Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 81(14): 2975-2988.e6, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34157308

RESUMO

The heterogeneous nature of eukaryotic replication kinetics and the low efficiency of individual initiation sites make mapping the location and timing of replication initiation in human cells difficult. To address this challenge, we have developed optical replication mapping (ORM), a high-throughput single-molecule approach, and used it to map early-initiation events in human cells. The single-molecule nature of our data and a total of >2,500-fold coverage of the human genome on 27 million fibers averaging ∼300 kb in length allow us to identify initiation sites and their firing probability with high confidence. We find that the distribution of human replication initiation is consistent with inefficient, stochastic activation of heterogeneously distributed potential initiation complexes enriched in accessible chromatin. These observations are consistent with stochastic models of initiation-timing regulation and suggest that stochastic regulation of replication kinetics is a fundamental feature of eukaryotic replication, conserved from yeast to humans.


Assuntos
Replicação do DNA/genética , Células Eucarióticas/fisiologia , Genoma Humano/genética , Linhagem Celular Tumoral , Cromatina/genética , Período de Replicação do DNA/genética , Genoma Fúngico/genética , Estudo de Associação Genômica Ampla/métodos , Células HeLa , Humanos , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Sítio de Iniciação de Transcrição/fisiologia
2.
Mol Cell ; 72(4): 661-672.e4, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30392927

RESUMO

Regular successions of positioned nucleosomes, or phased nucleosome arrays (PNAs), are predominantly known from transcriptional start sites (TSSs). It is unclear whether PNAs occur elsewhere in the genome. To generate a comprehensive inventory of PNAs for Drosophila, we applied spectral analysis to nucleosome maps and identified thousands of PNAs throughout the genome. About half of them are not near TSSs and are strongly enriched for an uncharacterized sequence motif. Through genome-wide reconstitution of physiological chromatin in Drosophila embryo extracts, we uncovered the molecular basis of PNA formation. We identified Phaser, an unstudied zinc finger protein that positions nucleosomes flanking the motif. It also revealed how the global activity of the chromatin remodelers CHRAC/ACF, together with local barrier elements, generates islands of regular phasing throughout the genome. Our work demonstrates the potential of chromatin assembly by embryo extracts as a powerful tool to reconstitute chromatin features on a global scale in vitro.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Drosophila melanogaster/genética , Nucleossomos/genética , Animais , Cromatina/fisiologia , Montagem e Desmontagem da Cromatina/fisiologia , Mapeamento Cromossômico/métodos , Drosophila/genética , Histonas , Camundongos , Nucleossomos/fisiologia , Sítio de Iniciação de Transcrição/fisiologia
3.
Mol Cell ; 70(6): 1111-1120.e3, 2018 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-29932903

RESUMO

Gene transcription is carried out by multi-subunit RNA polymerases (RNAPs). Transcription initiation is a dynamic multi-step process that involves the opening of the double-stranded DNA to form a transcription bubble and delivery of the template strand deep into the RNAP for RNA synthesis. Applying cryoelectron microscopy to a unique transcription system using σ54 (σN), the major bacterial variant sigma factor, we capture a new intermediate state at 4.1 Å where promoter DNA is caught at the entrance of the RNAP cleft. Combining with new structures of the open promoter complex and an initial de novo transcribing complex at 3.4 and 3.7 Å, respectively, our studies reveal the dynamics of DNA loading and mechanism of transcription bubble stabilization that involves coordinated, large-scale conformational changes of the universally conserved features within RNAP and DNA. In addition, our studies reveal a novel mechanism of strand separation by σ54.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/ultraestrutura , Iniciação da Transcrição Genética/fisiologia , Bactérias/genética , Microscopia Crioeletrônica/métodos , DNA , DNA Bacteriano/genética , Escherichia coli/genética , Modelos Moleculares , Regiões Promotoras Genéticas/genética , Ligação Proteica , Conformação Proteica , Fator sigma/genética , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/genética
4.
Mol Cell ; 72(4): 687-699.e6, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30318445

RESUMO

Spt6 is a conserved factor that controls transcription and chromatin structure across the genome. Although Spt6 is viewed as an elongation factor, spt6 mutations in Saccharomyces cerevisiae allow elevated levels of transcripts from within coding regions, suggesting that Spt6 also controls initiation. To address the requirements for Spt6 in transcription and chromatin structure, we have combined four genome-wide approaches. Our results demonstrate that Spt6 represses transcription initiation at thousands of intragenic promoters. We characterize these intragenic promoters and find sequence features conserved with genic promoters. Finally, we show that Spt6 also regulates transcription initiation at most genic promoters and propose a model of initiation site competition to account for this. Together, our results demonstrate that Spt6 controls the fidelity of transcription initiation throughout the genome.


Assuntos
Chaperonas de Histonas/genética , Chaperonas de Histonas/fisiologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Iniciação da Transcrição Genética/fisiologia , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/fisiologia , Cromatina/fisiologia , Regulação Fúngica da Expressão Gênica/genética , Chaperonas de Histonas/metabolismo , Histonas/fisiologia , Proteínas Nucleares , Nucleossomos , Fatores de Alongamento de Peptídeos/fisiologia , Regiões Promotoras Genéticas/genética , RNA Polimerase II , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Fatores de Transcrição/fisiologia , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/genética , Fatores de Elongação da Transcrição/metabolismo
5.
Mol Cell ; 70(3): 553-564.e9, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29681497

RESUMO

Nucleoside-containing metabolites such as NAD+ can be incorporated as 5' caps on RNA by serving as non-canonical initiating nucleotides (NCINs) for transcription initiation by RNA polymerase (RNAP). Here, we report CapZyme-seq, a high-throughput-sequencing method that employs NCIN-decapping enzymes NudC and Rai1 to detect and quantify NCIN-capped RNA. By combining CapZyme-seq with multiplexed transcriptomics, we determine efficiencies of NAD+ capping by Escherichia coli RNAP for ∼16,000 promoter sequences. The results define preferred transcription start site (TSS) positions for NAD+ capping and define a consensus promoter sequence for NAD+ capping: HRRASWW (TSS underlined). By applying CapZyme-seq to E. coli total cellular RNA, we establish that sequence determinants for NCIN capping in vivo match the NAD+-capping consensus defined in vitro, and we identify and quantify NCIN-capped small RNAs (sRNAs). Our findings define the promoter-sequence determinants for NCIN capping with NAD+ and provide a general method for analysis of NCIN capping in vitro and in vivo.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , NAD/metabolismo , Regiões Promotoras Genéticas/genética , Capuzes de RNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica/genética , Nucleotídeos/genética , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/genética , Transcriptoma/genética
6.
Proc Natl Acad Sci U S A ; 119(5)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35082149

RESUMO

Reiterative transcription initiation, observed at promoters that contain homopolymeric sequences at the transcription start site, generates RNA products having 5' sequences noncomplementary to the DNA template. Here, using crystallography and cryoelectron microscopy to define structures, protein-DNA photocrosslinking to map positions of RNAP leading and trailing edges relative to DNA, and single-molecule DNA nanomanipulation to assess RNA polymerase (RNAP)-dependent DNA unwinding, we show that RNA extension in reiterative transcription initiation 1) occurs without DNA scrunching; 2) involves a short, 2- to 3-bp, RNA-DNA hybrid; and 3) generates RNA that exits RNAP through the portal by which scrunched nontemplate-strand DNA exits RNAP in standard transcription initiation. The results establish that, whereas RNA extension in standard transcription initiation proceeds through a scrunching mechanism, RNA extension in reiterative transcription initiation proceeds through a slippage mechanism, with slipping of RNA relative to DNA within a short RNA-DNA hybrid, and with extrusion of RNA from RNAP through an alternative RNA exit.


Assuntos
Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/genética , DNA/genética , RNA Polimerases Dirigidas por DNA/genética , Regiões Promotoras Genéticas/genética , RNA/genética
7.
Mol Cell ; 59(1): 133-8, 2015 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-26073544

RESUMO

Whereas RNA polymerase II (Pol II) transcription start sites (TSSs) occur about 30-35 bp downstream of the TATA box in metazoans, TSSs are located 40-120 bp downstream in S. cerevisiae. Promoter melting begins about 12 bp downstream in all eukaryotes, so Pol II is presumed to "scan" further downstream before starting transcription in yeast. Here we report that removal of the kinase complex TFIIK from TFIIH shifts the TSS in a yeast system upstream to the location observed in metazoans. Conversely, moving the normal TSS to an upstream location enables a high level of TFIIK-independent transcription in the yeast system. We distinguish two stages of the transcription initiation process: bubble formation by TFIIH, which fills the Pol II active center with single-stranded DNA, and subsequent scanning downstream, also driven by TFIIH, which requires displacement of the initial bubble. Omission of TFIIK uncouples the two stages of the process.


Assuntos
RNA Polimerase II/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Fator de Transcrição TFIIH/genética , Sítio de Iniciação de Transcrição/fisiologia , Sequência de Bases , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIIH/metabolismo , Transcrição Gênica/genética
8.
PLoS Biol ; 17(3): e3000197, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30883542

RESUMO

Alternative transcriptional initiation (ATI) refers to the frequent observation that one gene has multiple transcription start sites (TSSs). Although this phenomenon is thought to be adaptive, the specific advantage is rarely known. Here, we propose that each gene has one optimal TSS and that ATI arises primarily from imprecise transcriptional initiation that could be deleterious. This error hypothesis predicts that (i) the TSS diversity of a gene reduces with its expression level; (ii) the fractional use of the major TSS increases, but that of each minor TSS decreases, with the gene expression level; and (iii) cis-elements for major TSSs are selectively constrained, while those for minor TSSs are not. By contrast, the adaptive hypothesis does not make these predictions a priori. Our analysis of human and mouse transcriptomes confirms each of the three predictions. These and other findings strongly suggest that ATI predominantly results from molecular errors, requiring a major revision of our understanding of the precision and regulation of transcription.


Assuntos
Sítio de Iniciação de Transcrição/fisiologia , Animais , Humanos , Camundongos , Regiões Promotoras Genéticas/genética , Transcrição Gênica/genética
9.
Int J Mol Sci ; 23(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35216094

RESUMO

Farnesoid x receptor (FXR) is a nuclear bile acid receptor that belongs to the nuclear receptor superfamily. It plays an essential role in bile acid biosynthesis, lipid and glucose metabolism, liver regeneration, and vertical sleeve gastrectomy. A loss of the FXR gene or dysregulations of FXR-mediated gene expression are associated with the development of progressive familial intrahepatic cholestasis, tumorigenesis, inflammation, and diabetes mellitus. Magnesium ion (Mg2+) is essential for mammalian physiology. Over 600 enzymes are dependent on Mg2+ for their activity. Here, we show that the Trpm6 gene encoding a Mg2+ channel is a direct FXR target gene in the intestinal epithelial cells of mice. FXR expressed in the intestinal epithelial cells is absolutely required for sustaining a basal expression of intestinal Trpm6 that can be robustly induced by the treatment of GW4064, a synthetic FXR agonist. Analysis of FXR ChIP-seq data revealed that intron regions of Trpm6 contain two prominent FXR binding peaks. Among them, the proximal peak from the transcription start site contains a functional inverted repeat 1 (IR1) response element that directly binds to the FXR-RXRα heterodimer. Based on these results, we proposed that an intestinal FXR-TRPM6 axis may link a bile acid signaling to Mg2+ homeostasis.


Assuntos
Receptores Citoplasmáticos e Nucleares/genética , Canais de Cátion TRPM/genética , Transcrição Gênica/genética , Animais , Sequência de Bases , Ácidos e Sais Biliares/genética , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Regulação da Expressão Gênica/genética , Células HeLa , Humanos , Intestinos/metabolismo , Íntrons/genética , Magnésio/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Elementos de Resposta/genética , Sítio de Iniciação de Transcrição/fisiologia
10.
Am J Hum Genet ; 103(4): 535-552, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30290150

RESUMO

Although recent studies provide evidence for a common genetic basis between complex traits and Mendelian disorders, a thorough quantification of their overlap in a phenotype-specific manner remains elusive. Here, we have quantified the overlap of genes identified through large-scale genome-wide association studies (GWASs) for 62 complex traits and diseases with genes containing mutations known to cause 20 broad categories of Mendelian disorders. We identified a significant enrichment of genes linked to phenotypically matched Mendelian disorders in GWAS gene sets; of the total 1,240 comparisons, a higher proportion of phenotypically matched or related pairs (n = 50 of 92 [54%]) than phenotypically unmatched pairs (n = 27 of 1,148 [2%]) demonstrated significant overlap, confirming a phenotype-specific enrichment pattern. Further, we observed elevated GWAS effect sizes near genes linked to phenotypically matched Mendelian disorders. Finally, we report examples of GWAS variants localized at the transcription start site or physically interacting with the promoters of genes linked to phenotypically matched Mendelian disorders. Our results are consistent with the hypothesis that genes that are disrupted in Mendelian disorders are dysregulated by non-coding variants in complex traits and demonstrate how leveraging findings from related Mendelian disorders and functional genomic datasets can prioritize genes that are putatively dysregulated by local and distal non-coding GWAS variants.


Assuntos
Herança Multifatorial/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Feminino , Predisposição Genética para Doença/genética , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Fenótipo , Regiões Promotoras Genéticas/genética , Sítio de Iniciação de Transcrição/fisiologia
11.
Plant Physiol ; 182(3): 1494-1509, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31857425

RESUMO

Phosphorus (P) is an essential plant macronutrient vital to fundamental metabolic processes. Plant-available P is low in most soils, making it a frequent limiter of growth. Declining P reserves for fertilizer production exacerbates this agricultural challenge. Plants modulate complex responses to fluctuating P levels via global transcriptional regulatory networks. Although chromatin structure plays a substantial role in controlling gene expression, the chromatin dynamics involved in regulating P homeostasis have not been determined. Here we define distinct chromatin states across the rice (Oryza sativa) genome by integrating multiple chromatin marks, including the H2A.Z histone variant, H3K4me3 modification, and nucleosome positioning. In response to P starvation, 40% of all protein-coding genes exhibit a transition from one chromatin state to another at their transcription start site. Several of these transitions are enriched in subsets of genes differentially expressed under P deficiency. The most prominent subset supports the presence of a coordinated signaling network that targets cell wall structure and is regulated in part via a decrease of H3K4me3 at transcription start sites. The P starvation-induced chromatin dynamics and correlated genes identified here will aid in enhancing P use efficiency in crop plants, benefitting global agriculture.


Assuntos
Parede Celular/metabolismo , Cromatina/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Parede Celular/genética , Regulação da Expressão Gênica de Plantas , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Sítio de Iniciação de Transcrição/fisiologia
12.
FASEB J ; 34(3): 3956-3968, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31961023

RESUMO

Heterochromatin protein (HP) 1γ, a component of heterochromatin in eukaryotes, is involved in H3K9 methylation. Although HP1γ is expressed strongly in neural tissues and neural stem cells, its functions are unclear. To elucidate the roles of HP1γ, we analyzed HP1γ -deficient (HP1γ KO) mouse embryonic neurospheres and determined that HP1γ KO neurospheres tended to differentiate after quaternary culture. Several genes normally expressed in neuronal cells were upregulated in HP1γ KO undifferentiated neurospheres, but not in the wild type (WT). Compared to that in the control neurospheres, the occupancy of H3K27me3 was lower around the transcription start sites (TSSs) of these genes in HP1γ KO neurospheres, while H3K9me2/3, H3K4me3, and H3K27ac amounts remained unchanged. Moreover, amounts of the H3K27me2/3 demethylases, UTX, and JMJD3, were increased around the TSSs of these genes. Treatment with GSK-J4, an inhibitor of H3K27 demethylases, decreased the expression of genes upregulated in HP1γ KO neurospheres, along with an increase of H3K27me3 amounts. Therefore, in murine neurospheres, HP1γ protected the promoter sites of differentiated cell-specific genes against H3K27 demethylases to repress the expression of these genes. A better understanding of central cellular processes such as histone methylation will help elucidate critical events such as cell-specific gene expression, epigenetics, and differentiation.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Imunoprecipitação da Cromatina , Proteínas Cromossômicas não Histona/genética , Imunofluorescência , Ontologia Genética , Imageamento por Ressonância Magnética , Camundongos , Camundongos Knockout , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sítio de Iniciação de Transcrição/fisiologia
13.
FASEB J ; 34(8): 11257-11271, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32648265

RESUMO

Porcine reproductive and respiratory syndrome (PRRS) is the most economically important infectious disease of pigs worldwide. Our previous study revealed that Tongcheng (TC) pigs display higher resistance to PRRS than Largewhite (LW) pigs, but the genetic mechanism remains unknown. Here, we first confirmed that CXCL14 was downregulated in lungs and porcine alveolar macrophages (PAMs) responding to PRRS virus (PRRSV) infection, but the decline in LW pigs was more obvious than that in TC pigs. Then, we found that the overexpression of CXCL14 activated type-I interferon (IFN-I) signaling by upregulating interferon beta (IFNB), which plays a major role in the antiviral effect. To further decipher the mechanism underlying its differential expression, we characterized the core promoter of CXCL14 as being located from -145 to 276 bp of the transcription start site (TSS) and identified two main haplotypes that displayed significant differential transcriptional activities. We further identified two coupled point mutations that altered the binding status of CEBPB and were responsible for the differential expression in TC and LW pigs. The regulatory effect of CEBPB on CXCL14 was further confirmed by RNA interference (RNAi) and chromatin immunoprecipitation (ChIP), providing crucial clues for deciphering the mechanism of CXCL14 downregulation in unusual conditions. The present study revealed the potential antiviral effect of CXCL14, occurring via activation of interferon signaling, and suggested that CXCL14 contributes to the PRRS resistance of TC pigs.


Assuntos
Antivirais/metabolismo , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Quimiocinas CXC/metabolismo , Interferon beta/metabolismo , Mutação/genética , Vírus da Síndrome Respiratória e Reprodutiva Suína/metabolismo , Regiões Promotoras Genéticas/genética , Animais , Proteína beta Intensificadora de Ligação a CCAAT/genética , Quimiocinas CXC/genética , Regulação para Baixo/genética , Pulmão/metabolismo , Pulmão/virologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/virologia , Síndrome Respiratória e Reprodutiva Suína/genética , Síndrome Respiratória e Reprodutiva Suína/metabolismo , Síndrome Respiratória e Reprodutiva Suína/virologia , Ligação Proteica/genética , Ligação Proteica/fisiologia , Interferência de RNA/fisiologia , Transdução de Sinais/genética , Suínos , Sítio de Iniciação de Transcrição/fisiologia , Ativação Transcricional/genética
14.
Exp Cell Res ; 387(2): 111786, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31870772

RESUMO

Lysyl oxidase like 2, LOXL2, as a member of the lysyl oxidase (LOX) family, has been shown to function similarly to LOX in the extracellular matrix (ECM) by promoting crosslinking of collagen and elastin. LOXL2 is also engaged to transcription regulation, cell signaling transduction and cell adhesion regulation. It has been reported that LOXL2 is highly expressed in several types of tumors and promotes cell proliferation and migration in various cancer cells. However, the regulatory mechanism of LOXL2 expression remains largely unknown. To further investigate its transcriptional regulatory mechanism, LOXL2 promoter region has been cloned and identified in the present study. Chromatin state analysis revealed that LOXL2 gene locus contained an active promoter near its first exon. We then constructed five different LOXL2 gene promoter luciferase reporter constructs covering 1.7 kb upstream of LOXL2 gene transcription initiation site. Series luciferase reporter assay demonstrated that all the five constructs showed notable promoter activity, and LOXL2 core promoter was located in a region of 185 bp near the transcription initiation site. Transcriptional factor binding analysis indicated that, LOXL2 promoter lacked classical TATA box, but contained putative binding sites for classic transcriptional factors such as Sp1 and NF-κB. Ectopic overexpression of Sp1 significantly enhanced LOXL2 promoter activity as well as its endogenous expression in cells. In contrast, mithramycin A (a selective Sp1 inhibitor) treatment repressed LOXL2 promoter as well as its endogenous transcription. Site directed mutagenesis assay further confirmed that the Sp1 binding sites were essential for proximal prompter activity of LOXL2 gene. Chromatin immunoprecipitation (ChIP) assay revealed that Sp1 bound LOXL2 promoter in vivo. Of note, the expression of Sp1 and LOXL2 are positively correlated, and the higher expression of LOXL2 is associated with poor prognosis in colorectal cancer, strongly suggesting the implication of Sp1-mediated LOXL2 transactivation in the pathogenesis of colorectal cancer.


Assuntos
Aminoácido Oxirredutases/genética , Neoplasias Colorretais/genética , Regiões Promotoras Genéticas/genética , Sequência de Bases , Sítios de Ligação/genética , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/genética , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , NF-kappa B/genética , Ligação Proteica/genética , Alinhamento de Sequência , Fator de Transcrição Sp1/genética , Sítio de Iniciação de Transcrição/fisiologia
15.
Lett Appl Microbiol ; 72(5): 610-618, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33525052

RESUMO

Paenibacillus durus strain ATCC 35681T is a Gram-positive diazotroph that displayed capability of fixing nitrogen even in the presence of nitrate or ammonium. However, the nitrogen fixation activity was detected only at day 1 of growth when cultured in liquid nitrogen-enriched medium. The transcripts of all the nifH homologues were present throughout the 9-day study. When grown in nitrogen-depleted medium, nitrogenase activities occurred from day 1 until day 6 and the nifH transcripts were also present during the course of the study albeit at different levels. In both studies, the absence of nitrogen fixation activity regardless of the presence of the nifH transcripts raised the possibility of a post-transcriptional or post-translational regulation of the system. A putative SigA box sequence was found upstream of the transcription start site of nifB1, the first gene in the major nitrogen fixation cluster. The upstream region of nifB2 showed a promoter recognizable by SigE, a sigma factor normally involved in sporulation.


Assuntos
Fixação de Nitrogênio/genética , Oxirredutases/genética , Paenibacillus/genética , Paenibacillus/metabolismo , Transcrição Gênica/genética , Proteínas de Bactérias/genética , Meios de Cultura/química , Nitrogênio/metabolismo , Oxirredutases/metabolismo , Paenibacillus/crescimento & desenvolvimento , Regiões Promotoras Genéticas/genética , Fator sigma/genética , Sítio de Iniciação de Transcrição/fisiologia
16.
Proc Natl Acad Sci U S A ; 115(30): 7831-7836, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29915080

RESUMO

Plants adapt to alterations in light conditions by controlling their gene expression profiles. Expression of light-inducible genes is transcriptionally induced by transcription factors such as HY5. However, few detailed analyses have been carried out on the control of transcription start sites (TSSs). Of the various wavelengths of light, it is blue light (BL) that regulates physiological responses such as hypocotyl elongation and flowering time. To understand how gene expression is controlled not only by transcript abundance but also by TSS selection, we examined genome-wide TSS profiles in Arabidopsis seedlings after exposure to BL irradiation following initial growth in the dark. Thousands of genes use multiple TSSs, and some transcripts have upstream ORFs (uORFs) that take precedence over the main ORF (mORF) encoding proteins. The uORFs often function as translation inhibitors of the mORF or as triggers of nonsense-mediated mRNA decay (NMD). Transcription from TSSs located downstream of the uORFs in 220 genes is enhanced by BL exposure. This type of regulation is found in HY5 and HYH, major regulators of light-dependent gene expression. Translation efficiencies of the genes showing enhanced usage of these TSSs increased upon BL exposure. We also show that transcripts from TSSs upstream of uORFs in 45 of the 220 genes, including HY5, accumulated in a mutant of NMD. These results suggest that BL controls gene expression not only by enhancing transcriptions but also by choosing the TSS, and transcripts from downstream TSSs evade uORF-mediated inhibition to ensure high expression of light-regulated genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas Nucleares/metabolismo , Fases de Leitura Aberta/fisiologia , Sítio de Iniciação de Transcrição/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição de Zíper de Leucina Básica/genética , Proteínas de Transporte/genética , Proteínas de Ligação a DNA , Proteínas Nucleares/genética
17.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925231

RESUMO

Genome-wide transcriptomic data obtained in RNA-seq experiments can serve as a reliable source for identification of novel regulatory elements such as riboswitches and promoters. Riboswitches are parts of the 5' untranslated region of mRNA molecules that can specifically bind various metabolites and control gene expression. For that reason, they have become an attractive tool for engineering biological systems, especially for the regulation of metabolic fluxes in industrial microorganisms. Promoters in the genomes of prokaryotes are located upstream of transcription start sites and their sequences are easily identifiable based on the primary transcriptome data. Bacillus methanolicus MGA3 is a candidate for use as an industrial workhorse in methanol-based bioprocesses and its metabolism has been studied in systems biology approaches in recent years, including transcriptome characterization through RNA-seq. Here, we identify a putative lysine riboswitch in B. methanolicus, and test and characterize it. We also select and experimentally verify 10 putative B. methanolicus-derived promoters differing in their predicted strength and present their functionality in combination with the lysine riboswitch. We further explore the potential of a B. subtilis-derived purine riboswitch for regulation of gene expression in the thermophilic B. methanolicus, establishing a novel tool for inducible gene expression in this bacterium.


Assuntos
Bacillus/genética , Engenharia Genética/métodos , Riboswitch/genética , Bacillus/metabolismo , Proteínas de Bactérias/metabolismo , Biologia Computacional/métodos , Genoma Bacteriano/genética , Análise do Fluxo Metabólico/métodos , Regiões Promotoras Genéticas/genética , Sequências Reguladoras de Ácido Nucleico , Sítio de Iniciação de Transcrição/fisiologia , Transcriptoma/genética
18.
Plant Cell ; 29(4): 843-853, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28373518

RESUMO

To more precisely define the positions from which certain intronic regulatory sequences increase mRNA accumulation, the effect of a UBIQUITIN intron on gene expression was tested from six different positions surrounding the transcription start site (TSS) of a reporter gene fusion in Arabidopsis thaliana The intron increased expression from all transcribed positions but had no effect when upstream of the 5'-most TSS. While this implies that the intron must be transcribed to increase expression, the TSS changed when the intron was located in the 5'-untranslated region (UTR), suggesting that the intron affects transcription initiation. Remarkably, deleting 303 nucleotides of the promoter including all known TSSs and all but 18 nucleotides of the 5'-UTR had virtually no effect on the level of gene expression as long as an intron containing stimulatory sequences was included. Instead, transcription was initiated in normally untranscribed sequences the same distance upstream of the intron as when the promoter was intact. These results suggest that certain intronic DNA sequences play unexpectedly large roles in directing transcription initiation and constitute a previously unrecognized type of downstream regulatory element for genes transcribed by RNA polymerase II.


Assuntos
DNA de Plantas/genética , Íntrons/genética , Regiões Promotoras Genéticas/genética , Regiões 5' não Traduzidas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , RNA Polimerase II/genética , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/genética
19.
Plant Cell ; 29(4): 791-807, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28258158

RESUMO

The influence of the histone variant H2A.Z on transcription remains a long-standing conundrum. Here, by analyzing the actin-related protein6 mutant, which is impaired in H2A.Z deposition, and by H2A.Z profiling in stress conditions, we investigated the impact of this histone variant on gene expression in Arabidopsis thaliana We demonstrate that the arp6 mutant exhibits anomalies in response to osmotic stress. Indeed, stress-responsive genes are overrepresented among those hyperactive in arp6. In wild-type plants, these genes exhibit high levels of H2A.Z in the gene body. Furthermore, we observed that in drought-responsive genes, levels of H2A.Z in the gene body correlate with transcript levels. H2A.Z occupancy, but not distribution, changes in parallel with transcriptional changes. In particular, we observed H2A.Z loss upon transcriptional activation and H2A.Z gain upon repression. These data suggest that H2A.Z has a repressive role in transcription and counteracts unwanted expression in noninductive conditions. However, reduced activity of some genes in arp6 is associated with distinct behavior of H2A.Z at their +1 nucleosome, which exemplifies the requirement of this histone for transcription. Our data support a model where H2A.Z in gene bodies has a strong repressive effect on transcription, whereas in +1 nucleosomes, it is important for maintaining the activity of some genes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Histonas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Secas , Histonas/genética , Nucleossomos/genética , Nucleossomos/metabolismo , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia , Sítio de Iniciação de Transcrição/fisiologia , Ativação Transcricional/genética , Ativação Transcricional/fisiologia
20.
FASEB J ; 32(8): 4270-4283, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29533737

RESUMO

Bcr-Abl (break-point cluster region-abelson), the oncogenic trigger of chronic myelogenous leukemia (CML), has previously been shown to up-regulate the expression and activity of sphingomyelin synthase 1 (SMS1), which contributes to the proliferation of CML cells; however, the mechanism by which this increased expression of SMS1 is mediated remains unknown. In the current study, we show that Bcr-Abl enhances the expression of SMS1 via a 30-fold up-regulation of its transcription. Of most interest, the Bcr-Abl-regulated transcription of SMS1 is initiated from a novel transcription start site (TSS) that is just upstream of the open reading frame. This shift in TSS utilization generates an SMS1 mRNA with a substantially shorter 5' UTR compared with its canonical mRNA. This shorter 5' UTR imparts a 20-fold greater translational efficiency to SMS1 mRNA, which further contributes to the increase of its expression in CML cells. Therefore, our study demonstrates that Bcr-Abl increases SMS1 protein levels via 2 concerted mechanisms: up-regulation of transcription and enhanced translation as a result of the shift in TSS utilization. Remarkably, this is the first time that an oncogene-Bcr-Abl-has been demonstrated to drive such a mechanism that up-regulates the expression of a functionally important target gene, SMS1.-Moorthi, S., Burns, T. A., Yu, G.-Q., Luberto, C. Bcr-Abl regulation of sphingomyelin synthase 1 reveals a novel oncogenic-driven mechanism of protein up-regulation.


Assuntos
Carcinogênese/genética , Proteínas de Fusão bcr-abl/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Regulação para Cima/genética , Regiões 5' não Traduzidas/genética , Linhagem Celular Tumoral , Células HL-60 , Células HeLa , Humanos , Células K562 , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA