RESUMO
The hierarchic assembly of fibrillar collagen into an extensive and ordered supramolecular protein fibril is critical for extracellular matrix function and tissue mechanics. Despite decades of study, we still know very little about the complex process of fibrillogenesis, particularly at the earliest stages where observation of rapidly forming, nanoscale intermediates challenges the spatial and temporal resolution of most existing microscopy methods. Using video rate scanning atomic force microscopy (VRS-AFM), we can observe details of the first few minutes of collagen fibril formation and growth on a mica surface in solution. A defining feature of fibrillar collagens is a 67-nm periodic banding along the fibril driven by the organized assembly of individual monomers over multiple length scales. VRS-AFM videos show the concurrent growth and maturation of small fibrils from an initial uniform height to structures that display the canonical banding within seconds. Fibrils grow in a primarily unidirectional manner, with frayed ends of the growing tip latching onto adjacent fibrils. We find that, even at extremely early time points, remodeling of growing fibrils proceeds through bird-caging intermediates and propose that these dynamics may provide a pathway to mature hierarchic assembly. VRS-AFM provides a unique glimpse into the early emergence of banding and pathways for remodeling of the supramolecular assembly of collagen during the inception of fibrillogenesis.
Assuntos
Microscopia de Força Atômica , Imagem Individual de Molécula , Microscopia de Força Atômica/métodos , Imagem Individual de Molécula/métodos , Animais , Matriz Extracelular/metabolismo , Colágenos Fibrilares/metabolismo , Colágenos Fibrilares/química , Colágeno/metabolismo , Colágeno/química , Silicatos de AlumínioRESUMO
The ability of proteins and other macromolecules to interact with inorganic surfaces is essential to biological function. The proteins involved in these interactions are highly charged and often rich in carboxylic acid side chains1-5, but the structures of most protein-inorganic interfaces are unknown. We explored the possibility of systematically designing structured protein-mineral interfaces, guided by the example of ice-binding proteins, which present arrays of threonine residues (matched to the ice lattice) that order clathrate waters into an ice-like structure6. Here we design proteins displaying arrays of up to 54 carboxylate residues geometrically matched to the potassium ion (K+) sublattice on muscovite mica (001). At low K+ concentration, individual molecules bind independently to mica in the designed orientations, whereas at high K+ concentration, the designs form two-dimensional liquid-crystal phases, which accentuate the inherent structural bias in the muscovite lattice to produce protein arrays ordered over tens of millimetres. Incorporation of designed protein-protein interactions preserving the match between the proteins and the K+ lattice led to extended self-assembled structures on mica: designed end-to-end interactions produced micrometre-long single-protein-diameter wires and a designed trimeric interface yielded extensive honeycomb arrays. The nearest-neighbour distances in these hexagonal arrays could be set digitally between 7.5 and 15.9 nanometres with 2.1-nanometre selectivity by changing the number of repeat units in the monomer. These results demonstrate that protein-inorganic lattice interactions can be systematically programmed and set the stage for designing protein-inorganic hybrid materials.
Assuntos
Silicatos de Alumínio/química , Proteínas Imobilizadas/química , Biossíntese de Proteínas , Nanofios/química , Ligação ProteicaRESUMO
PIEZO1 is a mechanosensitive channel that converts applied force into electrical signals. Partial molecular structures show that PIEZO1 is a bowl-shaped trimer with extended arms. Here we use cryo-electron microscopy to show that PIEZO1 adopts different degrees of curvature in lipid vesicles of different sizes. We also use high-speed atomic force microscopy to analyse the deformability of PIEZO1 under force in membranes on a mica surface, and show that PIEZO1 can be flattened reversibly into the membrane plane. By approximating the absolute force applied, we estimate a range of values for the mechanical spring constant of PIEZO1. Both methods of microscopy demonstrate that PIEZO1 can deform its shape towards a planar structure. This deformation could explain how lateral membrane tension can be converted into a conformation-dependent change in free energy to gate the PIEZO1 channel in response to mechanical perturbations.
Assuntos
Microscopia Crioeletrônica , Canais Iônicos/química , Canais Iônicos/ultraestrutura , Microscopia de Força Atômica , Silicatos de Alumínio/química , Animais , Células HEK293 , Humanos , Canais Iônicos/metabolismo , Lipossomos/química , Lipossomos/metabolismo , Lipossomos/ultraestrutura , CamundongosRESUMO
Engineered systems designed to remove CO2 from the atmosphere need better adsorbents. Here, we report on zeolite-based adsorbents for the capture of low-concentration CO2. Synthetic zeolites with the mordenite (MOR)-type framework topology physisorb CO2 from low concentrations with fast kinetics, low heat of adsorption, and high capacity. The MOR-type zeolites can have a CO2 capacity of up to 1.15 and 1.05 mmol/g for adsorption from 400 ppm CO2 at 30 °C, measured by volumetric and gravimetric methods, respectively. A structure-performance study demonstrates that Na+ cations in the O33 site located in the side-pocket of the MOR-type framework, that is accessed through a ring of eight tetrahedral atoms (either Si4+ or Al3+: eight-membered ring [8MR]), is the primary site for the CO2 uptake at low concentrations. The presence of N2 and O2 shows negligible impact on CO2 adsorption in MOR-type zeolites, and the capacity increases to â¼2.0 mmol/g at subambient temperatures. By using a series of zeolites with variable topologies, we found the size of the confining pore space to be important for the adsorption of trace CO2. The results obtained here show that the MOR-type zeolites have a number of desirable features for the capture of CO2 at low concentrations.
Assuntos
Zeolitas , Adsorção , Silicatos de Alumínio , Dióxido de CarbonoRESUMO
Assembly of biomolecules at solidwater interfaces requires molecules to traverse complex orientation-dependent energy landscapes through processes that are poorly understood, largely due to the dearth of in situ single-molecule measurements and statistical analyses of the rotational dynamics that define directional selection. Emerging capabilities in high-speed atomic force microscopy and machine learning have allowed us to directly determine the orientational energy landscape and observe and quantify the rotational dynamics for protein nanorods on the surface of muscovite mica under a variety of conditions. Comparisons with kinetic Monte Carlo simulations show that the transition rates between adjacent orientation-specific energetic minima can largely be understood through traditional models of in-plane Brownian rotation across a biased energy landscape, with resulting transition rates that are exponential in the energy barriers between states. However, transitions between more distant angular states are decoupled from barrier height, with jump-size distributions showing a power law decay that is characteristic of a nonclassical Levy-flight random walk, indicating that large jumps are enabled by alternative modes of motion via activated states. The findings provide insights into the dynamics of biomolecules at solidliquid interfaces that lead to self-assembly, epitaxial matching, and other orientationally anisotropic outcomes and define a general procedure for exploring such dynamics with implications for hybrid biomolecularinorganic materials design.
Assuntos
Nanotubos , Proteínas , Rotação , Silicatos de Alumínio/química , Difusão , Aprendizado de Máquina , Microscopia de Força Atômica , Método de Monte Carlo , Nanotubos/química , Proteínas/química , Soluções , Propriedades de SuperfícieRESUMO
Phyllosilicates-based nanomaterials, particularly iron-rich vermiculite (VMT), have wide applications in biomedicine. However, the lack of effective methods to activate the functional layer covered by the external inert layer limits their future applications. Herein, we report a mineral phase reconfiguration strategy to prepare novel nanozymes by a molten salt method. The peroxidase-like activity of the VMT reconfiguration nanozyme is 10 times that of VMT, due to the electronic structure change of iron in VMT. Density-functional theory calculations confirmed that the upward shifted d-band center of the VMT reconfiguration nanozyme promoted the adsorption of H2O2 on the active iron sites and significantly elongated the O-O bond lengths. The reconfiguration nanozyme exhibited nearly 100% antibacterial activity toward Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), much higher than that of VMT (E. coli 10%, S. aureus 21%). This work provides new insights for the rational design of efficient bioactive phyllosilicates-based nanozyme.
Assuntos
Escherichia coli , Staphylococcus aureus , Peróxido de Hidrogênio , Silicatos de Alumínio/farmacologia , Ferro , Antibacterianos/farmacologia , Antibacterianos/químicaRESUMO
One of the earliest living systems was likely based on RNA ("the RNA world"). Mineral surfaces have been postulated to be an important environment for the prebiotic chemistry of RNA. In addition to adsorbing RNA and thus potentially reducing the chance of parasitic takeover through limited diffusion, minerals have been shown to promote a range of processes related to the emergence of life, including RNA polymerization, peptide bond formation, and self-assembly of vesicles. In addition, self-cleaving ribozymes have been shown to retain activity when adsorbed to the clay mineral montmorillonite. However, simulation studies suggest that adsorption to minerals is likely to interfere with RNA folding and, thus, function. To further evaluate the plausibility of a mineral-adsorbed RNA world, here we studied the effect of the synthetic clay montmorillonite K10 on the malachite green RNA aptamer, including binding of the clay to malachite green and RNA, as well as on the formation of secondary structures in model RNA and DNA oligonucleotides. We evaluated the fluorescence of the aptamer complex, adsorption to the mineral, melting curves, Förster resonance energy transfer interactions, and 1H-NMR signals to study the folding and functionality of these nucleic acids. Our results indicate that while some base pairings are unperturbed, the overall folding and binding of the malachite green aptamer are substantially disrupted by montmorillonite. These findings suggest that minerals would constrain the structures, and possibly the functions, available to an adsorbed RNA world.
Assuntos
Bentonita , RNA , Corantes de Rosanilina , Bentonita/química , RNA/química , Argila , Silicatos de Alumínio/química , Adsorção , Minerais/químicaRESUMO
BACKGROUND: Tomato (Lycopersicon esculentum), a valuable economic crop worldwide, often goes to waste due to improper packaging and handling. In the present study, three types of low-density polyethylene nanocomposite films containing 3% clay (Closite 20A), 3% TiO2 nanoparticles, and their combination were synthesized using melt blending method, and evaluated on the quality parameters of tomato fruit during 42 days of storage at 4 °C. RESULTS: Transmission electron microscopy confirmed the degree of dispersion and exfoliation of the nanoparticles. The TiO2/clay-nanocomposite films exhibited notable enhancements in Young's modulus and tensile strength compared to conventional films. The addition of clay and TiO2 nanoparticles resulted in reduced permeability to CO2, O2, and water vapor. Fruits packed with clay/TiO2 nanocomposite films showed decreased ethylene production, mitigated weight loss, and maintained pH, titratable acidity, total soluble solids, and firmness. Furthermore, clay/TiO2 nanocomposite films enhanced membrane stability, decreased membrane lipid peroxidation, and enhanced catalase and ascorbate peroxidase enzyme activity in fruits. CONCLUSIONS: The relatively good exfoliation of clay nanoparticles and the proper dispersion of TiO2 nanoparticles, which were confirmed by TEM, led to an increase in mechanical and physical properties in the Clay/TiO2 nanocomposite. This film displayed more potential in maintaining the quality properties of tomato fruit during cold storage. Therefore, this film can be considered a practical solution for minimizing pathogen risks and contamination, and enhancing the overall quality of tomato fruit.
Assuntos
Argila , Temperatura Baixa , Embalagem de Alimentos , Conservação de Alimentos , Armazenamento de Alimentos , Frutas , Solanum lycopersicum , Titânio , Solanum lycopersicum/fisiologia , Titânio/química , Argila/química , Embalagem de Alimentos/métodos , Conservação de Alimentos/métodos , Nanocompostos/química , Silicatos de Alumínio/químicaRESUMO
Relapse and unresectability have become the main obstacle for further improving hepatocellular carcinoma (HCC) treatment effect. Currently, single therapy for HCC in clinical practice is limited by postoperative recurrence, intraoperative blood loss and poor patient outcomes. Multidisciplinary therapy has been recognized as the key to improving the long-term survival rate for HCC. However, the clinical application of HCC synthetic therapy is restricted by single functional biomaterials. In this study, a magnetic nanocomposite hydrogel (CG-IM) with iron oxide nanoparticle-loaded mica nanosheets (Iron oxide nanoparticles@Mica, IM) is reported. This biocompatible magnetic hydrogel integrated high injectability, magnetocaloric property, mechanical robustness, wet adhesion, and hemostasis, leading to efficient HCC multidisciplinary therapies including postoperative tumor margin treatment and percutaneous locoregional ablation. After minimally invasive hepatectomy of HCC, the CG-IM hydrogel can facilely seal the bleeding hepatic margin, followed by magnetic hyperthermia ablation to effectively prevent recurrence. In addition, CG-IM hydrogel can inhibit unresectable HCC by magnetic hyperthermia through the percutaneous intervention under ultrasound guidance.
Assuntos
Silicatos de Alumínio , Carcinoma Hepatocelular , Hipertermia Induzida , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Hidrogéis/farmacologia , Fenômenos MagnéticosRESUMO
The main goal of the work was to find biochemical protein markers specific for grapes and wine in ancient amphorae shards and fermentation pools. Grape-specific proteins are more reliable markers than tartaric acid and other small organic acids (tartaric acid natural source are not only grape but also apple, mango, and other plants). The Yavne winery (located in the Central District of Israel) is stated to be the largest known wine production complex from the Byzantine period (ca. 1500 years ago). The site has been excavated recently, and a number of wine jar have been recovered. We have applied our ethylene vinyl acetate (EVA) (EVA studded with strong cation and anion exchangers) diskettes to the inner surface of a number of jars, thus capturing residual grape proteins therein. Via mass spectrometry analyses, we have been able to identify four grape and three yeast proteins. This has been possible because the EVA films, applied to such surfaces, are able to harvest and concentrate any trace species, rendering them amenable to instrumental analysis. Our analysis makes it possible to propose an explanation for the Holy Grail phenomenon as a dish in which wine or water begins to smell pleasant. We attribute this to the slow release of terpenes, aldehydes, and ketones from the clay walls of pottery. After digital modeling, we identified that "scallop-shaped" niches in winery were used for the condensation of high percentage alcohol by passive evaporation from fermentation tanks.
Assuntos
Argila , Proteínas de Plantas , Vitis , Vinho , Vitis/química , Vinho/análise , Argila/química , Proteínas de Plantas/análise , Silicatos de Alumínio/química , Polivinil/químicaRESUMO
Potassium-solubilizing microorganisms are capable of secreting acidic chemicals that dissolve and release potassium from soil minerals, thus facilitating potassium uptake by plants. In this study, three potassium-dissolving filamentous fungi were isolated from the rhizosphere soil of a poplar plantation in Jiangsu Province, China. Phylogenetic analyses based on ITS, 18 S, and 28 S showed that these three isolates were most similar to Mortierella. These strains also possessed spherical or ellipsoidal spores, produced sporangia at the hyphal tip, and formed petal-like colonies on PDA media resembling those of Mortierella species. These findings, along with further phenotypic observations, suggest that these isolates were Mortierella species. In addition, the potassium-dissolution experiment showed that strain 2K4 had a relatively high potassium-solubilizing capacity among these isolated fungi. By investigating the influences of different nutrient conditions (carbon source, nitrogen source, and inorganic salt) and initial pH values on the potassium-dissolving ability, the optimal potassium-solubilization conditions of the isolate were determined. When potassium feldspar powder was used as an insoluble potassium source, isolate 2K4 exhibited a significantly better polysaccharide aggregation ability on the formed mycelium-potassium feldspar complex. The composition and content of organic acids secreted by strain 2K4 were further detected, and the potassium-dissolution mechanism of the Mortierella species and its growth promotion effect were discussed, using maize as an example.
Assuntos
Silicatos de Alumínio , Mortierella , Compostos de Potássio , Solo , Solo/química , Fosfatos , Mortierella/genética , Potássio , Rizosfera , Filogenia , Microbiologia do Solo , FungosRESUMO
Iron-bearing smectite clay minerals can act as electron sources and sinks in the environment. Previous studies using mediated electrochemical analyses to determine the reduction potential (EH) values of smectites observed that the relationship between the structural Fe2+(s)/FeTotal ratio in the smectite and EH varied based on the redox history of the smectite. We hypothesize that this behavior, referred to as redox hysteresis, results from the smectite particles not equilibrating with the applied EH over the course of the experiment (â¼30 min). To test this hypothesis, we developed a model incorporating interfacial electron transfer kinetics and charge redistribution within the particle to simulate the mediated electrochemical experiments from previous studies. The simulated redox curves accurately matched the previously reported experimental redox curves of the smectite SWa-1, demonstrating that longer equilibration periods led to a decrease in redox hysteresis. We validated this experimentally by measuring the redox curve of SWa-1 after an equilibration period of at least 12 h. Furthermore, we extended the simulations to three other smectites (NAu-1, NAu-2, and SWy-2) and extracted their respective thermodynamic and kinetic parameters. This work offers a framework for interpreting and modeling redox reactions on clay surfaces, along with key parameters for four commonly studied smectites.
Assuntos
Silicatos de Alumínio , Argila , Ferro , Oxirredução , Cinética , Argila/química , Ferro/química , Silicatos de Alumínio/química , Minerais/química , Elétrons , Transporte de Elétrons , Modelos Químicos , SilicatosRESUMO
The energy transition will have significant mineral demands and there is growing interest in recovering critical metals, including rare earth elements (REE), from secondary sources in aqueous and sedimentary environments. However, the role of clays in REE transport and deposition in these settings remains understudied. This work investigated REE adsorption to the clay minerals illite and kaolinite through pH adsorption experiments and extended X-ray absorption fine structure (EXAFS). Clay type, pH, and ionic strength (IS) affected adsorption, with decreased adsorption under acidic pH and elevated IS. Illite had a higher adsorption capacity than kaolinite; however, >95% adsorption was achieved at pH â¼7.5 regardless of IS or clay. These results were used to develop a surface complexation model with the derived binding constants used to predict REE speciation in the presence of competing sorbents. This demonstrated that clays become increasingly important as pH increases, and EXAFS modeling showed that REE can exist as both inner- and outer-sphere complexes. Together, this indicated that clays can be an important control on the transport and enrichment of REE in sedimentary systems. These findings can be applied to identify settings to target for resource extraction or to predict REE transport and fate as a contaminant.
Assuntos
Argila , Metais Terras Raras , Minerais , Adsorção , Metais Terras Raras/química , Argila/química , Minerais/química , Concentração de Íons de Hidrogênio , Silicatos de Alumínio/químicaRESUMO
The electron accepting capacity (EAC) of soil plays a pivotal role in the biogeochemical cycling of nutrients and transformation of redox-labile contaminants. Prior EAC studies of soils and soil constituents utilized different methods, reductants, and mediators, making cross-study comparison difficult. This study was conducted to quantify and compare the EACs of two soil constituents (hematite and Leonardite humic acid) and 12 soils of diverse composition, using chemical redox titration (CRT) with dithionite as the reductant and mediated electrochemical reduction (MER) with diquat as the mediator. The EACs of hematite and humic acid measured by CRT (EACCRT) and MER (EACMER) are similar and close to the theoretical/reported values. For soils, EACCRT and EACMER increased with iron and organic carbon (TOC) contents, suggesting iron and carbon were the main contributors to soil EAC. EACCRT > EACMER for all soils, and their difference (ΔEAC = EACCRT - EACMER) increased with TOC, presumably due to the longer contact time in CRT and thus more complete reduction of carbonaceous redox moieties. We propose an equation that relates EACCRT to EACMER (ΔEAC = 1796fTOC + 32) and another that predicts EACCRT from dithionite-reducible Fe and TOC (EACCRT = 2705 µmol e-/g C × fTOC + 17907 µmol e-/g Fe × fFedithionite-reducible). Our results suggest that at least 10-15% of soil organic carbon contributed to EACCRT.
Assuntos
Substâncias Húmicas , Oxirredução , Solo , Solo/química , Elétrons , Compostos Férricos/química , Técnicas Eletroquímicas , Silicatos de Alumínio/química , Carbono/química , MineraisRESUMO
In subsurface environments, Fe(II)-bearing clay minerals can serve as crucial electron sources for O2 activation, leading to the sequential production of O2â¢-, H2O2, and â¢OH. However, the observed â¢OH yields are notably low, and the underlying mechanism remains unclear. In this study, we investigated the production of oxidants from oxygenation of reduced Fe-rich nontronite NAu-2 and Fe-poor montmorillonite SWy-3. Our results indicated that the â¢OH yields are dependent on mineral Fe(II) species, with edge-surface Fe(II) exhibiting significantly lower â¢OH yields compared to those of interior Fe(II). Evidence from in situ Raman and Mössbauer spectra and chemical probe experiments substantiated the formation of structural Fe(IV). Modeling results elucidate that the pathways of Fe(IV) and â¢OH formation respectively consume 85.9-97.0 and 14.1-3.0% of electrons for H2O2 decomposition during oxygenation, with the Fe(II)edge/Fe(II)total ratio varying from 10 to 90%. Consequently, these findings provide novel insights into the low â¢OH yields of different Fe(II)-bearing clay minerals. Since Fe(IV) can selectively degrade contaminants (e.g., phenol), the generation of mineral Fe(IV) and â¢OH should be taken into consideration carefully when assessing the natural attenuation of contaminants in redox-fluctuating environments.
Assuntos
Radical Hidroxila , Minerais , Radical Hidroxila/química , Minerais/química , Ferro/química , Argila/química , Oxigênio/química , Peróxido de Hidrogênio/química , Oxirredução , Silicatos de Alumínio/química , Bentonita/químicaRESUMO
Phototransformation is a key process affecting the fate of many antibiotics in the environment, but little is known about whether their photoproducts exert selective pressure on bacteria by inducing antibiotic resistance genes (ARGs). Here, we examined the expression of tetracycline resistance gene tet(M) of a fluorescent Escherichia coli whole-cell bioreporter influenced by the phototransformation of tetracycline. The presence of suspended smectite clay (montmorillonite or hectorite, 1.75 g/L) or dissolved humic substance (Pahokee Peat humic acid or Pahokee peat fulvic acid, 10 mg C/L) in aqueous solutions markedly facilitated the transformation of tetracycline (initially at 400 µg/L) with half-life shortened by 1.4-2.6 times. Despite the similar phototransformation ratios (80-90%) of the total loaded tetracycline after 60 min irradiation, the decreased ratios of cell fluorescence intensity (which was proportional to the expression amount of ARG tet(M)) were much higher with the two clays (94 and 93%) than with the two humic substances (44 and 69%) when compared to the respective dark controls. As illustrated by mass spectroscopic and chemical analyses, tetracycline was proposed to be mainly transformed to amide (ineffective in inducing ARGs) with the presence of clays by reaction with self-photosensitized singlet oxygen (1O2), while the humic substances might catalyze the production of another two demethylated and/or deaminated compounds (still effective in inducing ARGs) in addition to the amide compound via reaction with triplet excited state dissolved organic matter (3DOM*). As clay minerals and humic substances are important soil constituents and ubiquitously present in surface environments, the observed clay and humic-dependent photooxidation pathways of tetracycline and the differing selective pressures of the associated products highlight the need for monitoring the transformation compounds of antibiotics and provide critical insight into the development of antibiotic treatment protocols.
Assuntos
Argila , Escherichia coli , Substâncias Húmicas , Fotólise , Tetraciclina , Tetraciclina/química , Argila/química , Silicatos de Alumínio/química , Antibacterianos/química , Antibacterianos/farmacologia , Resistência a TetraciclinaRESUMO
Soil minerals influence the biogeochemical cycles of fluoride (F) and phosphorus (P), impacting soil quality and bioavailability to plants. However, the cooperative mechanisms of soil minerals in governing F and P in the soil environment remain a grand challenge. Here, we reveal the essential role of a typical soil mineral, montmorillonite (Mt), in the cycling and fate of F and P. The results show that the enrichment of metal sites on the Mt surface promotes the mineralization of F to the fluorapatite (FAP) phase, thereby remaining stable in the environment, simultaneously promoting P release. This differential behavior leads to a reduction in the level of F pollution and an enhancement of P availability. Moreover, solid-state NMR and HRTEM observations confirm the existence of metastable F-Ca-F intermediates, emphasizing the pivotal role of Mt surface sites in regulating crystallization pathways and crystal growth of FAP. Furthermore, the in situ atomic force microscopy and theoretical calculations reveal molecular fractionation mechanisms and adsorption processes. It is observed that a competitive relationship exists between F and P at the Mt interface, highlighting the thermodynamically advantageous pathway of forming metastable intermediates, thereby governing the activity of F and P in the soil environment at a molecular level. This work paves the way to reveal the important role of clay minerals as a mineralization matrix for soil quality management and offers new strategies for modulating F and P dynamics in soil ecosystems.
Assuntos
Fluoretos , Fósforo , Fluoretos/química , Fósforo/química , Solo/química , Argila/química , Apatitas/química , Bentonita/química , Adsorção , Minerais/química , Silicatos de Alumínio/químicaRESUMO
Over 60 years ago, stone tools and remains of megafauna were discovered on the Southeast Asian islands of Flores, Sulawesi and Luzon, and a Middle Pleistocene colonization by Homo erectus was initially proposed to have occurred on these islands1-4. However, until the discovery of Homo floresiensis in 2003, claims of the presence of archaic hominins on Wallacean islands were hypothetical owing to the absence of in situ fossils and/or stone artefacts that were excavated from well-documented stratigraphic contexts, or because secure numerical dating methods of these sites were lacking. As a consequence, these claims were generally treated with scepticism 5 . Here we describe the results of recent excavations at Kalinga in the Cagayan Valley of northern Luzon in the Philippines that have yielded 57 stone tools associated with an almost-complete disarticulated skeleton of Rhinoceros philippinensis, which shows clear signs of butchery, together with other fossil fauna remains attributed to stegodon, Philippine brown deer, freshwater turtle and monitor lizard. All finds originate from a clay-rich bone bed that was dated to between 777 and 631 thousand years ago using electron-spin resonance methods that were applied to tooth enamel and fluvial quartz. This evidence pushes back the proven period of colonization 6 of the Philippines by hundreds of thousands of years, and furthermore suggests that early overseas dispersal in Island South East Asia by premodern hominins took place several times during the Early and Middle Pleistocene stages1-4. The Philippines therefore may have had a central role in southward movements into Wallacea, not only of Pleistocene megafauna 7 , but also of archaic hominins.
Assuntos
Fósseis , Hominidae , Comportamento de Utilização de Ferramentas , Silicatos de Alumínio , Migração Animal , Animais , Argila , Espectroscopia de Ressonância de Spin Eletrônica , Sedimentos Geológicos , História Antiga , Filipinas , Datação RadiométricaRESUMO
Abiotic hydrocarbons and carboxylic acids are known to be formed on Earth, notably during the hydrothermal alteration of mantle rocks. Although the abiotic formation of amino acids has been predicted both from experimental studies and thermodynamic calculations, its occurrence has not been demonstrated in terrestrial settings. Here, using a multimodal approach that combines high-resolution imaging techniques, we obtain evidence for the occurrence of aromatic amino acids formed abiotically and subsequently preserved at depth beneath the Atlantis Massif (Mid-Atlantic Ridge). These aromatic amino acids may have been formed through Friedel-Crafts reactions catalysed by an iron-rich saponite clay during a late alteration stage of the massif serpentinites. Demonstrating the potential of fluid-rock interactions in the oceanic lithosphere to generate amino acids abiotically gives credence to the hydrothermal theory for the origin of life, and may shed light on ancient metabolisms and the functioning of the present-day deep biosphere.
Assuntos
Modelos Químicos , Origem da Vida , Triptofano/análise , Triptofano/síntese química , Silicatos de Alumínio/química , Oceano Atlântico , Argila/química , Evolução Química , Fluorescência , Ferro/químicaRESUMO
Clay-based adsorbents have applications in environmental remediation, particularly in the removal of emerging pollutants such as antibiotics. Taking that into account, we studied the adsorption/desorption process of tetracycline (TC) using three raw and acid- or base-activated clays (AM, HJ1 and HJ2) collected, respectively, from Aleg (Mazzouna), El Haria (Jebess, Maknessy), and Chouabine (Jebess, Maknessy) formations, located in the Maknessy-Mazzouna basin, center-western of Tunisia. The main physicochemical properties of the clays were determined using standard procedures, where the studied clays presented a basic pH (8.39-9.08) and a high electrical conductivity (446-495 dS m-1). Their organic matter contents were also high (14-20%), as well as the values of the effective cation exchange capacity (80.65-97.45 cmolckg-1). In the exchange complex, the predominant cations were Na and Ca, in the case of clays HJ1 and AM, while Mg and Ca were dominant in the HJ2 clay. The sorption experimental setup consisted in performing batch tests, using 0.5 g of each clay sample, adding the selected TC concentrations, then carrying out quantification of the antibiotic by means of HPL-UV equipment. Raw clays showed high adsorption potential for TC (close to 100%) and very low desorption (generally less than 5%). This high adsorption capacity was also present in the clays after being activated with acid or base, allowing them to adsorb TC in a rather irreversible way for a wide range of pH (3.3-10) and electrical conductivity values (3.03-495 dS m-1). Adsorption experimental data were studied as regards their fitting to the Freundlich, Langmuir, Linear and Sips isotherms, being the Sips model the most appropriate to explain the adsorption of TC in these clays (natural or activated). These results could help to improve the overall knowledge on the application of new low-cost methods, using clay based adsorbents, to reduce risks due to emerging pollutants (and specifically TC) affecting the environment.