cellular defect can be rescued by wild type, but not phase-separation-defective ATXN2. Together, we revealed that oscillating translation is regulated by spatiotemporal condensation of two master regulators to achieve precise circadian rhythm in mammals.


Assuntos
Relógios Circadianos , Camundongos , Animais , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Núcleo Supraquiasmático/metabolismo , Processamento de Proteína Pós-Traducional , Mamíferos
3.
Cell ; 186(6): 1279-1294.e19, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36868220

RESUMO

Antarctic krill (Euphausia superba) is Earth's most abundant wild animal, and its enormous biomass is vital to the Southern Ocean ecosystem. Here, we report a 48.01-Gb chromosome-level Antarctic krill genome, whose large genome size appears to have resulted from inter-genic transposable element expansions. Our assembly reveals the molecular architecture of the Antarctic krill circadian clock and uncovers expanded gene families associated with molting and energy metabolism, providing insights into adaptations to the cold and highly seasonal Antarctic environment. Population-level genome re-sequencing from four geographical sites around the Antarctic continent reveals no clear population structure but highlights natural selection associated with environmental variables. An apparent drastic reduction in krill population size 10 mya and a subsequent rebound 100 thousand years ago coincides with climate change events. Our findings uncover the genomic basis of Antarctic krill adaptations to the Southern Ocean and provide valuable resources for future Antarctic research.


Assuntos
Euphausiacea , Genoma , Animais , Relógios Circadianos/genética , Ecossistema , Euphausiacea/genética , Euphausiacea/fisiologia , Genômica , Análise de Sequência de DNA , Elementos de DNA Transponíveis , Evolução Biológica , Adaptação Fisiológica
4.
Nat Immunol ; 25(7): 1257-1269, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806707

RESUMO

The circadian clock is a critical regulator of immunity, and this circadian control of immune modulation has an essential function in host defense and tumor immunosurveillance. Here we use a single-cell RNA sequencing approach and a genetic model of colorectal cancer to identify clock-dependent changes to the immune landscape that control the abundance of immunosuppressive cells and consequent suppression of cytotoxic CD8+ T cells. Of these immunosuppressive cell types, PD-L1-expressing myeloid-derived suppressor cells (MDSCs) peak in abundance in a rhythmic manner. Disruption of the epithelial cell clock regulates the secretion of cytokines that promote heightened inflammation, recruitment of neutrophils and the subsequent development of MDSCs. We also show that time-of-day anti-PD-L1 delivery is most effective when synchronized with the abundance of immunosuppressive MDSCs. Collectively, these data indicate that circadian gating of tumor immunosuppression informs the timing and efficacy of immune checkpoint inhibitors.


Assuntos
Antígeno B7-H1 , Relógios Circadianos , Inibidores de Checkpoint Imunológico , Células Supressoras Mieloides , Animais , Camundongos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/metabolismo , Relógios Circadianos/imunologia , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/imunologia , Camundongos Endogâmicos C57BL , Ritmo Circadiano/imunologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/terapia , Neoplasias Colorretais/tratamento farmacológico , Microambiente Tumoral/imunologia , Tolerância Imunológica , Humanos , Feminino , Linhagem Celular Tumoral , Análise de Célula Única , Terapia de Imunossupressão , Citocinas/metabolismo , Masculino
5.
Cell ; 184(16): 4154-4167.e12, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34324837

RESUMO

Environmental light cycles entrain circadian feeding behaviors in animals that produce rhythms in exposure to foodborne bacteria. Here, we show that the intestinal microbiota generates diurnal rhythms in innate immunity that synchronize with feeding rhythms to anticipate microbial exposure. Rhythmic expression of antimicrobial proteins was driven by daily rhythms in epithelial attachment by segmented filamentous bacteria (SFB), members of the mouse intestinal microbiota. Rhythmic SFB attachment was driven by the circadian clock through control of feeding rhythms. Mechanistically, rhythmic SFB attachment activated an immunological circuit involving group 3 innate lymphoid cells. This circuit triggered oscillations in epithelial STAT3 expression and activation that produced rhythmic antimicrobial protein expression and caused resistance to Salmonella Typhimurium infection to vary across the day-night cycle. Thus, host feeding rhythms synchronize with the microbiota to promote rhythms in intestinal innate immunity that anticipate exogenous microbial exposure.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Microbioma Gastrointestinal , Imunidade Inata , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Aderência Bacteriana , Adesão Celular , Células Epiteliais/microbiologia , Comportamento Alimentar , Intestino Delgado/microbiologia , Intestino Delgado/ultraestrutura , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Muramidase/metabolismo , Proteínas Associadas a Pancreatite/metabolismo , Fator de Transcrição STAT3/metabolismo , Salmonelose Animal/microbiologia , Transdução de Sinais
6.
Cell ; 182(6): 1606-1622.e23, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32888429

RESUMO

The enteric nervous system (ENS) coordinates diverse functions in the intestine but has eluded comprehensive molecular characterization because of the rarity and diversity of cells. Here we develop two methods to profile the ENS of adult mice and humans at single-cell resolution: RAISIN RNA-seq for profiling intact nuclei with ribosome-bound mRNA and MIRACL-seq for label-free enrichment of rare cell types by droplet-based profiling. The 1,187,535 nuclei in our mouse atlas include 5,068 neurons from the ileum and colon, revealing extraordinary neuron diversity. We highlight circadian expression changes in enteric neurons, show that disease-related genes are dysregulated with aging, and identify differences between the ileum and proximal/distal colon. In humans, we profile 436,202 nuclei, recovering 1,445 neurons, and identify conserved and species-specific transcriptional programs and putative neuro-epithelial, neuro-stromal, and neuro-immune interactions. The human ENS expresses risk genes for neuropathic, inflammatory, and extra-intestinal diseases, suggesting neuronal contributions to disease.


Assuntos
Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Neurônios/metabolismo , Corpos de Nissl/metabolismo , RNA Mensageiro/metabolismo , Análise de Célula Única/métodos , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Relógios Circadianos/genética , Colo/citologia , Colo/metabolismo , Retículo Endoplasmático Rugoso/genética , Retículo Endoplasmático Rugoso/metabolismo , Retículo Endoplasmático Rugoso/ultraestrutura , Células Epiteliais/metabolismo , Feminino , Predisposição Genética para Doença/genética , Humanos , Íleo/citologia , Íleo/metabolismo , Inflamação/genética , Inflamação/metabolismo , Enteropatias/genética , Enteropatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Neuroglia/citologia , Neuroglia/metabolismo , Neurônios/citologia , Corpos de Nissl/genética , Corpos de Nissl/ultraestrutura , RNA Mensageiro/genética , RNA-Seq , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Células Estromais/metabolismo
7.
Cell ; 182(6): 1441-1459.e21, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32888430

RESUMO

Throughout a 24-h period, the small intestine (SI) is exposed to diurnally varying food- and microbiome-derived antigenic burdens but maintains a strict immune homeostasis, which when perturbed in genetically susceptible individuals, may lead to Crohn disease. Herein, we demonstrate that dietary content and rhythmicity regulate the diurnally shifting SI epithelial cell (SIEC) transcriptional landscape through modulation of the SI microbiome. We exemplify this concept with SIEC major histocompatibility complex (MHC) class II, which is diurnally modulated by distinct mucosal-adherent SI commensals, while supporting downstream diurnal activity of intra-epithelial IL-10+ lymphocytes regulating the SI barrier function. Disruption of this diurnally regulated diet-microbiome-MHC class II-IL-10-epithelial barrier axis by circadian clock disarrangement, alterations in feeding time or content, or epithelial-specific MHC class II depletion leads to an extensive microbial product influx, driving Crohn-like enteritis. Collectively, we highlight nutritional features that modulate SI microbiome, immunity, and barrier function and identify dietary, epithelial, and immune checkpoints along this axis to be potentially exploitable in future Crohn disease interventions.


Assuntos
Doença de Crohn/microbiologia , Células Epiteliais/metabolismo , Microbioma Gastrointestinal , Antígenos de Histocompatibilidade Classe II/metabolismo , Intestino Delgado/imunologia , Intestino Delgado/microbiologia , Transcriptoma/genética , Animais , Antibacterianos/farmacologia , Relógios Circadianos/fisiologia , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Dieta , Células Epiteliais/citologia , Células Epiteliais/imunologia , Citometria de Fluxo , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/genética , Homeostase , Hibridização in Situ Fluorescente , Interleucina-10/metabolismo , Interleucina-10/farmacologia , Intestino Delgado/fisiologia , Linfócitos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Periodicidade , Linfócitos T/imunologia , Transcriptoma/fisiologia
8.
Nat Immunol ; 23(2): 229-236, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34949832

RESUMO

Aging is characterized by an increased vulnerability to infection and the development of inflammatory diseases, such as atherosclerosis, frailty, cancer and neurodegeneration. Here, we find that aging is associated with the loss of diurnally rhythmic innate immune responses, including monocyte trafficking from bone marrow to blood, response to lipopolysaccharide and phagocytosis. This decline in homeostatic immune responses was associated with a striking disappearance of circadian gene transcription in aged compared to young tissue macrophages. Chromatin accessibility was significantly greater in young macrophages than in aged macrophages; however, this difference did not explain the loss of rhythmic gene transcription in aged macrophages. Rather, diurnal expression of Kruppel-like factor 4 (Klf4), a transcription factor (TF) well established in regulating cell differentiation and reprogramming, was selectively diminished in aged macrophages. Ablation of Klf4 expression abolished diurnal rhythms in phagocytic activity, recapitulating the effect of aging on macrophage phagocytosis. Examination of individuals harboring genetic variants of KLF4 revealed an association with age-dependent susceptibility to death caused by bacterial infection. Our results indicate that loss of rhythmic Klf4 expression in aged macrophages is associated with disruption of circadian innate immune homeostasis, a mechanism that may underlie age-associated loss of protective immune responses.


Assuntos
Relógios Circadianos/genética , Macrófagos/fisiologia , Envelhecimento , Animais , Aterosclerose/genética , Diferenciação Celular/genética , Regulação da Expressão Gênica/genética , Imunidade Inata/genética , Inflamação/genética , Fator 4 Semelhante a Kruppel/genética , Fatores de Transcrição Kruppel-Like/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/fisiologia , Fagocitose/genética
9.
Cell ; 177(6): 1436-1447.e12, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31150620

RESUMO

Circadian rhythms control organismal physiology throughout the day. At the cellular level, clock regulation is established by a self-sustained Bmal1-dependent transcriptional oscillator network. However, it is still unclear how different tissues achieve a synchronized rhythmic physiology. That is, do they respond independently to environmental signals, or require interactions with each other to do so? We show that unexpectedly, light synchronizes the Bmal1-dependent circadian machinery in single tissues in the absence of Bmal1 in all other tissues. Strikingly, light-driven tissue autonomous clocks occur without rhythmic feeding behavior and are lost in constant darkness. Importantly, tissue-autonomous Bmal1 partially sustains homeostasis in otherwise arrhythmic and prematurely aging animals. Our results therefore support a two-branched model for the daily synchronization of tissues: an autonomous response branch, whereby light entrains circadian clocks without any commitment of other Bmal1-dependent clocks, and a memory branch using other Bmal1-dependent clocks to "remember" time in the absence of external cues.


Assuntos
Fatores de Transcrição ARNTL/fisiologia , Relógios Circadianos/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/metabolismo , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Comportamento Alimentar/fisiologia , Feminino , Homeostase , Luz , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Especificidade de Órgãos/fisiologia , Fotoperíodo , Núcleo Supraquiasmático/metabolismo
10.
Cell ; 177(6): 1448-1462.e14, 2019 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-31150621

RESUMO

Mammals rely on a network of circadian clocks to control daily systemic metabolism and physiology. The central pacemaker in the suprachiasmatic nucleus (SCN) is considered hierarchically dominant over peripheral clocks, whose degree of independence, or tissue-level autonomy, has never been ascertained in vivo. Using arrhythmic Bmal1-null mice, we generated animals with reconstituted circadian expression of BMAL1 exclusively in the liver (Liver-RE). High-throughput transcriptomics and metabolomics show that the liver has independent circadian functions specific for metabolic processes such as the NAD+ salvage pathway and glycogen turnover. However, although BMAL1 occupies chromatin at most genomic targets in Liver-RE mice, circadian expression is restricted to ∼10% of normally rhythmic transcripts. Finally, rhythmic clock gene expression is lost in Liver-RE mice under constant darkness. Hence, full circadian function in the liver depends on signals emanating from other clocks, and light contributes to tissue-autonomous clock function.


Assuntos
Fatores de Transcrição ARNTL/fisiologia , Relógios Circadianos/genética , Fígado/metabolismo , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/metabolismo , Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Feminino , Regulação da Expressão Gênica , Homeostase , Luz , Masculino , Camundongos , Camundongos Knockout , Modelos Animais , Especificidade de Órgãos/fisiologia , Fotoperíodo , Núcleo Supraquiasmático/metabolismo
11.
Cell ; 177(4): 896-909.e20, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-31030999

RESUMO

In mammals, endogenous circadian clocks sense and respond to daily feeding and lighting cues, adjusting internal ∼24 h rhythms to resonate with, and anticipate, external cycles of day and night. The mechanism underlying circadian entrainment to feeding time is critical for understanding why mistimed feeding, as occurs during shift work, disrupts circadian physiology, a state that is associated with increased incidence of chronic diseases such as type 2 (T2) diabetes. We show that feeding-regulated hormones insulin and insulin-like growth factor 1 (IGF-1) reset circadian clocks in vivo and in vitro by induction of PERIOD proteins, and mistimed insulin signaling disrupts circadian organization of mouse behavior and clock gene expression. Insulin and IGF-1 receptor signaling is sufficient to determine essential circadian parameters, principally via increased PERIOD protein synthesis. This requires coincident mechanistic target of rapamycin (mTOR) activation, increased phosphoinositide signaling, and microRNA downregulation. Besides its well-known homeostatic functions, we propose insulin and IGF-1 are primary signals of feeding time to cellular clocks throughout the body.


Assuntos
Relógios Circadianos/fisiologia , Comportamento Alimentar/fisiologia , Proteínas Circadianas Period/metabolismo , Animais , Ritmo Circadiano/fisiologia , Feminino , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor IGF Tipo 1/metabolismo , Transdução de Sinais
12.
Annu Rev Cell Dev Biol ; 36: 469-509, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33021821

RESUMO

Diverse factors including metabolism, chromatin remodeling, and mitotic kinetics influence development at the cellular level. These factors are well known to interact with the circadian transcriptional-translational feedback loop (TTFL) after its emergence. What is only recently becoming clear, however, is how metabolism, mitosis, and epigenetics may become organized in a coordinated cyclical precursor signaling module in pluripotent cells prior to the onset of TTFL cycling. We propose that both the precursor module and the TTFL module constrain cellular identity when they are active during development, and that the emergence of these modules themselves is a key lineage marker. Here we review the component pathways underlying these ideas; how proliferation, specification, and differentiation decisions in both developmental and adult stem cell populations are or are not regulated by the classical TTFL; and emerging evidence that we propose implies a primordial clock that precedes the classical TTFL and influences early developmental decisions.


Assuntos
Relógios Circadianos/fisiologia , Desenvolvimento Embrionário , Células-Tronco Adultas/citologia , Células-Tronco Adultas/metabolismo , Animais , Linhagem da Célula/genética , Relógios Circadianos/genética , Desenvolvimento Embrionário/genética , Epigênese Genética , Humanos , Fatores de Tempo
13.
Nat Immunol ; 22(11): 1375-1381, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34663979

RESUMO

Migration of leukocytes from the skin to lymph nodes (LNs) via afferent lymphatic vessels (LVs) is pivotal for adaptive immune responses1,2. Circadian rhythms have emerged as important regulators of leukocyte trafficking to LNs via the blood3,4. Here, we demonstrate that dendritic cells (DCs) have a circadian migration pattern into LVs, which peaks during the rest phase in mice. This migration pattern is determined by rhythmic gradients in the expression of the chemokine CCL21 and of adhesion molecules in both mice and humans. Chronopharmacological targeting of the involved factors abrogates circadian migration of DCs. We identify cell-intrinsic circadian oscillations in skin lymphatic endothelial cells (LECs) and DCs that cogovern these rhythms, as their genetic disruption in either cell type ablates circadian trafficking. These observations indicate that circadian clocks control the infiltration of DCs into skin lymphatics, a process that is essential for many adaptive immune responses and relevant for vaccination and immunotherapies.


Assuntos
Imunidade Adaptativa , Quimiotaxia , Relógios Circadianos , Células Dendríticas/imunologia , Linfonodos/imunologia , Vasos Linfáticos/imunologia , Pele/imunologia , Idoso , Animais , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular/metabolismo , Células Cultivadas , Quimiocina CCL21/genética , Quimiocina CCL21/metabolismo , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/metabolismo , Células Dendríticas/metabolismo , Feminino , Humanos , Linfonodos/metabolismo , Vasos Linfáticos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pele/metabolismo , Fatores de Tempo
14.
Cell ; 174(6): 1571-1585.e11, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30193114

RESUMO

Metabolic diseases are often characterized by circadian misalignment in different tissues, yet how altered coordination and communication among tissue clocks relate to specific pathogenic mechanisms remains largely unknown. Applying an integrated systems biology approach, we performed 24-hr metabolomics profiling of eight mouse tissues simultaneously. We present a temporal and spatial atlas of circadian metabolism in the context of systemic energy balance and under chronic nutrient stress (high-fat diet [HFD]). Comparative analysis reveals how the repertoires of tissue metabolism are linked and gated to specific temporal windows and how this highly specialized communication and coherence among tissue clocks is rewired by nutrient challenge. Overall, we illustrate how dynamic metabolic relationships can be reconstructed across time and space and how integration of circadian metabolomics data from multiple tissues can improve our understanding of health and disease.


Assuntos
Relógios Circadianos/fisiologia , Metaboloma , Animais , Dieta Hiperlipídica , Metabolismo Energético , Fígado/metabolismo , Masculino , Redes e Vias Metabólicas , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Córtex Pré-Frontal/metabolismo , Núcleo Supraquiasmático/metabolismo , Proteína Desacopladora 1/metabolismo
15.
Cell ; 174(1): 72-87.e32, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29861175

RESUMO

Recent reports indicate that hypoxia influences the circadian clock through the transcriptional activities of hypoxia-inducible factors (HIFs) at clock genes. Unexpectedly, we uncover a profound disruption of the circadian clock and diurnal transcriptome when hypoxic cells are permitted to acidify to recapitulate the tumor microenvironment. Buffering against acidification or inhibiting lactic acid production fully rescues circadian oscillation. Acidification of several human and murine cell lines, as well as primary murine T cells, suppresses mechanistic target of rapamycin complex 1 (mTORC1) signaling, a key regulator of translation in response to metabolic status. We find that acid drives peripheral redistribution of normally perinuclear lysosomes away from perinuclear RHEB, thereby inhibiting the activity of lysosome-bound mTOR. Restoring mTORC1 signaling and the translation it governs rescues clock oscillation. Our findings thus reveal a model in which acid produced during the cellular metabolic response to hypoxia suppresses the circadian clock through diminished translation of clock constituents.


Assuntos
Hipóxia Celular , Relógios Circadianos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Aminoácidos Dicarboxílicos/farmacologia , Animais , Proteínas CLOCK/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Células Cultivadas , Relógios Circadianos/efeitos dos fármacos , Meios de Cultura/química , Fatores de Iniciação em Eucariotos , Concentração de Íons de Hidrogênio , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Camundongos , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Enriquecida em Homólogo de Ras do Encéfalo/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/citologia , Linfócitos T/metabolismo , Transcriptoma/efeitos dos fármacos , Proteína 2 do Complexo Esclerose Tuberosa/deficiência , Proteína 2 do Complexo Esclerose Tuberosa/genética
16.
Cell ; 175(5): 1213-1227.e18, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30318147

RESUMO

Neurons use two main schemes to encode information: rate coding (frequency of firing) and temporal coding (timing or pattern of firing). While the importance of rate coding is well established, it remains controversial whether temporal codes alone are sufficient for controlling behavior. Moreover, the molecular mechanisms underlying the generation of specific temporal codes are enigmatic. Here, we show in Drosophila clock neurons that distinct temporal spike patterns, dissociated from changes in firing rate, encode time-dependent arousal and regulate sleep. From a large-scale genetic screen, we identify the molecular pathways mediating the circadian-dependent changes in ionic flux and spike morphology that rhythmically modulate spike timing. Remarkably, the daytime spiking pattern alone is sufficient to drive plasticity in downstream arousal neurons, leading to increased firing of these cells. These findings demonstrate a causal role for temporal coding in behavior and define a form of synaptic plasticity triggered solely by temporal spike patterns.


Assuntos
Plasticidade Neuronal , Sono/fisiologia , Potenciais de Ação , Animais , Relógios Circadianos/fisiologia , Drosophila , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Modelos Neurológicos , Neurônios/metabolismo , Optogenética , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio Cálcio-Ativados/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , Transmissão Sináptica
17.
Cell ; 173(1): 130-139.e10, 2018 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-29526461

RESUMO

Endogenous circadian rhythms are thought to modulate responses to external factors, but mechanisms that confer time-of-day differences in organismal responses to environmental insults/therapeutic treatments are poorly understood. Using a xenobiotic, we find that permeability of the Drosophila "blood"-brain barrier (BBB) is higher at night. The permeability rhythm is driven by circadian regulation of efflux and depends on a molecular clock in the perineurial glia of the BBB, although efflux transporters are restricted to subperineurial glia (SPG). We show that transmission of circadian signals across the layers requires cyclically expressed gap junctions. Specifically, during nighttime, gap junctions reduce intracellular magnesium ([Mg2+]i), a positive regulator of efflux, in SPG. Consistent with lower nighttime efflux, nighttime administration of the anti-epileptic phenytoin is more effective at treating a Drosophila seizure model. These findings identify a novel mechanism of circadian regulation and have therapeutic implications for drugs targeted to the central nervous system.


Assuntos
Barreira Hematoencefálica/metabolismo , Relógios Circadianos , Drosophila/metabolismo , Rodaminas/metabolismo , Xenobióticos/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Encéfalo/metabolismo , Relógios Circadianos/efeitos dos fármacos , Conexinas/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Junções Comunicantes/metabolismo , Magnésio/metabolismo , Neuroglia/metabolismo , Fenitoína/farmacologia , Fenitoína/uso terapêutico , Convulsões/tratamento farmacológico , Convulsões/patologia , Convulsões/veterinária
18.
Nat Rev Mol Cell Biol ; 21(2): 67-84, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31768006

RESUMO

To accommodate daily recurring environmental changes, animals show cyclic variations in behaviour and physiology, which include prominent behavioural states such as sleep-wake cycles but also a host of less conspicuous oscillations in neurological, metabolic, endocrine, cardiovascular and immune functions. Circadian rhythmicity is created endogenously by genetically encoded molecular clocks, whose components cooperate to generate cyclic changes in their own abundance and activity, with a periodicity of about a day. Throughout the body, such molecular clocks convey temporal control to the function of organs and tissues by regulating pertinent downstream programmes. Synchrony between the different circadian oscillators and resonance with the solar day is largely enabled by a neural pacemaker, which is directly responsive to certain environmental cues and able to transmit internal time-of-day representations to the entire body. In this Review, we discuss aspects of the circadian clock in Drosophila melanogaster and mammals, including the components of these molecular oscillators, the function and mechanisms of action of central and peripheral clocks, their synchronization and their relevance to human health.


Assuntos
Relógios Circadianos/genética , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Animais , Relógios Circadianos/fisiologia , Drosophila melanogaster/fisiologia , Humanos , Mamíferos/fisiologia
19.
Cell ; 171(4): 738-740, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100070

RESUMO

The brightness of our visual environment varies tremendously from day to night. In this issue of Cell, Milner and Do describe how the population of retinal neurons responsible for entrainment of the brain's circadian clock cooperate to encode irradiance across a wide range of ambient-light intensities.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Animais , Luz , Neurônios , Retina
20.
Cell ; 171(6): 1232-1235, 2017 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-29195066

RESUMO

The 2017 Nobel Prize in Medicine or Physiology has been awarded to Jeffrey Hall, Michael Rosbash, and Michael Young for elucidating molecular mechanisms of the circadian clock. From studies beginning in fruit flies, we now know that circadian regulation pervades most biological processes and has strong ties to human health and disease.


Assuntos
Relógios Circadianos , Prêmio Nobel , Fisiologia/história , Animais , Proteínas CLOCK/metabolismo , História do Século XX , História do Século XXI , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA