Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Gene Med ; 24(5): e3417, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35338537

RESUMO

BACKGROUND: Congenital hydrocephalus is one of the symptoms of Walker-Warburg syndrome that is attributed to the disruptions of the genes, among which the B3GALNT2 gene is rarely reported. A diagnosis of the Walker-Warburg syndrome depends on the clinical manifestations and the whole-exome sequencing after birth, which is unfavorable for an early diagnosis. METHODS: Walker-Warburg Syndrome was suspected in two families with severe fetal congenital hydrocephalus. Whole-exome sequencing and Sanger sequencing were performed on the affected fetuses. RESULTS: The compound heterozygous variants c.1A>G p.(Met1Val) and c.1151+1G>A, and c.1068dupT p.(D357*) and c.1052 T>A p.(L351*) in the B3GALNT2 gene were identified, which were predicted to be pathogenic and likely pathogenic, respectively. Walker-Warburg syndrome was prenatally diagnosed on the basis of fetal imaging and whole-exome sequencing. CONCLUSIONS: Our findings expand the spectrum of pathogenic mutations in Walker-Warburg syndrome and provide new insights into the prenatal diagnosis of the disease.


Assuntos
Hidrocefalia , N-Acetilgalactosaminiltransferases , Síndrome de Walker-Warburg , Feminino , Humanos , Mutação , N-Acetilgalactosaminiltransferases/genética , Gravidez , Diagnóstico Pré-Natal , Síndrome de Walker-Warburg/diagnóstico , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/patologia , Sequenciamento do Exoma
2.
Cancer Sci ; 109(8): 2423-2434, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29869834

RESUMO

Cancer cells typically shift their metabolism to aerobic glycolysis to fulfill the demand of energy and macromolecules to support their proliferation. Glucose transporter (GLUT) family-mediated glucose transport is the pacesetter of aerobic glycolysis and, thus, is critical for tumor cell metabolism. Yin Yang 1 (YY1) is an oncogene crucial for tumorigenesis; however, its role in tumor cell glucose metabolism remains unclear. Here, we revealed that YY1 activates GLUT3 transcription by directly binding to its promoter and, concomitantly, enhances tumor cell aerobic glycolysis. This regulatory effect of YY1 on glucose entry into the cells is critical for YY1-induced tumor cell proliferation and tumorigenesis. Intriguingly, YY1 regulation of GLUT3 expression, and, subsequently, of tumor cell aerobic glycolysis and tumorigenesis, occurs p53-independently. Our results also showed that clinical drug oxaliplatin suppresses colon carcinoma cell proliferation by inhibiting the YY1/GLUT3 axis. Together, these results link YY1's tumorigenic potential with the critical first step of aerobic glycolysis. Thus, our novel findings not only provide new insights into the complex role of YY1 in tumorigenesis but also indicate the potential of YY1 as a target for cancer therapy irrespective of the p53 status.


Assuntos
Carcinogênese/genética , Transportador de Glucose Tipo 3/genética , Síndrome de Walker-Warburg/genética , Fator de Transcrição YY1/genética , Animais , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Glicólise/efeitos dos fármacos , Glicólise/genética , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Compostos Organoplatínicos/farmacologia , Oxaliplatina , Regiões Promotoras Genéticas/genética , Proteína Supressora de Tumor p53/genética , Síndrome de Walker-Warburg/patologia
3.
Mol Vis ; 24: 43-58, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29416295

RESUMO

Purpose: Dystroglycanopathies are a heterogeneous group of recessive neuromuscular dystrophies that affect the muscle, brain and retina, and are caused by deficiencies in the O-glycosylation of α-dystroglycan. This post-translational modification is essential for the formation and maintenance of ribbon synapses in the retina. Fukutin and fukutin-related protein (FKRP) are two glycosyltransferases whose deficiency is associated with severe dystroglycanopathies. These enzymes carry out in vitro the addition of a tandem ribitol 5-phosphate moiety to the so-called core M3 phosphotrisaccharide of α-dystroglycan. However, their expression pattern and function in the healthy mammalian retina has not so far been investigated. In this work, we have addressed the expression of the FKTN (fukutin) and FKRP genes in the retina of mammals, and characterized the distribution pattern of their protein products in the adult mouse retina and the 661W photoreceptor cell line. Methods: By means of reverse transcription (RT)-PCR and immunoblotting, we have studied the expression at the mRNA and protein levels of the fukutin and FKRP genes in different mammalian species, from rodents to humans. Immunofluorescence confocal microscopy analyses were performed to characterize the distribution profile of their protein products in mouse retinal sections and in 661W cultured cells. Results: Both genes were expressed at the mRNA and protein levels in the neural retina of all mammals studied. Fukutin was present in the cytoplasmic and nuclear fractions in the mouse retina and 661W cells, and accumulated in the endoplasmic reticulum. FKRP was located in the cytoplasmic fraction in the mouse retina and concentrated in the Golgi complex. However, and in contrast to retinal tissue, FKRP additionally accumulated in the nucleus of the 661W photoreceptors. Conclusions: Our results suggest that fukutin and FKRP not only participate in the synthesis of O-mannosyl glycans added to α-dystroglycan in the endoplasmic reticulum and Golgi complex, but that they could also play a role, that remains to be established, in the nucleus of retinal neurons.


Assuntos
Distroglicanas/genética , Proteínas de Membrana/genética , Processamento de Proteína Pós-Traducional , Proteínas/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Animais , Bovinos , Linhagem Celular , Distroglicanas/metabolismo , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Expressão Gênica , Genes Recessivos , Glicosilação , Complexo de Golgi/genética , Complexo de Golgi/metabolismo , Humanos , Macaca fascicularis , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pentosiltransferases , Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Células Fotorreceptoras Retinianas Cones/citologia , Transdução de Sinais , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/metabolismo , Síndrome de Walker-Warburg/patologia
4.
J Hum Genet ; 62(11): 945-948, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28680109

RESUMO

Fukuyama congenital muscular dystrophy (FCMD), which is caused by mutations in the fukutin gene, is the second most common form of childhood muscular dystrophy in Japan. The founder haplotype is the most prevalent in the chromosomes of Japanese FCMD patients, and corresponds to an SVA retrotransposal insertion in the 3'-untranslated region of fukutin. Although other mutations have been reported, the mutation corresponding to the second most prevalent haplotype in Japanese FCMD patients remained unknown. Recently a deep-intronic point mutation c.647+2084G>T was identified in Korean patients with congenital muscular dystrophy. Here, we performed mutational analysis of 10 patients with the second most prevalent haplotype and found that all of them were compound-heterozygous for the SVA insertion and this c.647+2084G>T mutation. The fukutin mRNA of these patients contained a pseudoexon between exon 5 and exon 6, which was consistent with the previous Korean study. As expected, the mutated fukutin protein was smaller than the normal protein, reflecting the truncation of fukutin due to a premature stop codon. Immunostaining analysis showed a decrease in the signal for the glycosylated form of α-dystroglycan. These findings indicated that this mutation is the second most prevalent loss-of-function mutation in Japanese FCMD patients.


Assuntos
Proteínas de Membrana/genética , Síndrome de Walker-Warburg/epidemiologia , Síndrome de Walker-Warburg/genética , Análise Mutacional de DNA/métodos , Éxons/genética , Feminino , Haplótipos/genética , Humanos , Íntrons/genética , Japão/epidemiologia , Masculino , Mutação Puntual , Síndrome de Walker-Warburg/patologia
5.
Neuropathol Appl Neurobiol ; 43(4): 330-345, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28039900

RESUMO

AIMS: The secondary dystroglycanopathies represent a heterogeneous group of congenital muscular dystrophies characterized by the defective glycosylation of alpha dystroglycan. These disorders are associated with mutations in at least 17 genes, including Fukutin-related protein (FKRP). At the severe end of the clinical spectrum there is substantial brain involvement, and cobblestone lissencephaly is highly suggestive of these disorders. The precise pathogenesis of this phenotype has, however, remained unclear with most attention focused on the disruption to the radial glial scaffold. Here, we set out to investigate whether lesions are apparent prior to the differentiation of the radial glia. METHODS: A detailed investigation of the structural brain defects from embryonic day 10.5 (E10.5) up until the time of birth (P0) was undertaken in the Fkrp-deficient mice (FKRPKD ). Reelin, and downstream PI3K/Akt signalling pathways were analysed using Western blot. RESULTS: We show that early basement membrane defects and neuroglial ectopia precede radial glial cell differentiation. Furthermore, we identify mislocalization of Cajal-Retzius cells which nonetheless is not associated with any apparent disruption to the reelin, and downstream PI3K/Akt signalling pathways. CONCLUSIONS: These observations identify Cajal-Retzius cell mislocalization as an early event during the development of cortical defects thereby identifying an earlier onset and more complex pathogenesis than originally reported for the secondary dystroglycanopathies. Overall this study provides new insight into central nervous system involvement in this group of diseases.


Assuntos
Encéfalo/patologia , Síndrome de Walker-Warburg/patologia , Animais , Animais Recém-Nascidos , Movimento Celular , Modelos Animais de Doenças , Embrião de Mamíferos , Camundongos , Camundongos Mutantes , Mutação de Sentido Incorreto , Pentosiltransferases , Proteínas/genética , Proteína Reelina , Transferases
6.
Am J Med Genet A ; 173(11): 3082-3086, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28980384

RESUMO

Walker-Warburg syndrome (WWS) is a rare autosomal recessive, congenital muscular dystrophy that is associated with brain and eye anomalies. Several genes encoding proteins involved in α-dystroglycan glycosylation have been implicated in the aetiology of WWS. We describe a patient with nonclassical features of WWS presenting with heart failure related to noncompaction cardiomyopathy resulting in death at 4 months of age. Muscle biopsy revealed absent α-dystroglycan on immunostaining and genetic testing confirmed the diagnosis with two previously described POMT2 mutations. This is the first reported case of WWS syndrome associated with noncompaction cardiomyopathy.


Assuntos
Cardiomiopatias/genética , Anormalidades do Olho/genética , Manosiltransferases/genética , Síndrome de Walker-Warburg/genética , Encéfalo/patologia , Cardiomiopatias/complicações , Cardiomiopatias/diagnóstico , Cardiomiopatias/patologia , Anormalidades do Olho/patologia , Predisposição Genética para Doença , Humanos , Lactente , Masculino , Mutação , Linhagem , Síndrome de Walker-Warburg/complicações , Síndrome de Walker-Warburg/diagnóstico , Síndrome de Walker-Warburg/patologia
7.
Biochim Biophys Acta Gen Subj ; 1861(10): 2462-2472, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28711406

RESUMO

BACKGROUND: O-mannosyl glycans have been found in a limited number of glycoproteins of the brain, nerves, and skeletal muscles, particularly in α-dystroglycan (α-DG). Defects in O-mannosyl glycan on α-DG are the primary cause of a group of congenital muscular dystrophies, which are collectively termed α-dystroglycanopathy. Recent studies have revealed various O-mannosyl glycan structures, which can be classified as core M1, core M2, and core M3 glycans. Although many dystroglycanopathy genes are involved in core M3 processing, the structure and biosynthesis of core M3 glycan remains only partially understood. SCOPE OF REVIEW: This review presents recent findings about the structure, biosynthesis, and pathology of O-mannosyl glycans. MAJOR CONCLUSIONS: Recent studies have revealed that the entire structure of core M3 glycan, including ribitol-5-phosphate, is a novel structure in mammals; its unique biosynthetic pathway has been elucidated by the identification of new causative genes for α-dystroglycanopathies and their functions. GENERAL SIGNIFICANCE: O-mannosyl glycan has a novel, unique structure that is important for the maintenance of brain and muscle functions. These findings have opened up a new field in glycoscience. These studies will further contribute to the understanding of the pathomechanism of α-dystroglycanopathy and the development of glycotherapeutics. This article is part of a Special Issue entitled Neuro-glycoscience, edited by Kenji Kadomatsu and Hiroshi Kitagawa.


Assuntos
Distroglicanas/química , Distrofias Musculares/metabolismo , N-Acetilglucosaminiltransferases/química , Pentosefosfatos/metabolismo , Processamento de Proteína Pós-Traducional , Síndrome de Walker-Warburg/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Sequência de Carboidratos , Distroglicanas/genética , Distroglicanas/metabolismo , Glicosilação , Humanos , Manose/química , Manose/metabolismo , Modelos Moleculares , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofias Musculares/genética , Distrofias Musculares/patologia , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/metabolismo , Pentosefosfatos/química , Polissacarídeos/química , Polissacarídeos/metabolismo , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/patologia
8.
Nature ; 478(7367): 127-31, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21979053

RESUMO

Fukuyama muscular dystrophy (FCMD; MIM253800), one of the most common autosomal recessive disorders in Japan, was the first human disease found to result from ancestral insertion of a SINE-VNTR-Alu (SVA) retrotransposon into a causative gene. In FCMD, the SVA insertion occurs in the 3' untranslated region (UTR) of the fukutin gene. The pathogenic mechanism for FCMD is unknown, and no effective clinical treatments exist. Here we show that aberrant messenger RNA (mRNA) splicing, induced by SVA exon-trapping, underlies the molecular pathogenesis of FCMD. Quantitative mRNA analysis pinpointed a region that was missing from transcripts in patients with FCMD. This region spans part of the 3' end of the fukutin coding region, a proximal part of the 3' UTR and the SVA insertion. Correspondingly, fukutin mRNA transcripts in patients with FCMD and SVA knock-in model mice were shorter than the expected length. Sequence analysis revealed an abnormal splicing event, provoked by a strong acceptor site in SVA and a rare alternative donor site in fukutin exon 10. The resulting product truncates the fukutin carboxy (C) terminus and adds 129 amino acids encoded by the SVA. Introduction of antisense oligonucleotides (AONs) targeting the splice acceptor, the predicted exonic splicing enhancer and the intronic splicing enhancer prevented pathogenic exon-trapping by SVA in cells of patients with FCMD and model mice, rescuing normal fukutin mRNA expression and protein production. AON treatment also restored fukutin functions, including O-glycosylation of α-dystroglycan (α-DG) and laminin binding by α-DG. Moreover, we observe exon-trapping in other SVA insertions associated with disease (hypercholesterolemia, neutral lipid storage disease) and human-specific SVA insertion in a novel gene. Thus, although splicing into SVA is known, we have discovered in human disease a role for SVA-mediated exon-trapping and demonstrated the promise of splicing modulation therapy as the first radical clinical treatment for FCMD and other SVA-mediated diseases.


Assuntos
Processamento Alternativo/genética , Éxons/genética , Retroelementos/genética , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/patologia , Regiões 3' não Traduzidas/genética , Processamento Alternativo/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Distroglicanas/metabolismo , Técnicas de Introdução de Genes , Glicosilação , Humanos , Íntrons/genética , Japão , Laminina/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Dados de Sequência Molecular , Mutagênese Insercional/efeitos dos fármacos , Mutagênese Insercional/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Isoformas de RNA/genética , Sítios de Splice de RNA/genética , Síndrome de Walker-Warburg/terapia
9.
J Biol Chem ; 290(16): 10256-73, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25737452

RESUMO

Protein O-mannosylation is a glycan modification that is required for normal nervous system development and function. Mutations in genes involved in protein O-mannosyl glycosylation give rise to a group of neurodevelopmental disorders known as congenital muscular dystrophies (CMDs) with associated CNS abnormalities. Our previous work demonstrated that receptor protein-tyrosine phosphatase ζ (RPTPζ)/phosphacan is hypoglycosylated in a mouse model of one of these CMDs, known as muscle-eye-brain disease, a disorder that is caused by loss of an enzyme (protein O-mannose ß-1,2-N-acetylglucosaminyltransferase 1) that modifies O-mannosyl glycans. In addition, monoclonal antibodies Cat-315 and 3F8 were demonstrated to detect O-mannosyl glycan modifications on RPTPζ/phosphacan. Here, we show that O-mannosyl glycan epitopes recognized by these antibodies define biochemically distinct glycoforms of RPTPζ/phosphacan and that these glycoforms differentially decorate the surface of distinct populations of neural cells. To provide a further structural basis for immunochemically based glycoform differences, we characterized the O-linked glycan heterogeneity of RPTPζ/phosphacan in the early postnatal mouse brain by multidimensional mass spectrometry. Structural characterization of the O-linked glycans released from purified RPTPζ/phosphacan demonstrated that this protein is a significant substrate for protein O-mannosylation and led to the identification of several novel O-mannose-linked glycan structures, including sulfo-N-acetyllactosamine containing modifications. Taken together, our results suggest that specific glycan modifications may tailor the function of this protein to the unique needs of specific cells. Furthermore, their absence in CMDs suggests that hypoglycosylation of RPTPζ/phosphacan may have different functional consequences in neurons and glia.


Assuntos
Encéfalo/enzimologia , N-Acetilglucosaminiltransferases/genética , Neuroglia/enzimologia , Neurônios/enzimologia , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/química , Síndrome de Walker-Warburg/genética , Amino Açúcares/química , Amino Açúcares/metabolismo , Animais , Animais Recém-Nascidos , Anticorpos Monoclonais/química , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Sequência de Carboidratos , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Glicosilação , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Manose/química , Manose/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , N-Acetilglucosaminiltransferases/deficiência , Neuroglia/patologia , Neurônios/patologia , Especificidade de Órgãos , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/genética , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores/metabolismo , Transdução de Sinais , Síndrome de Walker-Warburg/enzimologia , Síndrome de Walker-Warburg/patologia
10.
Neurobiol Dis ; 86: 75-85, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26607784

RESUMO

An autosomal recessive disease of Black Russian Terriers was previously described as a juvenile-onset, laryngeal paralysis and polyneuropathy similar to Charcot Marie Tooth disease in humans. We found that in addition to an axonal neuropathy, affected dogs exhibit microphthalmia, cataracts, and miotic pupils. On histopathology, affected dogs exhibit a spongiform encephalopathy characterized by accumulations of abnormal, membrane-bound vacuoles of various sizes in neuronal cell bodies, axons and adrenal cells. DNA from an individual dog with this polyneuropathy with ocular abnormalities and neuronal vacuolation (POANV) was used to generate a whole genome sequence which contained a homozygous RAB3GAP1:c.743delC mutation that was absent from 73 control canine whole genome sequences. An additional 12 Black Russian Terriers with POANV were RAB3GAP1:c.743delC homozygotes. DNA samples from 249 Black Russian Terriers with no known signs of POANV were either heterozygotes or homozygous for the reference allele. Mutations in human RAB3GAP1 cause Warburg micro syndrome (WARBM), a severe developmental disorder characterized by abnormalities of the eye, genitals and nervous system including a predominantly axonal peripheral neuropathy. RAB3GAP1 encodes the catalytic subunit of a GTPase activator protein and guanine exchange factor for Rab3 and Rab18 respectively. Rab proteins are involved in membrane trafficking in the endoplasmic reticulum, axonal transport, autophagy and synaptic transmission. The neuronal vacuolation and membranous inclusions and vacuoles in axons seen in this canine disorder likely reflect alterations of these processes. Thus, this canine disease could serve as a model for WARBM and provide insight into its pathogenesis and treatment.


Assuntos
Mutação , Polineuropatias/genética , Síndrome de Walker-Warburg/genética , Proteínas rab3 de Ligação ao GTP/genética , Animais , Catarata/genética , Catarata/patologia , Cerebelo/metabolismo , Cerebelo/ultraestrutura , Citoplasma/ultraestrutura , Modelos Animais de Doenças , Cães , Feminino , Músculos Laríngeos/ultraestrutura , Laringe/patologia , Masculino , Neurônios/metabolismo , Neurônios/ultraestrutura , Fenótipo , Polineuropatias/patologia , Polineuropatias/fisiopatologia , Polineuropatias/veterinária , Síndrome de Walker-Warburg/patologia , Síndrome de Walker-Warburg/fisiopatologia , Síndrome de Walker-Warburg/veterinária
11.
Am J Hum Genet ; 92(3): 468-74, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23472759

RESUMO

Cobblestone brain malformation (COB) is a neuronal migration disorder characterized by protrusions of neurons beyond the first cortical layer at the pial surface of the brain. It is usually seen in association with dystroglycanopathy types of congenital muscular dystrophies (CMDs) and ocular abnormalities termed muscle-eye-brain disease. Here we report homozygous deleterious mutations in LAMB1, encoding laminin subunit beta-1, in two families with autosomal-recessive COB. Affected individuals displayed a constellation of brain malformations including cortical gyral and white-matter signal abnormalities, severe cerebellar dysplasia, brainstem hypoplasia, and occipital encephalocele, but they had less apparent ocular or muscular abnormalities than are typically observed in COB. LAMB1 is localized to the pial basement membrane, suggesting that defective connection between radial glial cells and the pial surface mediated by LAMB1 leads to this malformation.


Assuntos
Encéfalo/anormalidades , Laminina/genética , Distrofias Musculares/genética , Malformações do Sistema Nervoso/genética , Deleção de Sequência , Síndrome de Walker-Warburg/genética , Membrana Basal/metabolismo , Membrana Basal/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Cerebelo/metabolismo , Cerebelo/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Encefalocele/genética , Encefalocele/metabolismo , Encefalocele/patologia , Feminino , Predisposição Genética para Doença , Homozigoto , Humanos , Masculino , Distrofias Musculares/metabolismo , Distrofias Musculares/patologia , Malformações do Sistema Nervoso/metabolismo , Malformações do Sistema Nervoso/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Síndrome de Walker-Warburg/metabolismo , Síndrome de Walker-Warburg/patologia
12.
Hum Mol Genet ; 22(9): 1746-54, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23359570

RESUMO

Several known or putative glycosyltransferases are required for the synthesis of laminin-binding glycans on alpha-dystroglycan (αDG), including POMT1, POMT2, POMGnT1, LARGE, Fukutin, FKRP, ISPD and GTDC2. Mutations in these glycosyltransferase genes result in defective αDG glycosylation and reduced ligand binding by αDG causing a clinically heterogeneous group of congenital muscular dystrophies, commonly referred to as dystroglycanopathies. The most severe clinical form, Walker-Warburg syndrome (WWS), is characterized by congenital muscular dystrophy and severe neurological and ophthalmological defects. Here, we report two homozygous missense mutations in the ß-1,3-N-acetylglucosaminyltransferase 1 (B3GNT1) gene in a family affected with WWS. Functional studies confirmed the pathogenicity of the mutations. First, expression of wild-type but not mutant B3GNT1 in human prostate cancer (PC3) cells led to increased levels of αDG glycosylation. Second, morpholino knockdown of the zebrafish b3gnt1 orthologue caused characteristic muscular defects and reduced αDG glycosylation. These functional studies identify an important role of B3GNT1 in the synthesis of the uncharacterized laminin-binding glycan of αDG and implicate B3GNT1 as a novel causative gene for WWS.


Assuntos
Mutação de Sentido Incorreto , N-Acetilglucosaminiltransferases/genética , Síndrome de Walker-Warburg/genética , Animais , Linhagem Celular Tumoral , Mapeamento Cromossômico , Estudos de Coortes , Distroglicanas/metabolismo , Feminino , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Glicosilação , Homozigoto , Humanos , Lactente , Laminina/metabolismo , Masculino , Distrofia Muscular do Cíngulo dos Membros/genética , N-Acetilglucosaminiltransferases/metabolismo , Linhagem , Fenótipo , Ligação Proteica , Síndrome de Walker-Warburg/patologia , Peixe-Zebra/genética
13.
PLoS Genet ; 7(5): e1002062, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21625620

RESUMO

Muscle-eye-brain disease (MEB) and Walker Warburg Syndrome (WWS) belong to a spectrum of autosomal recessive diseases characterized by ocular dysgenesis, neuronal migration defects, and congenital muscular dystrophy. Until now, the pathophysiology of MEB/WWS has been attributed to alteration in dystroglycan post-translational modification. Here, we provide evidence that mutations in a gene coding for a major basement membrane protein, collagen IV alpha 1 (COL4A1), are a novel cause of MEB/WWS. Using a combination of histological, molecular, and biochemical approaches, we show that heterozygous Col4a1 mutant mice have ocular dysgenesis, neuronal localization defects, and myopathy characteristic of MEB/WWS. Importantly, we identified putative heterozygous mutations in COL4A1 in two MEB/WWS patients. Both mutations occur within conserved amino acids of the triple-helix-forming domain of the protein, and at least one mutation interferes with secretion of the mutant proteins, resulting instead in intracellular accumulation. Expression and posttranslational modification of dystroglycan is unaltered in Col4a1 mutant mice indicating that COL4A1 mutations represent a distinct pathogenic mechanism underlying MEB/WWS. These findings implicate a novel gene and a novel mechanism in the etiology of MEB/WWS and expand the clinical spectrum of COL4A1-associated disorders.


Assuntos
Colágeno Tipo IV/genética , Olho/patologia , Doenças Musculares/genética , Mutação , Neurônios/patologia , Síndrome de Walker-Warburg/genética , Animais , Apoptose , Sequência de Bases , Colágeno Tipo IV/metabolismo , Humanos , Camundongos , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Alinhamento de Sequência , Síndrome de Walker-Warburg/metabolismo , Síndrome de Walker-Warburg/patologia
14.
Genes (Basel) ; 15(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39202391

RESUMO

Tubulinopathies are associated with malformations of cortical development but not Walker-Warburg Syndrome. Intensive monitoring of a Croatian infant presenting as Walker-Warburg Syndrome in utero began at 21 weeks due to increased growth of cerebral ventricles and foetal biparietal diameter. Monitoring continued until Caesarean delivery at 34 weeks where the infant was eutrophic. Clinical assessment of a progressive neurological disorder of unknown aetiology found a macrocephalic head and markedly hypoplastic genitalia with a micropenis. Neurological examination showed generalized hypotonia with very rare spontaneous movements, hypotonia-induced respiratory insufficiency and ventilator dependence, and generalized myoclonus intensifying during manipulation. With clinical features of hypotonia, lissencephaly, and brain malformations, Walker-Warburg Syndrome was suspected; however, eye anomalies were absent. Genetic trio analysis via whole-exome sequencing only identified a novel de novo mutation in the TUBA1A gene (NM_006009.4:c.848A>G; NP_006000.2:p.His283Arg) in the infant, who died at 2 months of age, as the likely cause. We report a previously unpublished, very rare heterozygous TUBA1A mutation with clinical features of macrocephaly and hypoplastic genitalia which have not previously been associated with the gene. The absence of eye phenotypes or mutations in Walker-Warburg-associated genes confirm this as not a new presentation of Walker-Warburg Syndrome but a novel TUBA1A tubulinopathy for neonatologists to be aware of.


Assuntos
Tubulina (Proteína) , Síndrome de Walker-Warburg , Humanos , Tubulina (Proteína)/genética , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/patologia , Feminino , Recém-Nascido , Lactente , Mutação , Sequenciamento do Exoma , Masculino , Croácia , Evolução Fatal
15.
Neurogenetics ; 14(3-4): 243-5, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23877401

RESUMO

Walker-Warburg syndrome (WWS) is a genetically heterogeneous form of congenital muscular dystrophy with significant brain and ocular involvement. In a multiplex consanguineous family with severe WWS phenotype, autozygome-guided sequencing of previously reported WWS genes was negative. Exome sequencing followed by autozygome filtration revealed a homozygous two-base pair insertion in B3GNT1 (NM_006876.2:c.821_822insTT), leading to premature truncation of the protein (p.Glu274Aspfs*94). Recently, two missense mutations in this gene have been reported as probably causal in a family with WWS. This report describes the first truncating mutation in B3GNT1 and confirms that this gene, which plays a role in αDG glycosylation, is a bona fide disease gene in WWS.


Assuntos
Mutação , N-Acetilglucosaminiltransferases/genética , Síndrome de Walker-Warburg/genética , Encéfalo/patologia , Feminino , Humanos , Recém-Nascido , Masculino , Síndrome de Walker-Warburg/patologia
16.
Neurogenetics ; 14(3-4): 205-13, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24052401

RESUMO

Defects in dystroglycan post-translational modification result in congenital muscular dystrophy with or without additional eye and brain involvement, are referred to as secondary dystroglycanopathies and have been associated with mutations in 11 different genes encoding glycosyltransferases or associated proteins. However, only one patient with a mutation in the dystroglycan encoding gene DAG1 itself has been described before. We here report a homozygous novel DAG1 missense mutation c.2006G>T predicted to result in the amino acid substitution p.Cys669Phe in the ß-subunit of dystroglycan in two Libyan siblings. The affected girls presented with a severe muscle-eye-brain disease-like phenotype with distinct additional findings of macrocephaly and extended bilateral multicystic white matter disease, overlapping with the cerebral findings in patients with megalencephalic leucoencephalopathy with subcortical cysts. This novel clinical phenotype observed in our patients further expands the clinical spectrum of dystroglycanopathies and suggests a role of DAG1 not only for dystroglycanopathies but also for some forms of more extensive and multicystic leucodystrophy.


Assuntos
Distroglicanas/genética , Leucoencefalopatias/genética , Leucoencefalopatias/patologia , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/patologia , Substituição de Aminoácidos , Axônios/patologia , Encéfalo/patologia , Pré-Escolar , Cistos/genética , Feminino , Ligação Genética , Homozigoto , Humanos , Leucoencefalopatias/diagnóstico , Líbia , Músculo Esquelético/patologia , Mutação de Sentido Incorreto , Fenótipo , Síndrome de Walker-Warburg/diagnóstico
18.
No To Hattatsu ; 45(6): 436-9, 2013 Nov.
Artigo em Japonês | MEDLINE | ID: mdl-24313002

RESUMO

OBJECTIVE: Sudden unexpected death (SUD) may occur in patients with Fukuyama congenital muscular dystrophy (FCMD). In this study, we performed immunohistochemical examination of SUD-related functional markers in the brainstem of autopsy cases of FCMD, in order to clarify the pathogenesis of SUD. METHODS: The examination was conducted on 9 autopsy cases of FCMD, including a case of SUD and 3 of acute death (AD) in which SUD was suspected but not confirmed. We immunohistochemically examined serial brainstem sections for serotonin and catecholamine neurons, neuropeptides, and c-Fos, a neuron activation marker. RESULTS: 1) Number of serotonin neurons was reduced in 7 cases, including the cases of SUD and AD. 2) Expressions of neuropeptides were exaggerated in the spinal trigeminal nucleus in 5 cases, including the SUD and AD ones. 3) Neurons immunoreactive for c-Fos were found in 3 cases, including the SUD and AD cases. 4) The suspected case of SUD showed changes in all SUD markers. CONCLUSIONS: Changes in the tested markers were found predominantly in the SUD and AD cases, indicating functional fragility in the brainstem of patients with FCMD.


Assuntos
Tronco Encefálico/metabolismo , Morte Súbita/patologia , Neurônios/metabolismo , Síndrome de Walker-Warburg/metabolismo , Adolescente , Adulto , Autopsia/métodos , Tronco Encefálico/patologia , Criança , Feminino , Humanos , Imuno-Histoquímica/métodos , Masculino , Síndrome de Walker-Warburg/patologia , Adulto Jovem
19.
Genes Genomics ; 45(3): 359-365, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35951155

RESUMO

BACKGROUND: Walker-Warburg syndrome (WWS) is a genetically heterogeneous disease that often presents with complex brain and eye malformations and congenital muscular dystrophy. Mutations of the ISPD gene have been identified as one of the most frequent causes of WWS. OBJECTIVE: The current study aimed to identify the cause of severe congenital hydrocephalus and brain dysplasia in our subject. METHODS: Genomic DNA was extracted from the fetus's umbilical cord blood and peripheral venous blood of the parents. The genetic analysis included whole-exome sequencing and qPCR. Additionally, in silico analysis and cellular experiments were performed. RESULTS: We identified a novel homozygous deletion of exons 7 to 9 in the ISPD gene of the fetus with WWS. In silico analysis revealed a defective domain structure in the C-terminus domain of the ISPD. Analysis of the electrostatic potential energy showed the formation of a new binding pocket formation on the surface of the mutant ISPD gene (ISPD-del ex7-9). Cellular study of the mutant ISPD revealed a significant change in its cellular localization, with the ISPD-del ex7-9 protein translocating from the cytoplasm to the nucleus compared to wild-type ISPD, which is mostly present in the cytoplasm. CONCLUSION: The present study expands the mutational spectrum of WWS caused by ISPD mutations. Importantly, our work suggests that whole-exome sequencing could be considered as a diagnostic option for fetuses with congenital hydrocephalus and brain malformations when karyotype or chromosomal microarray analysis fails to provide a definitive diagnosis.


Assuntos
Hidrocefalia , Síndrome de Walker-Warburg , Humanos , População do Leste Asiático , Homozigoto , Hidrocefalia/genética , Deleção de Sequência , Síndrome de Walker-Warburg/diagnóstico , Síndrome de Walker-Warburg/genética , Síndrome de Walker-Warburg/patologia , Masculino , Feminino , Gravidez , Feto , Diagnóstico Pré-Natal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA