Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 405
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Arch Microbiol ; 205(2): 63, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36629970

RESUMO

Saxitoxins (STXs) are carbamate alkaloid neurotoxins produced by some species of cyanobacteria. They are water soluble and relatively stable in the natural environment, and thereby represent a risk to animal and human health through a long-time exposure. STXs cannot be sufficiently removed by conventional water treatment methods. Therefore, this study investigates the potential STX biodegradation and detoxification by bacteria as a promising method for toxin removal. STX biodegradation experiments were conducted using Bacillus flexus SSZ01 strain in batch cultures. The results revealed that SSZ01 strain grew well and rapidly detoxified STX, with no lag phase observed. STX detoxification by SSZ01 strain was initial-toxin-concentration-dependent. The highest biotransformation rate (10 µg STX L-1 day-1) the pseudo-first-order kinetic constant (0.58 d-1) were obtained at the highest initial toxin concentration (50 µg L-1) and the lowest ones (0.06 µg STX L-1 day-1 and 0.14 d-1, respectively) were recorded at the lowest initial concentration (0.5 µg L-1). STX biotransformation rate increased with temperature, with highest occurred at 30 ºC. This rate was also influenced by pH, with highest obtained at pH8 and lowest at higher and lower pH values. HPLC chromatograms showed that STX biotransformation peak is corresponding to the least toxic STX analog (disulfated sulfocarbamoyl-C1 variant). The Artemia-based toxicity assay revealed that this biotransformation byproduct was nontoxic. This suggests the potential application of this bacterial strain in slow sand filters for cyanotoxin removal in water treatment plants. Being nontoxic, this byproduct needs to be assayed for its therapeutic effects toward neurodegenerative diseases.


Assuntos
Cianobactérias , Saxitoxina , Animais , Humanos , Saxitoxina/análise , Saxitoxina/metabolismo , Saxitoxina/toxicidade , Cianobactérias/metabolismo , Biotransformação , Cromatografia Líquida de Alta Pressão
2.
Mar Drugs ; 21(10)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37888479

RESUMO

Saxitoxin (STX) causes high toxicity by blocking voltage-gated sodium channels, and it poses a major threat to marine ecosystems and human health worldwide. Our work evaluated the neurotoxicity and chronic toxicology of STX to Caenorhabditis elegans by an analysis of lifespan, brood size, growth ability, reactive oxygen species (ROS) and adenosine triphosphate (ATP) levels, and the overexpression of green fluorescent protein (GFP). After exposure to a series of concentrations of STX for 24 h, worms showed paralysis symptoms and fully recovered within 6 h; less than 5% of worms died at the highest concentration of 1000 ng/mL for first larval stage (L1) worms and 10,000 ng/mL for fourth larval stage (L4) worms. Declines in lifespan, productivity, and body size of C. elegans were observed under the stress of 1, 10, and 100 ng/mL STX, and the lifespan was shorter than that in controls. With STX exposure, the productivity declined by 32-49%; the body size, including body length and body area, declined by 13-18% and 25-27%, respectively. The levels of ROS exhibited a gradual increase over time, accompanied by a positive concentration effect of STX resulting in 1.14-1.86 times higher levels compared to the control group in L4 worms. Conversely, no statistically significant differences were observed between L1 worms. Finally, after exposure to STX for 48 h, ATP levels and GFP expression in C. elegans showed a significant dose-dependent increase. Our study reports the first evidence that STX is not lethal but imposes substantial oxidative stress on C. elegans, with a dose-responsive relationship. Our results indicated that C. elegans is an ideal model to further study the mechanisms underlying the fitness of organisms under the stress caused by paralytic shellfish toxins including STX.


Assuntos
Caenorhabditis elegans , Saxitoxina , Animais , Humanos , Caenorhabditis elegans/metabolismo , Saxitoxina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ecossistema , Estresse Oxidativo , Trifosfato de Adenosina/metabolismo
3.
Environ Sci Technol ; 56(23): 16866-16872, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36399599

RESUMO

The harmful, filamentous cyanobacteria Microseira (Lyngbya) wollei produces several toxic analogues of saxitoxin (Lyngbya wollei toxins 1-6, or LWTs 1-6), grows in shallow water, and can deposit significant biomass on nearby shorelines. Here, we show that the LWTs are stable in the biomass during subsequent drying but that the process facilitates the later release of LWTs upon return to the water column. Under basic conditions, LWTs hydrolyzed to generate products that were significantly more neurotoxic than the initial toxins. Aqueous LWTs were subjected to conditions of covarying temperature and pH, and their degradation rates and products were determined at each condition. LWTs 1, 5, and 6 degraded faster at pH ≥ 8 at all temperatures. Their degradation products, which included decarbamoyl saxitoxin and LWT 4, were consistent with a base-catalyzed hydrolysis mechanism and represented a net increase in total biomass toxicity normalized against the equivalent toxicity of saxitoxin. The corresponding pre-exponential terms and activation energies for hydrolysis were obtained for pH 6-10 over the temperature range 10-40 °C. A locally weighted scatterplot smoothing (LOWESS) regression was developed to predict the loss of parent toxins and subsequent products in the water column under conditions corresponding to those commonly encountered in cyanobacterial blooms.


Assuntos
Cianobactérias , Saxitoxina , Saxitoxina/metabolismo , Saxitoxina/toxicidade , Lyngbya , Água/metabolismo , Biomassa , Cianobactérias/metabolismo
4.
Mar Drugs ; 20(3)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35323466

RESUMO

Saxitoxin and its analogues, paralytic shellfish toxins (PSTs), are potent and specific voltage-gated sodium channel blockers. These toxins are produced by some species of freshwater cyanobacteria and marine dinoflagellates. We previously identified several biosynthetic intermediates of PSTs, as well as new analogues, from such organisms and proposed the biosynthetic and metabolic pathways of PSTs. In this study, 12ß-deoxygonyautoxin 5 (12α-gonyautoxinol 5 = gonyautoxin 5-12(R)-ol) was identified in the freshwater cyanobacterium, Dolichospermum circinale (TA04), and 12ß-deoxysaxitoxin (12α-saxitoxinol = saxitoxin-12(R)-ol) was identified in the same cyanobacterium and in the marine dinoflagellate Alexandrium pacificum (Group IV) (120518KureAC) for the first time from natural sources. The authentic standards of these compounds and 12α-deoxygonyautoxin 5 (12ß-gonyautoxinol 5 = gonyautoxin 5-12(S)-ol) were prepared by chemical derivatization from the major PSTs, C1/C2, produced in D. circinale (TA04). These standards were used to identify the deoxy analogues by comparing the retention times and MS/MS spectra using high-resolution LC-MS/MS. Biosynthetic or metabolic pathways for these analogues have also been proposed based on their structures. The identification of these compounds supports the α-oriented stereoselective oxidation at C12 in the biosynthetic pathway towards PSTs.


Assuntos
Cianobactérias/química , Dinoflagellida/química , Saxitoxina/análogos & derivados , Cianobactérias/metabolismo , Dinoflagellida/metabolismo , Estrutura Molecular , Saxitoxina/química , Saxitoxina/isolamento & purificação , Saxitoxina/metabolismo
5.
Nat Prod Rep ; 38(3): 586-667, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33021301

RESUMO

Covering: 2017-2019Guanidine natural products isolated from microorganisms, marine invertebrates and terrestrial plants, amphibians and spiders, represented by non-ribosomal peptides, guanidine-bearing polyketides, alkaloids, terpenoids and shikimic acid derived, are the subject of this review. The topics include the discovery of new metabolites, total synthesis of natural guanidine compounds, biological activity and mechanism-of-action, biosynthesis and ecological functions.


Assuntos
Anuros/metabolismo , Bactérias/metabolismo , Produtos Biológicos/química , Fungos/metabolismo , Guanidinas/metabolismo , Animais , Organismos Aquáticos/química , Organismos Aquáticos/metabolismo , Bactérias/química , Bactérias/genética , Produtos Biológicos/metabolismo , Fungos/química , Invertebrados/química , Invertebrados/metabolismo , Estrutura Molecular , Plantas/química , Plantas/metabolismo , Saxitoxina/química , Saxitoxina/metabolismo , Metabolismo Secundário , Aranhas/química , Aranhas/metabolismo , Tetrodotoxina/química , Tetrodotoxina/metabolismo
6.
Chembiochem ; 22(5): 845-849, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33084210

RESUMO

Paralytic shellfish toxins (PSTs) are neurotoxic alkaloids produced by freshwater cyanobacteria and marine dinoflagellates. Due to their antagonism of voltage-gated sodium channels in excitable cells, certain analogues are of significant pharmacological interest. The biosynthesis of the parent compound, saxitoxin, is initiated with the formation of 4-amino-3-oxo-guanidinoheptane (ethyl ketone) by an unusual polyketide synthase-like enzyme, SxtA. We have heterologously expressed SxtA from Raphidiopsis raciborskii T3 in Escherichia coli and analysed its activity in vivo. Ethyl ketone and a truncated analogue, methyl ketone, were detected by HPLC-ESI-HRMS analysis, thus suggesting that SxtA has relaxed substrate specificity in vivo. The chemical structures of these products were further verified by tandem mass spectrometry and labelled-precursor feeding with [guanidino-15 N2 ] arginine and [1,2-13 C2 ] acetate. These results indicate that the reactions catalysed by SxtA could give rise to multiple PST variants, including analogues of ecological and pharmacological significance.


Assuntos
Cylindrospermopsis/metabolismo , Escherichia coli/metabolismo , Venenos/metabolismo , Saxitoxina/metabolismo , Canais de Sódio Disparados por Voltagem/química , Cylindrospermopsis/genética , Escherichia coli/genética , Saxitoxina/genética , Especificidade por Substrato
7.
Chemistry ; 26(9): 2025-2033, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31769085

RESUMO

A novel series of C12-keto-type saxitoxin (STX) derivatives bearing an unusual nonhydrated form of the ketone at C12 has been synthesized, and their NaV -inhibitory activity has been evaluated in a cell-based assay as well as whole-cell patch-clamp recording. Among these compounds, 11-benzylidene STX (3 a) showed potent inhibitory activity against neuroblastoma Neuro 2A in both cell-based and electrophysiological analyses, with EC50 and IC50 values of 8.5 and 30.7 nm, respectively. Interestingly, the compound showed potent inhibitory activity against tetrodotoxin-resistant subtype of NaV 1.5, with an IC50 value of 94.1 nm. Derivatives 3 a-d and 3 f showed low recovery rates from NaV 1.2 subtype (ca 45-79 %) compared to natural dcSTX (2), strongly suggesting an irreversible mode of interaction. We propose an interaction model for the C12-keto derivatives with NaV in which the enone moiety in the STX derivatives 3 works as Michael acceptor for the carboxylate of Asp1717 .


Assuntos
Saxitoxina/química , Bloqueadores dos Canais de Sódio/síntese química , Canais de Sódio Disparados por Voltagem/metabolismo , Potenciais de Ação/efeitos dos fármacos , Sequência de Aminoácidos , Sítios de Ligação , Linhagem Celular Tumoral , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Técnicas de Patch-Clamp , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Teoria Quântica , Saxitoxina/metabolismo , Saxitoxina/farmacologia , Bloqueadores dos Canais de Sódio/metabolismo , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/química , Tetrodotoxina/metabolismo , Canais de Sódio Disparados por Voltagem/química , Canais de Sódio Disparados por Voltagem/genética
8.
Mar Drugs ; 18(2)2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32033403

RESUMO

Saxitoxin is an alkaloid neurotoxin originally isolated from the clam Saxidomus giganteus in 1957. This group of neurotoxins is produced by several species of freshwater cyanobacteria and marine dinoflagellates. The saxitoxin biosynthesis pathway was described for the first time in the 1980s and, since then, it was studied in more than seven cyanobacterial genera, comprising 26 genes that form a cluster ranging from 25.7 kb to 35 kb in sequence length. Due to the complexity of the genomic landscape, saxitoxin biosynthesis in dinoflagellates remains unknown. In order to reveal and understand the dynamics of the activity in such impressive unicellular organisms with a complex genome, a strategy that can carefully engage them in a systems view is necessary. Advances in omics technology (the collective tools of biological sciences) facilitated high-throughput studies of the genome, transcriptome, proteome, and metabolome of dinoflagellates. The omics approach was utilized to address saxitoxin-producing dinoflagellates in response to environmental stresses to improve understanding of dinoflagellates gene-environment interactions. Therefore, in this review, the progress in understanding dinoflagellate saxitoxin biosynthesis using an omics approach is emphasized. Further potential applications of metabolomics and genomics to unravel novel insights into saxitoxin biosynthesis in dinoflagellates are also reviewed.


Assuntos
Dinoflagellida/genética , Dinoflagellida/metabolismo , Saxitoxina/biossíntese , Saxitoxina/química , Vias Biossintéticas , Cianobactérias/metabolismo , Genômica , Metabolômica , Neurotoxinas/metabolismo , Biossíntese de Proteínas , Proteômica , Saxitoxina/metabolismo , Transcriptoma
9.
Mar Drugs ; 16(1)2018 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-29316695

RESUMO

Although pufferfish of the family Tetraodontidae contain high levels of tetrodotoxin (TTX) mainly in the liver, some species of pufferfish, boxfish of the family Ostraciidae, and porcupinefish of the family Diodontidae do not. To clarify the mechanisms, uptake of TTX and saxitoxins (STXs) into liver tissue slices of pufferfish, boxfish and porcupinefish was examined. Liver tissue slices of the pufferfish (toxic species Takifugu rubripes and non-toxic species Lagocephalus spadiceus, L. cheesemanii and Sphoeroides pachygaster) incubated with 50 µM TTX accumulated TTX (0.99-1.55 µg TTX/mg protein) after 8 h, regardless of the toxicity of the species. In contrast, in liver tissue slices of boxfish (Ostracion immaculatus) and porcupinefish (Diodon holocanthus, D. liturosus, D. hystrix and Chilomycterus reticulatus), TTX content did not increase with incubation time, and was about 0.1 µg TTX/mg protein. When liver tissue slices were incubated with 50 µM STXs for 8 h, the STXs content was <0.1 µg STXs/mg protein, irrespective of the fish species. These findings indicate that, like the toxic species of pufferfish T. rubripes, non-toxic species such as L. spadiceus, L. cheesemanii and S. pachygaster, potentially take up TTX into the liver, while non-toxic boxfish and porcupinefish do not take up either TTX or STXs.


Assuntos
Fígado/metabolismo , Saxitoxina/metabolismo , Tetraodontiformes/metabolismo , Tetrodotoxina/metabolismo , Animais , Transporte Biológico , Saxitoxina/isolamento & purificação , Tetrodotoxina/isolamento & purificação , Fatores de Tempo , Distribuição Tecidual
10.
Mar Drugs ; 15(1)2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28106838

RESUMO

Paralytic shellfish toxins (PST) bind to voltage-gated sodium channels (Nav) and block conduction of action potential in excitable cells. This study aimed to (i) characterize Nav sequences in Crassostrea gigas and (ii) investigate a putative relation between Nav and PST-bioaccumulation in oysters. The phylogenetic analysis highlighted two types of Nav in C. gigas: a Nav1 (CgNav1) and a Nav2 (CgNav2) with sequence properties of sodium-selective and sodium/calcium-selective channels, respectively. Three alternative splice transcripts of CgNav1 named A, B and C, were characterized. The expression of CgNav1, analyzed by in situ hybridization, is specific to nervous cells and to structures corresponding to neuromuscular junctions. Real-time PCR analyses showed a strong expression of CgNav1A in the striated muscle while CgNav1B is mainly expressed in visceral ganglia. CgNav1C expression is ubiquitous. The PST binding site (domain II) of CgNav1 variants possess an amino acid Q that could potentially confer a partial saxitoxin (STX)-resistance to the channel. The CgNav1 genotype or alternative splicing would not be the key point determining PST bioaccumulation level in oysters.


Assuntos
Crassostrea/metabolismo , Toxinas Marinhas/metabolismo , Ostreidae/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Crassostrea/genética , Dinoflagellida/genética , Dinoflagellida/metabolismo , Ostreidae/genética , Filogenia , Saxitoxina/metabolismo , Frutos do Mar
11.
Environ Microbiol ; 18(2): 427-38, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26347118

RESUMO

Saxitoxins (STX), neurotoxic alkaloids, fall under the umbrella of paralytic shellfish toxins produced by marine dinoflagellates and freshwater cyanobacteria. The genes responsible for the production of STX have been proposed, but factors that influence their expression and induce toxin efflux remain unclear. Here we characterize the putative STX NorM-like MATE transporters SxtF and SxtM. Complementation of the antibiotic-sensitive strain Escherichia coli KAM32 with these transporters decreased fluoroquinolone sensitivity, indicating that while becoming evolutionary specialized for STX transport these transporters retain relaxed specificity typical of this class. The transcriptional response of STX biosynthesis (sxtA) along with that of the STX transporters (sxtM and sxtF from Cylindrospermopsis raciborskii T3, and sxtM from Anabaena circinalis AWQC131C) were assessed in response to ionic stress. These data, coupled with a measure of toxin intracellular to extracellular ratios, provide an insight into the physiology of STX export. Cylindrospermopsis raciborskii and Anabaena circinalis exhibited opposing responses under conditions of ionic stress. High Na(+) (10 mM) induced moderate alterations of transcription and STX localization, whereas high pH (pH 9) stimulated the greatest physiological response. Saxitoxin production and cellular localization are responsive to ionic strength, indicating a role of this molecule in the maintenance of cellular homeostasis.


Assuntos
Anabaena/metabolismo , Cylindrospermopsis/metabolismo , Escherichia coli/genética , Fluoroquinolonas/farmacologia , Saxitoxina/metabolismo , Sódio/metabolismo , Transporte Biológico Ativo/genética , Transporte Biológico Ativo/fisiologia , Dinoflagellida/metabolismo , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Fluoroquinolonas/metabolismo , Água Doce , Concentração de Íons de Hidrogênio , Íons/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Testes de Sensibilidade Microbiana , Estresse Fisiológico/fisiologia
12.
Mar Drugs ; 12(10): 5258-76, 2014 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-25341029

RESUMO

The dinoflagellate Alexandrium minutum is known for the production of potent neurotoxins affecting the health of human seafood consumers via paralytic shellfish poisoning (PSP). The aim of this study was to investigate the relationship between the toxin content and the expression level of the genes involved in paralytic shellfish toxin (PST) production. The algal cultures were grown both in standard f/2 medium and in phosphorus/nitrogen limitation. In our study, LC-HRMS analyses of PST profile and content in different Mediterranean A. minutum strains confirmed that this species was able to synthesize mainly the saxitoxin analogues Gonyautoxin-1 (GTX1) and Gonyautoxin-4 (GTX4). The average cellular toxin content varied among different strains, and between growth phases, highlighting a decreasing trend from exponential to stationary phase in all culture conditions tested. The absolute quantities of intracellular sxtA1 and sxtG mRNA were not correlated with the amount of intracellular toxins in the analysed A. minutum suggesting that the production of toxins may be regulated by post-transcriptional mechanisms and/or by the concerted actions of alternative genes belonging to the PST biosynthesis gene cluster. Therefore, it is likely that the sxtA1 and sxtG gene expression could not reflect the PST accumulation in the Mediterranean A. minutum populations under the examined standard and nutrient limiting conditions.


Assuntos
Dinoflagellida/genética , Expressão Gênica/genética , Saxitoxina/análogos & derivados , Saxitoxina/genética , Dinoflagellida/metabolismo , Família Multigênica/genética , Neurotoxinas/genética , Neurotoxinas/metabolismo , RNA Mensageiro/genética , Saxitoxina/metabolismo , Intoxicação por Frutos do Mar/genética , Intoxicação por Frutos do Mar/metabolismo
13.
STAR Protoc ; 5(1): 102792, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38133955

RESUMO

Anuran saxiphilins (Sxphs) are "toxin sponge" proteins thought to prevent the lethal effects of small-molecule neurotoxins through sequestration. Here, we present a protocol for the expression, purification, and characterization of Sxphs. We describe steps for using thermofluor, fluorescence polarization, and isothermal titration calorimetry assays that probe Sxph:saxitoxin interactions using a range of sample quantities. These assays are generalizable and can be used for other paralytic shellfish poisoning toxin-binding proteins. For complete details on the use and execution of this protocol, please refer to Chen et al. (2022).1.


Assuntos
Neurotoxinas , Saxitoxina , Saxitoxina/metabolismo , Calorimetria , Polarização de Fluorescência
14.
Toxins (Basel) ; 16(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38787062

RESUMO

The marine dinoflagellate Alexandrium is known to form harmful algal blooms (HABs) and produces saxitoxin (STX) and its derivatives (STXs) that cause paralytic shellfish poisoning (PSP) in humans. Cell growth and cellular metabolism are affected by environmental conditions, including nutrients, temperature, light, and the salinity of aquatic systems. Abiotic factors not only engage in photosynthesis, but also modulate the production of toxic secondary metabolites, such as STXs, in dinoflagellates. STXs production is influenced by a variety of abiotic factors; however, the relationship between the regulation of these abiotic variables and STXs accumulation seems not to be consistent, and sometimes it is controversial. Few studies have suggested that abiotic factors may influence toxicity and STXs-biosynthesis gene (sxt) regulation in toxic Alexandrium, particularly in A. catenella, A. minutum, and A. pacificum. Hence, in this review, we focused on STXs production in toxic Alexandrium with respect to the major abiotic factors, such as temperature, salinity, nutrients, and light intensity. This review informs future research on more sxt genes involved in STXs production in relation to the abiotic factors in toxic dinoflagellates.


Assuntos
Dinoflagellida , Saxitoxina , Dinoflagellida/genética , Dinoflagellida/metabolismo , Saxitoxina/genética , Saxitoxina/biossíntese , Saxitoxina/metabolismo , Saxitoxina/toxicidade , Proliferação Nociva de Algas , Salinidade , Intoxicação por Frutos do Mar
15.
Cell Chem Biol ; 31(7): 1324-1335.e20, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-38729162

RESUMO

The ability to optically stimulate and inhibit neurons has revolutionized neuroscience research. Here, we present a direct, potent, user-friendly chemical approach for optically silencing neurons. We have rendered saxitoxin (STX), a naturally occurring paralytic agent, transiently inert through chemical protection with a previously undisclosed nitrobenzyl-derived photocleavable group. Exposing the caged toxin, STX-bpc, to a brief (5 ms) pulse of light effects rapid release of a potent STX derivative and transient, spatially precise blockade of voltage-gated sodium channels (NaVs). We demonstrate the efficacy of STX-bpc for parametrically manipulating action potentials in mammalian neurons and brain slice. Additionally, we show the effectiveness of this reagent for silencing neural activity by dissecting sensory-evoked swimming in larval zebrafish. Photo-uncaging of STX-bpc is a straightforward method for non-invasive, reversible, spatiotemporally precise neural silencing without the need for genetic access, thus removing barriers for comparative research.


Assuntos
Neurônios , Peixe-Zebra , Animais , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Saxitoxina/farmacologia , Saxitoxina/metabolismo , Saxitoxina/química , Potenciais de Ação/efeitos dos fármacos , Humanos , Comportamento Animal/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/metabolismo , Luz , Camundongos
16.
Biosci Biotechnol Biochem ; 77(1): 208-12, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23343608

RESUMO

Four genes of Takifugu rubripes, tentatively designated Tr1-Tr4, encoding homologs of pufferfish saxitoxin- and tetrodotoxin-binding protein, were identified by BLAST search and 3'-RACE. RT-PCR and MALDI-TOF mass spectrometry allowed the identification and discrimination of Tr isoforms from the non-toxically cultured specimens. The expression of Tr1 and Tr3 mRNAs exclusively in the liver and the presence of their products as 120-kDa plasma proteins were confirmed.


Assuntos
Proteínas Sanguíneas/química , Proteínas de Peixes/química , Fígado/metabolismo , Canais de Sódio/química , Takifugu/sangue , Sequência de Aminoácidos , Animais , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Fígado/química , Dados de Sequência Molecular , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saxitoxina/metabolismo , Alinhamento de Sequência , Canais de Sódio/genética , Canais de Sódio/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tetrodotoxina/metabolismo
17.
Environ Toxicol ; 28(5): 239-54, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-21710505

RESUMO

Aphanizomenon flos-aquae (A. flos-aquae), a cyanobacterium frequently encountered in water blooms worldwide, is source of neurotoxins known as PSPs or aphantoxins that present a major threat to the environment and to human health. Although the molecular mechanism of PSP action is well known, many unresolved questions remain concerning its mechanisms of toxicity. Aphantoxins purified from a natural isolate of A. flos-aquae DC-1 were analyzed by high-performance liquid chromatography (HPLC), the major component toxins were the gonyautoxins1 and 5 (GTX1 and GTX5, 34.04% and 21.28%, respectively) and the neosaxitoxin (neoSTX, 12.77%). The LD50 of the aphantoxin preparation was determined to be 11.33 µg/kg (7.75 µg saxitoxin equivalents (STXeq) per kg) following intraperitoneal injection of zebrafish (Danio rerio). To address the neurotoxicology of the aphantoxin preparation, zebrafish were injected with low and high sublethal doses of A. flos-aquae DC-1 toxins 7.73 and 9.28 µg /kg (5.3 and 6.4 µg STXeq/kg, respectively) and brain tissues were analyzed by electron microscopy and RT-PCR at different timepoints postinjection. Low-dose aphantoxin exposure was associated with chromatin condensation, cell-membrane blebbing, and the appearance of apoptotic bodies. High-dose exposure was associated with cytoplasmic vacuolization, mitochondrial swelling, and expansion of the endoplasmic reticulum. At early timepoints (3 h) many cells exhibited characteristic features of both apoptosis and necrosis. At later timepoints apoptosis appeared to predominate in the low-dose group, whereas necrosis predominated in the high-dose group. RT-PCR revealed that mRNA levels of the apoptosis-related genes encoding p53, Bax, caspase-3, and c-Jun were upregulated after aphantoxin exposure, but there was no evidence of DNA laddering; apoptosis could take place by pathways independent of DNA fragmentation. These results demonstrate that aphantoxin exposure can cause cell death in zebrafish brain tissue, with low doses inducing apoptosis and higher doses inducing necrosis.


Assuntos
Aphanizomenon/metabolismo , Encéfalo/efeitos dos fármacos , Venenos/toxicidade , Toxinas Biológicas/toxicidade , Animais , Aphanizomenon/isolamento & purificação , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Caspase 3/metabolismo , China , Dano ao DNA , Proliferação Nociva de Algas , Humanos , Lagos , Dose Letal Mediana , Masculino , Toxinas Marinhas/metabolismo , Toxinas Marinhas/toxicidade , Necrose , Venenos/metabolismo , Saxitoxina/análogos & derivados , Saxitoxina/metabolismo , Saxitoxina/toxicidade , Toxinas Biológicas/metabolismo , Peixe-Zebra
18.
Harmful Algae ; 129: 102518, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37951618

RESUMO

Two Raphidiopsis (=Cylindrospermopsis) raciborskii metagenome-assembled genomes (MAGs) were recovered from two freshwater metagenomic datasets sampled in 2011 and 2012 in Pampulha Lake, a hypereutrophic, artificial, shallow reservoir, located in the city of Belo Horizonte (MG), Brazil. Since the late 1970s, the lake has undergone increasing eutrophication pressure, due to wastewater input, leading to the occurrence of frequent cyanobacterial blooms. The major difference observed between PAMP2011 and PAMP2012 MAGs was the lack of the saxitoxin gene cluster in PAMP2012, which also presented a smaller genome, while PAMP2011 presented the complete sxt cluster and all essential proteins and clusters. The pangenome analysis was performed with all Raphidiopsis/Cylindrospermopsis genomes available at NCBI to date, with the addition of PAMP2011 and PAMP2012 MAGs (All33 subset), but also without the South American strains (noSA subset), and only among the South American strains (SA10 and SA8 subsets). We observed a substantial increase in the core genome size for the 'noSA' subset, in comparison to 'All33' subset, and since the core genome reflects the closeness among the pangenome members, the results strongly suggest that the conservation level of the essential gene repertoire seems to be affected by the geographic origin of the strains being analyzed, supporting the existence of a distinct SA clade. The Raphidiopsis pangenome comprised a total of 7943 orthologous protein clusters, and the two new MAGs increased the pangenome size by 11%. The pangenome based phylogenetic relationships among the 33 analyzed genomes showed that the SA genomes clustered together with 99% bootstrap support, reinforcing the metabolic particularity of the Raphidiopsis South American clade, related to its saxitoxin producing unique ability, while also indicating a different evolutionary history due to its geographic isolation.


Assuntos
Cianobactérias , Cylindrospermopsis , Cylindrospermopsis/genética , Saxitoxina/genética , Saxitoxina/metabolismo , Filogenia , Metagenoma , Cianobactérias/genética , Lagos , Brasil
19.
Harmful Algae ; 127: 102473, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37544673

RESUMO

The dinoflagellate Alexandrium pacificum (group IV) is of particular interest because of its involvement in harmful algal blooms and production of saxitoxin (STX), which causes paralytic shellfish poisoning. The toxicity from STX and its analogues (STXs) is suspected to be affected by nitrogen (N) availability. However, the toxicity-associated behavior and STX-biosynthesis gene responses of the toxic A. pacificum under N fluctuations have not been sufficiently investigated. In the present study, we identified the sxtI gene involved in sxt biosynthesis pathway and evaluated the effects of nitrate (NO3-) on STXs production and the expression of four sxt core genes (sxtA4, sxtG, sxtB, and sxtI). Quantification of total STXs levels in the cultures under different NO3- regimes showed that NO3- concentration influenced STXs production. In addition, the proportion and concentration of STXs varied depending on the NO3- concentration. Core sxt transcript abundance was also influenced by available NO3- in a time-dependent manner. Expressional levels and patterns of sxtI were correlated with those of sxtA and sxtB. The relationship between the toxins and sxt responses in A. pacificum under various NO3- regimes suggests the direct involvement of N in the STXs biosynthesis pathway. Understanding this link would provide a tool to understand the toxin dynamics of dinoflagellates following N shifts in marine environments.


Assuntos
Dinoflagellida , Dinoflagellida/genética , Dinoflagellida/metabolismo , Saxitoxina/metabolismo , Nitratos/metabolismo , Proliferação Nociva de Algas , Filogenia
20.
Appl Environ Microbiol ; 78(1): 263-72, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22081581

RESUMO

A cyanobacterial bloom impacted over 1,100 km of the Murray River, Australia, and its tributaries in 2009. Physicochemical conditions in the river were optimal to support a bloom at the time. The data suggest that at least three blooms occurred concurrently in different sections of the river, with each having a different community composition and associated cyanotoxin profile. Microscopic and genetic analyses suggested the presence of potentially toxic Anabaena circinalis, Microcystis flos-aquae, and Cylindrospermopsis raciborskii at many locations. Low concentrations of saxitoxins and cylindrospermopsin were detected in Anabaena and Cylindrospermopsis populations. A multiplex quantitative PCR was used, employing novel oligonucleotide primers and fluorescent TaqMan probes, to examine bloom toxigenicity. This single reaction method identified the presence of the major cyanotoxin-producing species present in these environmental samples and also quantified the various toxin biosynthesis genes. A large number of cells present throughout the bloom were not potential toxin producers or were present in numbers below the limit of detection of the assay and therefore not an immediate health risk. Potential toxin-producing cells, possessing the cylindrospermopsin biosynthesis gene (cyrA), predominated early in the bloom, while those possessing the saxitoxin biosynthesis gene (sxtA) were more common toward its decline. In this study, the concentrations of cyanotoxins measured via enzyme-linked immunosorbent assay (ELISA) correlated positively with the respective toxin gene copy numbers, indicating that the molecular method may be used as a proxy for bloom risk assessment.


Assuntos
Toxinas Bacterianas/metabolismo , Biota , Cianobactérias/isolamento & purificação , Monitoramento Ambiental/métodos , Rios/microbiologia , Microbiologia da Água , Alcaloides , Toxinas Bacterianas/genética , Sequência de Bases , Cianobactérias/genética , Cianobactérias/metabolismo , Toxinas de Cianobactérias , DNA Bacteriano/análise , Ensaio de Imunoadsorção Enzimática , Microcistinas/genética , Microcistinas/metabolismo , Dados de Sequência Molecular , New South Wales , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Reação em Cadeia da Polimerase , Rios/química , Saxitoxina/genética , Saxitoxina/metabolismo , Uracila/análogos & derivados , Uracila/metabolismo , Vitória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA