Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 549
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Methods ; 21(3): 488-500, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38361019

RESUMO

Protein-protein interactions (PPIs) drive cellular processes and responses to environmental cues, reflecting the cellular state. Here we develop Tapioca, an ensemble machine learning framework for studying global PPIs in dynamic contexts. Tapioca predicts de novo interactions by integrating mass spectrometry interactome data from thermal/ion denaturation or cofractionation workflows with protein properties and tissue-specific functional networks. Focusing on the thermal proximity coaggregation method, we improved the experimental workflow. Finely tuned thermal denaturation afforded increased throughput, while cell lysis optimization enhanced protein detection from different subcellular compartments. The Tapioca workflow was next leveraged to investigate viral infection dynamics. Temporal PPIs were characterized during the reactivation from latency of the oncogenic Kaposi's sarcoma-associated herpesvirus. Together with functional assays, NUCKS was identified as a proviral hub protein, and a broader role was uncovered by integrating PPI networks from alpha- and betaherpesvirus infections. Altogether, Tapioca provides a web-accessible platform for predicting PPIs in dynamic contexts.


Assuntos
Herpesvirus Humano 8 , Manihot , Sarcoma de Kaposi , Sarcoma de Kaposi/metabolismo , Proteínas Virais/metabolismo , Manihot/metabolismo , Latência Viral , Herpesvirus Humano 8/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(42): e2403217121, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39378089

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a viral G protein-coupled receptor, KSHV-GPCR, that contributes to KSHV immune evasion and pathogenesis of Kaposi's sarcoma. KSHV-GPCR shares a high similarity with CXC chemokine receptors CXCR2 and can be activated by selected chemokine ligands. Like other herpesvirus-encoded GPCRs, KSHV-GPCR is characterized by its constitutive activity by coupling to various G proteins. We investigated the structural basis of ligand-dependent and constitutive activation of KSHV-GPCR, obtaining high-resolution cryo-EM structures of KSHV-GPCR-Gi complexes with and without the bound CXCL1 chemokine. Analysis of the apo-KSHV-GPCR-Gi structure (2.81 Å) unraveled the involvement of extracellular loop 2 in constitutive activation of the receptor. In comparison, the CXCL1-bound KSHV-GPCR-Gi structure (3.01 Å) showed a two-site binding mode and provided detailed information of CXCL1 binding to a chemokine receptor. The dual activation mechanism employed by KSHV-GPCR represents an evolutionary adaptation for immune evasion and contributes to the pathogenesis of Kaposi's sarcoma. Together with results from functional assays that confirmed the structural models, these findings may help to develop therapeutic strategies for KSHV infection.


Assuntos
Quimiocina CXCL1 , Herpesvirus Humano 8 , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/genética , Quimiocina CXCL1/metabolismo , Humanos , Proteínas Virais/metabolismo , Proteínas Virais/química , Microscopia Crioeletrônica , Ligação Proteica , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Modelos Moleculares , Sarcoma de Kaposi/virologia , Sarcoma de Kaposi/metabolismo , Receptores de Quimiocinas
3.
PLoS Pathog ; 20(8): e1012081, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39186813

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) establishes persistent infection in the host by encoding a vast network of proteins that aid immune evasion. One of these targeted innate immunity pathways is the cGAS-STING pathway, which inhibits the reactivation of KSHV from latency. Previously, we identified multiple cGAS/STING inhibitors encoded by KSHV, suggesting that the counteractions of this pathway by viral proteins are critical for maintaining a successful KSHV life cycle. However, the detailed mechanisms of how these viral proteins block innate immunity and facilitate KSHV lytic replication remain largely unknown. In this study, we report that ORF48, a previously identified negative regulator of the cGAS/STING pathway, is required for optimal KSHV lytic replication. We used both siRNA and deletion-based systems to evaluate the importance of intact ORF48 in the KSHV lytic cycle. In both systems, loss of ORF48 resulted in defects in lytic gene transcription, lytic protein expression, viral genome replication and infectious virion production. ORF48 genome deletion caused more robust and global repression of the KSHV transcriptome, possibly due to the disruption of RTA promoter activity. Mechanistically, overexpressed ORF48 was found to colocalize and interact with endogenous STING in HEK293 cells. Endogenous ORF48 and STING interactions were also detected in reactivated iSLK.219 cells. Compared with the control cell line, HUVEC cells stably expressing ORF48 exhibited repressed STING-dependent innate immune signaling upon ISD or diABZI treatment. However, the loss of ORF48 in our iSLK-based lytic system failed to induce IFNß production, suggesting a redundant role of ORF48 on STING signaling during the KSHV lytic phase. Thus, ORF48 is required for optimal KSHV lytic replication through additional mechanisms that need to be further explored.


Assuntos
Herpesvirus Humano 8 , Proteínas Virais , Replicação Viral , Herpesvirus Humano 8/fisiologia , Humanos , Replicação Viral/fisiologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Imunidade Inata , Células HEK293 , Sarcoma de Kaposi/virologia , Sarcoma de Kaposi/metabolismo , Regulação Viral da Expressão Gênica , Latência Viral/fisiologia , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia
4.
PLoS Pathog ; 20(9): e1012535, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39255317

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is a double-stranded DNA virus that encodes numerous cellular homologs, including cyclin D, G protein-coupled protein, interleukin-6, and macrophage inflammatory proteins 1 and 2. KSHV vCyclin encoded by ORF72, is the homolog of cellular cyclinD2. KSHV vCyclin can regulate virus replication and cell proliferation by constitutively activating cellular cyclin-dependent kinase 6 (CDK6). However, the regulatory mechanism of KSHV vCyclin has not been fully elucidated. In the present study, we identified a host protein named protein arginine methyltransferase 5 (PRMT5) that interacts with KSHV vCyclin. We further demonstrated that PRMT5 is upregulated by latency-associated nuclear antigen (LANA) through transcriptional activation. Remarkably, knockdown or pharmaceutical inhibition (using EPZ015666) of PRMT5 inhibited the cell cycle progression and cell proliferation of KSHV latently infected tumor cells. Mechanistically, PRMT5 methylates vCyclin symmetrically at arginine 128 and stabilizes vCyclin in a methyltransferase activity-dependent manner. We also show that the methylation of vCyclin by PRMT5 positively regulates the phosphorylate retinoblastoma protein (pRB) pathway. Taken together, our findings reveal an important regulatory effect of PRMT5 on vCyclin that facilitates cell cycle progression and proliferation, which provides a potential therapeutic target for KSHV-associated malignancies.


Assuntos
Ciclo Celular , Proliferação de Células , Herpesvirus Humano 8 , Proteína-Arginina N-Metiltransferases , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Humanos , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/fisiologia , Metilação , Antígenos Virais/metabolismo , Antígenos Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Ciclina D2/metabolismo , Células HEK293 , Replicação Viral/fisiologia , Sarcoma de Kaposi/virologia , Sarcoma de Kaposi/metabolismo , Proteínas Nucleares
5.
J Virol ; 98(6): e0000524, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38717113

RESUMO

TRIM32 is often aberrantly expressed in many types of cancers. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with several human malignancies, including Kaposi's sarcoma and primary effusion lymphomas (PELs). Increasing evidence has demonstrated the crucial role of KSHV lytic replication in viral tumorigenesis. However, the role of TRIM32 in herpesvirus lytic replication remains unclear. Here, we reveal that the expression of TRIM32 is upregulated by KSHV in latency, and reactivation of KSHV lytic replication leads to the inhibition of TRIM32 in PEL cells. Strikingly, RTA, the master regulator of lytic replication, interacts with TRIM32 and dramatically promotes TRIM32 for degradation via the proteasome systems. Inhibition of TRIM32 induces cell apoptosis and in turn inhibits the proliferation and colony formation of KSHV-infected PEL cells and facilitates the reactivation of KSHV lytic replication and virion production. Thus, our data imply that the degradation of TRIM32 is vital for the lytic activation of KSHV and is a potential therapeutic target for KSHV-associated cancers. IMPORTANCE: TRIM32 is associated with many cancers and viral infections; however, the role of TRIM32 in viral oncogenesis remains largely unknown. In this study, we found that the expression of TRIM32 is elevated by Kaposi's sarcoma-associated herpesvirus (KSHV) in latency, and RTA (the master regulator of lytic replication) induces TRIM32 for proteasome degradation upon viral lytic reactivation. This finding provides a potential therapeutic target for KSHV-associated cancers.


Assuntos
Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Proteólise , Transativadores , Fatores de Transcrição , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Ativação Viral , Replicação Viral , Humanos , Apoptose , Linhagem Celular , Herpesvirus Humano 8/crescimento & desenvolvimento , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/patogenicidade , Herpesvirus Humano 8/fisiologia , Proteínas Imediatamente Precoces/metabolismo , Proteínas Imediatamente Precoces/genética , Linfoma de Efusão Primária/virologia , Linfoma de Efusão Primária/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Sarcoma de Kaposi/virologia , Sarcoma de Kaposi/metabolismo , Transativadores/metabolismo , Transativadores/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Latência Viral
6.
J Virol ; 97(3): e0176322, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995092

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi sarcoma (KS), the plasmablastic form of multicentric Castleman's disease, and primary effusion lymphoma. In sub-Saharan Africa, KS is the most common HIV-related malignancy and one of the most common childhood cancers. Immunosuppressed patients, including HIV-infected patients, are more prone to KSHV-associated disease. KSHV encodes a viral protein kinase (vPK) that is expressed from ORF36. KSHV vPK contributes to the optimal production of infectious viral progeny and upregulation of protein synthesis. To elucidate the interactions of vPK with cellular proteins in KSHV-infected cells, we used a bottom-up proteomics approach and identified host protein ubiquitin-specific peptidase 9X-linked (USP9X) as a potential interactor of vPK. Subsequently, we validated this interaction using a co-immunoprecipitation assay. We report that both the ubiquitin-like and the catalytic domains of USP9X are important for association with vPK. To uncover the biological relevance of the USP9X/vPK interaction, we investigated whether the knockdown of USP9X would modulate viral reactivation. Our data suggest that depletion of USP9X inhibits both viral reactivation and the production of infectious virions. Understanding how USP9X influences the reactivation of KSHV will provide insights into how cellular deubiquitinases regulate viral kinase activity and how viruses co-opt cellular deubiquitinases to propagate infection. Hence, characterizing the roles of USP9X and vPK during KSHV infection constitutes a first step toward identifying a potentially critical interaction that could be targeted by future therapeutics. IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of Kaposi sarcoma (KS), the plasmablastic form of multicentric Castleman's disease, and primary effusion lymphoma. In sub-Saharan Africa, KS is the most common HIV-related malignancy. KSHV encodes a viral protein kinase (vPK) that aids viral replication. To elucidate the interactions of vPK with cellular proteins in KSHV-infected cells, we used an affinity purification approach and identified host protein ubiquitin-specific peptidase 9X-linked (USP9X) as a potential interactor of vPK. Depletion of USP9X inhibits both viral reactivation and the production of infectious virions. Overall, our data suggest a proviral role for USP9X.


Assuntos
Herpesvirus Humano 8 , Sarcoma de Kaposi , Ubiquitina Tiolesterase , Criança , Humanos , Enzimas Desubiquitinantes , Herpesvirus Humano 8/fisiologia , Infecções por HIV/complicações , Linfoma de Efusão Primária , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Ubiquitina Tiolesterase/genética , Proteínas Virais/genética
7.
Clin Exp Immunol ; 215(2): 190-201, 2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-37904542

RESUMO

Valganciclovir (VGC) was used in a randomized clinical trial in patients with disseminated Kaposi Sarcoma/human immunodeficiency virus (DKS/HIV) as add-on therapy to evaluate the proinflammatory axis tumor necrosis factor (TNF) and its receptors (TNFRs) in T cells. Two treatment schedules were used: an experimental regime (ER) and a conventional treatment (CT). Mononuclear cells from patients with DKS/HIV were obtained at baseline (W0), 4 (W4), and 12 weeks (W12). Ten DKS/HIV patients received CT (antiretroviral therapy [cART]) and 10 ER (valganciclovir [VGC] initially, plus cART at the fourth week). HIV+ without KS and HIV- patient groups were included as controls. Correlation between T-cell subsets and HHV-8 viral load (VL) and a multivariate linear regression was performed. Data showed that DKS/HIV patients have an increased frequency of CD8+ T cells, which display a high density of CD8 expression. The ER scheme increases naïve and central memory CD4+ T cells at W4 and W12 of follow-up and induces a balanced distribution of activated CD4+ T-cell subsets. Moreover, ER decreases solTNFR2 since W4 and CT decreased the transmembrane forms of TNF axis molecules. Although CT induces a positive correlation between HHV-8 VL and TNFRs, the use of ER positively correlates with TNF and TNFRs levels through follow-up and a moderate correlation with HHV-8 VL and TNF soluble levels. In conclusion, VGC, as an add-on therapy in DKS/HIV patients, gradually modulates the activation of CD4+ T-cell subsets and the TNF/TNFRs axis, suggesting a better regulation of the inflammatory status.


Assuntos
Infecções por HIV , Sarcoma de Kaposi , Sulfonamidas , Humanos , Sarcoma de Kaposi/tratamento farmacológico , Sarcoma de Kaposi/metabolismo , Infecções por HIV/metabolismo , Valganciclovir/metabolismo , Valganciclovir/uso terapêutico , Linfócitos T CD4-Positivos/metabolismo , Subpopulações de Linfócitos T , Linfócitos T CD8-Positivos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Carga Viral
8.
Skin Res Technol ; 30(10): e70086, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39349354

RESUMO

OBJECTIVE: This study aims to examine the expression of androgen receptor (AR) and estrogen receptor (ER) in patients with classic Kaposi's sarcoma (CKS) in Xinjiang, as well as to assess the serum levels of sex hormones in these patients. The objective is to explore potential new directions and targets for diagnosing and treating CKS in Xinjiang. METHODS: The case group comprised 35 patients diagnosed with CKS who presented at our hospital from 2014 to 2021. The control group consisted of 35 patients with pyogenic granuloma (PG) who visited the hospital during the same period, selected using propensity score matching (PSM). Immunohistochemistry was used to detect AR, human herpesvirus type 8 (HHV-8), and ER in paraffin-embedded tissue samples from patients diagnosed with CKS and PG. Additionally, enzyme-linked immunosorbent assay (ELISA) was used to quantitatively measure serum sex hormone levels in the 35 patients with CKS and 35 patients with PG. RESULTS: AR expression was relatively weak in both the CKS and PG groups, with the PG group exhibiting a slightly stronger expression than the CKS group. Conversely, the expression of ER was significantly higher in the CKS group compared to the PG group (p < 0.05). Additionally, serum testosterone (T) levels were elevated in the CKS group, while serum estradiol (E2) levels were higher in the PG group (p < 0.05). CONCLUSION: Sex hormones and their receptors are implicated in the pathogenesis of CKS in Xinjiang. The use of ER antagonists may represent a novel avenue for research and treatment of CKS.


Assuntos
Receptores Androgênicos , Receptores de Estrogênio , Sarcoma de Kaposi , Humanos , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/sangue , Sarcoma de Kaposi/etnologia , Masculino , Receptores Androgênicos/metabolismo , Feminino , Pessoa de Meia-Idade , China , Receptores de Estrogênio/metabolismo , Idoso , Hormônios Esteroides Gonadais/sangue , Hormônios Esteroides Gonadais/metabolismo , Adulto , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/sangue , Herpesvirus Humano 8
9.
Proc Natl Acad Sci U S A ; 118(45)2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34725152

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) causes the endothelial tumor KS, a leading cause of morbidity and mortality in sub-Saharan Africa. KSHV-encoded microRNAs (miRNAs) are known to play an important role in viral oncogenesis; however, the role of host miRNAs in KS tumorigenesis remains largely unknown. Here, high-throughput small-RNA sequencing of the cellular transcriptome in a KS xenograft model revealed miR-127-3p as one of the most significantly down-regulated miRNAs, which we validated in KS patient tissues. We show that restoration of miR-127-3p suppresses KSHV-driven cellular transformation and proliferation and induces G1 cell cycle arrest by directly targeting the oncogene SKP2. This miR-127-3p-induced G1 arrest is rescued by disrupting the miR-127-3p target site in SKP2 messenger RNA (mRNA) using gene editing. Mechanistically, miR-127-3p-mediated SKP2 repression elevates cyclin-dependent kinase (CDK) inhibitor p21Cip1 and down-regulates cyclin E, cyclin A, and CDK2, leading to activation of the RB protein tumor suppressor pathway and suppression of the transcriptional activities of E2F and Myc, key oncoprotein transcription factors crucial for KSHV tumorigenesis. Consequently, metabolomics analysis during miR-127-3p-induced cell cycle arrest revealed significant depletion of dNTP pools, consistent with RB-mediated repression of key dNTP biosynthesis enzymes. Furthermore, miR-127-3p reconstitution in a KS xenograft mouse model suppresses KSHV-positive tumor growth by targeting SKP2 in vivo. These findings identify a previously unrecognized tumor suppressor function for miR-127-3p in KS and demonstrate that the miR-127-3p/SKP2 axis is a viable therapeutic strategy for KS.


Assuntos
Transformação Celular Neoplásica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Sarcoma de Kaposi/metabolismo , Animais , Carcinogênese , Feminino , Herpesvirus Humano 8/fisiologia , Humanos , Camundongos Nus , Sarcoma de Kaposi/virologia
10.
PLoS Pathog ; 17(9): e1009947, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34543357

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) preferentially infects and causes Kaposi's sarcoma (KS) in male patients. However, the biological mechanisms are largely unknown. This study was novel in confirming the extensive nuclear distribution of the androgen receptor (AR) and its co-localization with viral oncoprotein of latency-associated nuclear antigen in KS lesions, indicating a transcription way of AR in KS pathogenesis. The endogenous AR was also remarkably higher in KSHV-positive B cells than in KSHV-negative cells and responded to the ligand treatment of 5α-dihydrotestosterone (DHT), the agonist of AR. Then, the anti-AR antibody-based chromatin immunoprecipitation (ChIP)-associated sequencing was used to identify the target viral genes of AR, revealing that the AR bound to multiple regions of lytic genes in the KSHV genome. The highest peak was enriched in the core promoter sequence of polyadenylated nuclear RNA (PAN), and the physical interaction was verified by ChIP-polymerase chain reaction (PCR) and the electrophoretic mobility shift assay (EMSA). Consistently, male steroid treatment significantly transactivated the promoter activity of PAN in luciferase reporter assay, consequently leading to extensive lytic gene expression and KSHV production as determined by real-time quantitative PCR, and the deletion of nuclear localization signals of AR resulted in the loss of nuclear transport and transcriptional activity in the presence of androgen and thus impaired the expression of PAN RNA. Oncogenically, this study identified that the AR was a functional prerequisite for cell invasion, especially under the context of KSHV reactivation, through hijacking the PAN as a critical effector. Taken together, a novel mechanism from male sex steroids to viral noncoding RNA was identified, which might provide a clue to understanding the male propensity in KS.


Assuntos
RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Receptores Androgênicos/metabolismo , Sarcoma de Kaposi/metabolismo , Caracteres Sexuais , Carcinogênese/metabolismo , Feminino , Herpesvirus Humano 8 , Humanos , Masculino , RNA não Traduzido/metabolismo
11.
PLoS Pathog ; 17(1): e1009179, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33471866

RESUMO

Primary effusion lymphoma (PEL) is an aggressive B cell lymphoma that is etiologically linked to Kaposi's sarcoma-associated herpesvirus (KSHV). Despite standard multi-chemotherapy treatment, PEL continues to cause high mortality. Thus, new strategies to control PEL are needed urgently. Here, we show that a phosphodegron motif within the KSHV protein, latency-associated nuclear antigen (LANA), specifically interacts with E3 ubiquitin ligase FBW7, thereby competitively inhibiting the binding of the anti-apoptotic protein MCL-1 to FBW7. Consequently, LANA-FBW7 interaction enhances the stability of MCL-1 by preventing its proteasome-mediated degradation, which inhibits caspase-3-mediated apoptosis in PEL cells. Importantly, MCL-1 inhibitors markedly suppress colony formation on soft agar and tumor growth of KSHV+PEL/BCBL-1 in a xenograft mouse model. These results strongly support the conclusion that high levels of MCL-1 expression enable the oncogenesis of PEL cells and thus, MCL-1 could be a potential drug target for KSHV-associated PEL. This work also unravels a mechanism by which an oncogenic virus perturbs a key component of the ubiquitination pathway to induce tumorigenesis.


Assuntos
Antígenos Virais/metabolismo , Proteína 7 com Repetições F-Box-WD/metabolismo , Herpesvirus Humano 8/fisiologia , Linfoma de Efusão Primária/virologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Nucleares/metabolismo , Sarcoma de Kaposi/virologia , Sequência de Aminoácidos , Animais , Antígenos Virais/genética , Apoptose , Proliferação de Células , Proteína 7 com Repetições F-Box-WD/genética , Feminino , Humanos , Linfoma de Efusão Primária/genética , Linfoma de Efusão Primária/metabolismo , Linfoma de Efusão Primária/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteínas Nucleares/genética , Fosforilação , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patologia , Células Tumorais Cultivadas , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
12.
PLoS Pathog ; 17(2): e1009294, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33539420

RESUMO

Circular RNAs (circRNAs) are novel single-stranded noncoding RNAs that can decoy other RNAs to inhibit their functions. Kaposi's sarcoma (KS), caused by oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV), is a highly angiogenic and invasive vascular tumor of endothelial origin commonly found in AIDS patients. We have recently shown that KSHV-encoded viral interferon regulatory factor 1 (vIRF1) induces cell invasion, angiogenesis and cellular transformation; however, the role of circRNAs is largely unknown in the context of KSHV vIRF1. Herein, transcriptome analysis identified 22 differentially expressed cellular circRNAs regulated by vIRF1 in an endothelial cell line. Among them, circARFGEF1 was the highest upregulated circRNA. Mechanistically, vIRF1 induced circARFGEF1 transcription by binding to transcription factor lymphoid enhancer binding factor 1 (Lef1). Importantly, upregulation of circARFGEF1 was required for vIRF1-induced cell motility, proliferation and in vivo angiogenesis. circARFGEF1 functioned as a competing endogenous RNAs (ceRNAs) by binding to and inducing degradation of miR-125a-3p. Mass spectrometry analysis demonstrated that glutaredoxin 3 (GLRX3) was a direct target of miR-125a-3p. Knockdown of GLRX3 impaired cell motility, proliferation and angiogenesis induced by vIRF1. Taken together, vIRF1 transcriptionally activates circARFGEF1, potentially by binding to Lef1, to promote cell oncogenic phenotypes via inhibiting miR-125a-3p and inducing GLRX3. These findings define a novel mechanism responsible for vIRF1-induced oncogenesis and establish the scientific basis for targeting these molecules for treating KSHV-associated cancers.


Assuntos
Proteínas de Transporte/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Herpesvirus Humano 8/fisiologia , Fatores Reguladores de Interferon/metabolismo , Neovascularização Patológica/patologia , RNA Circular/genética , Sarcoma de Kaposi/patologia , Proteínas Virais/metabolismo , Proteínas de Transporte/genética , Movimento Celular , Células Endoteliais da Veia Umbilical Humana , Humanos , Fatores Reguladores de Interferon/genética , MicroRNAs/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/virologia , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/virologia , Proteínas Virais/genética
13.
PLoS Pathog ; 16(6): e1008589, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32603362

RESUMO

Kaposi's sarcoma (KS), is an AIDS-associated neoplasm caused by the KS herpesvirus (KSHV/ HHV-8). KSHV-induced sarcomagenesis is the consequence of oncogenic viral gene expression as well as host genetic and epigenetic alterations. Although KSHV is found in all KS-lesions, the percentage of KSHV-infected (LANA+) spindle-cells of the lesion is variable, suggesting the existence of KS-spindle cells that have lost KSHV and proliferate autonomously or via paracrine mechanisms. A mouse model of KSHVBac36-driven tumorigenesis allowed us to induce KSHV-episome loss before and after tumor development. Although infected cells that lose the KSHV-episome prior to tumor formation lose their tumorigenicity, explanted tumor cells that lost the KSHV-episome remained tumorigenic. This pointed to the existence of virally-induced irreversible oncogenic alterations occurring during KSHV tumorigenesis supporting the possibility of hit and run viral-sarcomagenesis. RNA-sequencing and CpG-methylation analysis were performed on KSHV-positive and KSHV-negative tumors that developed following KSHV-episome loss from explanted tumor cells. When KSHV-positive cells form KSHV-driven tumors, along with viral-gene upregulation there is a tendency for hypo-methylation in genes from oncogenic and differentiation pathways. In contrast, KSHV-negative tumors formed after KSHV-episome loss, show a tendency towards gene hyper-methylation when compared to KSHV-positive tumors. Regarding occurrence of host-mutations, we found the same set of innate-immunity related mutations undetected in KSHV-infected cells but present in all KSHV-positive tumors occurring en exactly the same position, indicating that pre-existing host mutations that provide an in vivo growth advantage are clonally-selected and contribute to KSHV-tumorigenesis. In addition, KSHV-negative tumors display de novo mutations related to cell proliferation that, together with the PDGFRAD842V and other proposed mechanism, could be responsible for driving tumorigenesis in the absence of KSHV-episomes. KSHV-induced irreversible genetic and epigenetic oncogenic alterations support the possibility of "hit and run" KSHV-sarcomagenesis and point to the existence of selectable KSHV-induced host mutations that may impact AIDS-KS treatment.


Assuntos
Transformação Celular Viral , Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Regulação Viral da Expressão Gênica , Herpesvirus Humano 8 , Neoplasias Experimentais , Plasmídeos , Sarcoma de Kaposi , Animais , Linhagem Celular , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Camundongos , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/virologia , Plasmídeos/genética , Plasmídeos/metabolismo , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia
14.
PLoS Pathog ; 16(8): e1008730, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32776977

RESUMO

Kaposi's sarcoma (KS), caused by Kaposi's sarcoma-associated herpesvirus (KSHV), is a highly angioproliferative disseminated tumor of endothelial cells commonly found in AIDS patients. We have recently shown that KSHV-encoded viral interferon regulatory factor 1 (vIRF1) mediates KSHV-induced cell motility (PLoS Pathog. 2019 Jan 30;15(1):e1007578). However, the role of vIRF1 in KSHV-induced cellular transformation and angiogenesis remains unknown. Here, we show that vIRF1 promotes angiogenesis by upregulating sperm associated antigen 9 (SPAG9) using two in vivo angiogenesis models including the chick chorioallantoic membrane assay (CAM) and the matrigel plug angiogenesis assay in mice. Mechanistically, vIRF1 interacts with transcription factor Lef1 to promote SPAG9 transcription. vIRF1-induced SPAG9 promotes the interaction of mitogen-activated protein kinase kinase 4 (MKK4) with JNK1/2 to increase their phosphorylation, resulting in enhanced VEGFA expression, angiogenesis, cell proliferation and migration. Finally, genetic deletion of ORF-K9 from KSHV genome abolishes KSHV-induced cellular transformation and impairs angiogenesis. Our results reveal that vIRF1 transcriptionally activates SPAG9 expression to promote angiogenesis and tumorigenesis via activating JNK/VEGFA signaling. These novel findings define the mechanism of KSHV induction of the SPAG9/JNK/VEGFA pathway and establish the scientific basis for targeting this pathway for treating KSHV-associated cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Herpesvirus Humano 8/metabolismo , Fatores Reguladores de Interferon/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Sarcoma de Kaposi/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteínas Virais/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Transformação Celular Neoplásica , Herpesvirus Humano 8/genética , Interações Hospedeiro-Patógeno , Humanos , Fatores Reguladores de Interferon/genética , Masculino , Camundongos , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/fisiopatologia , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/fisiopatologia , Sarcoma de Kaposi/virologia , Fator A de Crescimento do Endotélio Vascular/genética , Proteínas Virais/genética
15.
PLoS Pathog ; 16(10): e1009006, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057440

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) vGPCR is a constitutively active G protein-coupled receptor that subverts proliferative and inflammatory signaling pathways to induce cell transformation in Kaposi's sarcoma. Cyclooxygenase-2 (COX-2) is an inflammatory mediator that plays a key regulatory role in the activation of tumor angiogenesis. Using two different transformed mouse models and tumorigenic full KSHV genome-bearing cells, including KSHV-Bac16 based mutant system with a vGPCR deletion, we demostrate that vGPCR upregulates COX-2 expression and activity, signaling through selective MAPK cascades. We show that vGPCR expression triggers signaling pathways that upregulate COX-2 levels due to a dual effect upon both its gene promoter region and, in mature mRNA, the 3'UTR region that control mRNA stability. Both events are mediated by signaling through ERK1/2 MAPK pathway. Inhibition of COX-2 in vGPCR-transformed cells impairs vGPCR-driven angiogenesis and treatment with the COX-2-selective inhibitory drug Celecoxib produces a significant decrease in tumor growth, pointing to COX-2 activity as critical for vGPCR oncogenicity in vivo and indicating that COX-2-mediated angiogenesis could play a role in KS tumorigenesis. These results, along with the overexpression of COX-2 in KS lesions, define COX-2 as a potential target for the prevention and treatment of KSHV-oncogenesis.


Assuntos
Herpesvirus Humano 8/metabolismo , Metaloproteinase 2 da Matriz/biossíntese , Receptores Acoplados a Proteínas G/metabolismo , Sarcoma de Kaposi/irrigação sanguínea , Animais , Carcinogênese , Transformação Celular Neoplásica/genética , Células Endoteliais/metabolismo , Proteínas de Ligação ao GTP/genética , Herpesvirus Humano 8/genética , Sistema de Sinalização das MAP Quinases , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Camundongos , Camundongos Nus , Células NIH 3T3 , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Neovascularização Patológica/virologia , Oncogenes , Receptores Acoplados a Proteínas G/genética , Sarcoma de Kaposi/metabolismo , Sarcoma de Kaposi/patologia , Sarcoma de Kaposi/virologia , Transdução de Sinais , Ativação Transcricional
16.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216197

RESUMO

Kaposi's sarcoma (KS) is an angioproliferative tumor showing an increased frequency and aggressiveness in HIV-infected subjects (AIDS-KS), due to the combined effects of inflammatory cytokines (IC), angiogenic factors, and the HIV-1 Tat protein. While the introduction of effective combined antiretroviral regimens greatly improved AIDS-KS incidence and course, it continues to be an incurable disease and the development of new rational targeted therapies is warranted. We used the BKV/Tat transgenic mouse model to evaluate the effects of IC and anti-Tat antibodies (Abs) treatment on KS-like lesions arising in BKV/Tat mice. We demonstrated here that IC-treatment increases the severity and delays the regression of KS-like lesions. Further, anti-Tat Abs reduced KS-like lesion severity developing in IC-treated mice when anti-Tat Abs were administered at an early-stage of lesion development as compared to more advanced lesions. Early anti-Tat Abs treatment also accelerated KS-like lesion regression and reduced the rate of severe-grade lesions. This effect was more evident in the first weeks after Ab treatment, suggesting that a longer treatment with anti-Tat Abs might be even more effective, particularly if administered just after lesion development. Although preliminary, these results are encouraging, and the approach deserves further studies for the development of anti-Tat Ab-based therapies for AIDS-KS. Clinical studies specifically addressing the effect of anti-Tat antibodies in treating AIDS-KS are not yet available. Nevertheless, the effectiveness of anti-Tat antibodies in controlling HIV/AIDS progression, likely due to the neutralization of extracellular Tat activities, is suggested by several cross-sectional and longitudinal clinical studies, indicating that anti-Tat Ab treatment or Tat-based vaccines may be effective to treat AIDS-KS patients or prevent the tumor in individuals at risk.


Assuntos
Anticorpos/farmacologia , Citocinas/metabolismo , Sarcoma de Kaposi/tratamento farmacológico , Sarcoma de Kaposi/patologia , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Indutores da Angiogênese/metabolismo , Animais , Antirretrovirais/farmacologia , Modelos Animais de Doenças , HIV-1/efeitos dos fármacos , Masculino , Camundongos , Camundongos Transgênicos , Sarcoma de Kaposi/metabolismo
17.
J Virol ; 94(2)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31666380

RESUMO

CTCF and the cohesin complex modify chromatin by binding to DNA and interacting with each other and with other cellular proteins. Both proteins regulate transcription by a variety of local effects on transcription and by long-range topological effects. CTCF and cohesin also bind to herpesvirus genomes at specific sites and regulate viral transcription during latent and lytic cycles of replication. Kaposi's sarcoma-associated herpesvirus (KSHV) transcription is regulated by CTCF and cohesin, with both proteins previously reported to act as restrictive factors for lytic cycle transcription and virion production. In this study, we examined the interdependence of CTCF and cohesin binding to the KSHV genome. Chromatin immunoprecipitation sequencing (ChIP-seq) analyses revealed that cohesin binding to the KSHV genome is highly CTCF dependent, whereas CTCF binding does not require cohesin. Furthermore, depletion of CTCF leads to the almost complete dissociation of cohesin from sites at which they colocalize. Thus, previous studies that examined the effects of CTCF depletion actually represent the concomitant depletion of both CTCF and cohesin components. Analysis of the effects of single and combined depletion indicates that CTCF primarily activates KSHV lytic transcription, whereas cohesin has primarily inhibitory effects. Furthermore, CTCF or cohesin depletion was found to have regulatory effects on cellular gene expression relevant for the control of viral infection, with both proteins potentially facilitating the expression of multiple genes important in the innate immune response to viruses. Thus, CTCF and cohesin have both positive and negative effects on KSHV lytic replication as well as effects on the host cell that enhance antiviral defenses.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is causally linked to Kaposi's sarcoma and several lymphoproliferative diseases. KSHV, like other herpesviruses, intermittently reactivates from latency and enters a lytic cycle in which numerous lytic mRNAs and proteins are produced, culminating in infectious virion production. These lytic proteins may also contribute to tumorigenesis. Reactivation from latency is controlled by processes that restrict or activate the transcription of KSHV lytic genes. KSHV gene expression is modulated by binding of the host cell proteins CTCF and cohesin complex to the KSHV genome. These proteins bind to and modulate the conformation of chromatin, thereby regulating transcription. We have analyzed the interdependence of binding of CTCF and cohesin and demonstrate that while CTCF is required for cohesin binding to KSHV, they have very distinct effects, with cohesin primarily restricting KSHV lytic transcription. Furthermore, we show that cohesin and CTCF also exert effects on the host cell that promote antiviral defenses.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Regulação Viral da Expressão Gênica , Genoma Viral , Herpesvirus Humano 8/fisiologia , Sarcoma de Kaposi/metabolismo , Transcrição Gênica , Replicação Viral , Fator de Ligação a CCCTC/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Humanos , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/patologia , Coesinas
18.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31801855

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of two B-cell lymphoproliferative diseases and Kaposi's sarcoma, an endothelial-cell-driven cancer. KSHV viral interleukin-6 (vIL-6) is a viral homolog of human IL-6 (hIL-6) that is expressed in KSHV-associated malignancies. Previous studies have shown that the expression of the integrin ß3 (ITGB3) subunit is induced upon KSHV infection. Here we report that KSHV vIL-6 is able to induce the expression of ITGB3 and increase surface expression of the αVß3 integrin heterodimer. We demonstrated using small interfering RNA (siRNA) depletion and inhibitor studies that KSHV vIL-6 can increase ITGB3 by inducing STAT3 signaling. Furthermore, we found that secreted vIL-6 is capable of inducing ITGB3 in endothelial cells in a paracrine manner. Importantly, the ability to induce ITGB3 in endothelial cells seems to be specific to vIL-6, as overexpression of hIL-6 alone did not affect levels of this integrin. Our lab and others have previously shown that vIL-6 can induce angiogenesis, and we investigated whether ITGB3 was involved in this process. We found that siRNA depletion of ITGB3 in vIL-6-expressing endothelial cells resulted in a decrease in adhesion to extracellular matrix proteins. Moreover, depletion of ITGB3 hindered the ability of vIL-6 to promote angiogenesis. In conclusion, we found that vIL-6 can singularly induce ITGB3 and that this induction is dependent on vIL-6 activation of the STAT3 signaling pathway.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiological agent of three human malignancies: multicentric Castleman's disease, primary effusion lymphoma, and Kaposi's sarcoma. Kaposi's sarcoma is a highly angiogenic tumor that arises from endothelial cells. It has been previously reported that KSHV infection of endothelial cells leads to an increase of integrin αVß3, a molecule observed to be involved in the angiogenic process of several malignancies. Our data demonstrate that the KSHV protein viral interleukin-6 (vIL-6) can induce integrin ß3 in an intracellular and paracrine manner. Furthermore, we showed that this induction is necessary for vIL-6-mediated cell adhesion and angiogenesis, suggesting a potential role of integrin ß3 in KSHV pathogenesis and development of Kaposi's sarcoma.


Assuntos
Infecções por Herpesviridae/metabolismo , Herpesvirus Humano 8/fisiologia , Integrina beta3/metabolismo , Interleucina-6/metabolismo , Fator de Transcrição STAT3/metabolismo , Sarcoma de Kaposi/metabolismo , Transdução de Sinais , Proteínas Virais/metabolismo , Hiperplasia do Linfonodo Gigante/virologia , Células Endoteliais/metabolismo , Células Endoteliais/virologia , Humanos , Integrina beta3/genética , Linfoma de Efusão Primária/virologia , Sarcoma de Kaposi/virologia , Regulação para Cima
19.
J Virol ; 94(9)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32051269

RESUMO

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causal agent for Kaposi's sarcoma (KS), the most common malignancy in people living with human immunodeficiency virus (HIV)/AIDS. The oral cavity is a major route for KSHV infection and transmission. However, how KSHV breaches the oral epithelial barrier for spreading to the body is not clear. Here, we show that exosomes purified from either the saliva of HIV-positive individuals or the culture supernatants of HIV-1-infected T-cell lines promote KSHV infectivity in immortalized and primary human oral epithelial cells. HIV-associated saliva exosomes contain the HIV trans-activation response element (TAR), Tat, and Nef RNAs but do not express Tat and Nef proteins. The TAR RNA in HIV-associated exosomes contributes to enhancing KSHV infectivity through the epidermal growth factor receptor (EGFR). An inhibitory aptamer against TAR RNA reduces KSHV infection facilitated by the synthetic TAR RNA in oral epithelial cells. Cetuximab, a monoclonal neutralizing antibody against EGFR, blocks HIV-associated exosome-enhanced KSHV infection. Our findings reveal that saliva containing HIV-associated exosomes is a risk factor for the enhancement of KSHV infection and that the inhibition of EGFR serves as a novel strategy for preventing KSHV infection and transmission in the oral cavity.IMPORTANCE Kaposi's sarcoma-associated herpesvirus (KSHV) is the causal agent for Kaposi's sarcoma (KS), the most common malignancy in HIV/AIDS patients. Oral transmission through saliva is considered the most common route for spreading the virus among HIV/AIDS patients. However, the role of HIV-specific components in the cotransfection of KSHV is unclear. We demonstrate that exosomes purified from the saliva of HIV-positive patients and secreted by HIV-infected T-cell lines promote KSHV infectivity in immortalized and primary oral epithelial cells. HIV-associated exosomes promote KSHV infection, which depends on HIV trans-activation response element (TAR) RNA and EGFR of oral epithelial cells, which can be targeted for reducing KSHV infection. These results reveal that HIV-associated exosomes are a risk factor for KSHV infection in the HIV-infected population.


Assuntos
Exossomos/metabolismo , Sarcoma de Kaposi/metabolismo , Adulto , Linhagem Celular , Epitélio/metabolismo , Epitélio/virologia , Receptores ErbB/metabolismo , Infecções por HIV/virologia , HIV-1/metabolismo , HIV-1/fisiologia , Herpesvirus Humano 8/metabolismo , Herpesvirus Humano 8/patogenicidade , Humanos , Masculino , Saliva/química , Saliva/virologia , Sarcoma de Kaposi/virologia , Ativação Viral , Replicação Viral
20.
J Virol ; 94(19)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669340

RESUMO

Human herpesvirus 8 (HHV-8) viral interleukin-6 (vIL-6) is a cytokine that is poorly secreted and localized largely to the endoplasmic reticulum (ER). It has been implicated, along with other HHV-8 proinflammatory and/or angiogenic viral proteins, in HHV-8-associated Kaposi's sarcoma, primary effusion lymphoma (PEL), and multicentric Castleman's disease (MCD), in addition to an MCD-related disorder involving systemic elevation of proinflammatory cytokines, including vIL-6 and human IL-6 (hIL-6). In these diseases, lytic (productive) replication, in addition to viral latency, is believed to play a critical role. Proreplication activity of vIL-6 has been identified experimentally in PEL and endothelial cells, but the relative contributions of different vIL-6 interactions have not been established. Productive interactions of vIL-6 with the IL-6 signal transducer, gp130, can occur within the ER, but vIL-6 also interacts in the ER with a nonsignaling receptor called vitamin K epoxide reductase complex subunit 1 variant 2 (VKORC1v2), calnexin, and VKORC1v2- and calnexin-associated proteins UDP-glucose:glycoprotein glucosyltransferase 1 (UGGT1) and glucosidase II (GlucII). Here, we report the systematic characterization of interaction-altered vIL-6 variants and the lytic phenotypes of recombinant viruses expressing selected variants. Our data identify the critical importance of vIL-6 and its ER-localized activity via gp130 to productive replication in inducible SLK (epithelial) cells, absence of detectable involvement of vIL-6 interactions with VKORC1v2, GlucII, or UGGT1, and the insufficiency and lack of direct contributory effects of extracellular signaling by vIL-6 or hIL-6. These findings, obtained through genetics-based approaches, complement and extend previous analyses of vIL-6 activity.IMPORTANCE Human herpesvirus 8 (HHV-8)-encoded viral interleukin-6 (vIL-6) was the first viral IL-6 homologue to be identified. Experimental and clinical evidence suggests that vIL-6 is important for the onset and/or progression of HHV-8-associated endothelial-cell and B-cell pathologies, including AIDS-associated Kaposi's sarcoma and multicentric Castleman's disease. The protein is unusual in its poor secretion from cells and its intracellular activity; it interacts, directly or indirectly, with a number of proteins beyond the IL-6 signal transducer, gp130, and can mediate activities through these interactions in the endoplasmic reticulum. Here, we report the characterization with respect to protein interactions and signal-transducing activity of a panel of vIL-6 variants and utilization of HHV-8 mutant viruses expressing selected variants in phenotypic analyses. Our findings establish the importance of vIL-6 in HHV-8 productive replication and the contributions of individual vIL-6-protein interactions to HHV-8 lytic biology. This work furthers understanding of the biological significance of vIL-6 and its unique intracellular interactions.


Assuntos
Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiologia , Interleucina-6/genética , Interleucina-6/metabolismo , Transdução de Sinais/fisiologia , Substituição de Aminoácidos , Calnexina/metabolismo , Hiperplasia do Linfonodo Gigante/virologia , Receptor gp130 de Citocina/metabolismo , Retículo Endoplasmático/metabolismo , Células Endoteliais/metabolismo , Glucosiltransferases/metabolismo , Humanos , Linfoma de Efusão Primária/virologia , Sarcoma de Kaposi/metabolismo , Análise de Sequência de Proteína , Proteínas Virais/metabolismo , Latência Viral , Vitamina K Epóxido Redutases/metabolismo , alfa-Glucosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA