Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.835
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(24): 5411-5427.e23, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37918396

RESUMO

Neurons build synaptic contacts using different protein combinations that define the specificity, function, and plasticity potential of synapses; however, the diversity of synaptic proteomes remains largely unexplored. We prepared synaptosomes from 7 different transgenic mouse lines with fluorescently labeled presynaptic terminals. Combining microdissection of 5 different brain regions with fluorescent-activated synaptosome sorting (FASS), we isolated and analyzed the proteomes of 18 different synapse types. We discovered ∼1,800 unique synapse-type-enriched proteins and allocated thousands of proteins to different types of synapses (https://syndive.org/). We identify shared synaptic protein modules and highlight the proteomic hotspots for synapse specialization. We reveal unique and common features of the striatal dopaminergic proteome and discover the proteome signatures that relate to the functional properties of different interneuron classes. This study provides a molecular systems-biology analysis of synapses and a framework to integrate proteomic information for synapse subtypes of interest with cellular or circuit-level experiments.


Assuntos
Encéfalo , Proteoma , Sinapses , Animais , Camundongos , Encéfalo/metabolismo , Camundongos Transgênicos , Proteoma/metabolismo , Proteômica , Sinapses/metabolismo , Sinaptossomos/metabolismo
2.
PLoS Genet ; 20(7): e1011359, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39074152

RESUMO

Proper transport of RNAs to synapses is essential for localized translation of proteins in response to synaptic signals and synaptic plasticity. Alzheimer's disease (AD) is a neurodegenerative disease characterized by accumulation of amyloid aggregates and hyperphosphorylated tau neurofibrillary tangles followed by widespread synapse loss. To understand whether RNA synaptic localization is impacted in AD, we performed RNA sequencing on synaptosomes and brain homogenates from AD patients and cognitively healthy controls. This resulted in the discovery of hundreds of mislocalized mRNAs in AD among frontal and temporal brain regions. Similar observations were found in an APPswe/PSEN1dE9 mouse model. Furthermore, major differences were observed among circular RNAs (circRNAs) localized to synapses in AD including two overlapping isoforms of circGSK3ß, one upregulated, and one downregulated. Expression of these distinct isoforms affected tau phosphorylation in neuronal cells substantiating the importance of circRNAs in the brain and pointing to a new class of therapeutic targets.


Assuntos
Doença de Alzheimer , RNA Circular , RNA Mensageiro , Sinapses , Proteínas tau , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Humanos , Animais , Sinapses/metabolismo , Sinapses/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Camundongos , Proteínas tau/metabolismo , Proteínas tau/genética , Fosforilação , Modelos Animais de Doenças , Encéfalo/metabolismo , Encéfalo/patologia , Masculino , Neurônios/metabolismo , Camundongos Transgênicos , Sinaptossomos/metabolismo , Feminino , Idoso
3.
EMBO J ; 40(21): e107915, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34585770

RESUMO

Synaptic refinement is a critical physiological process that removes excess synapses to establish and maintain functional neuronal circuits. Recent studies have shown that focal exposure of phosphatidylserine (PS) on synapses acts as an "eat me" signal to mediate synaptic pruning. However, the molecular mechanism underlying PS externalization at synapses remains elusive. Here, we find that murine CDC50A, a chaperone of phospholipid flippases, localizes to synapses, and that its expression depends on neuronal activity. Cdc50a knockdown leads to phosphatidylserine exposure at synapses and subsequent erroneous synapse removal by microglia partly via the GPR56 pathway. Taken together, our data support that CDC50A safeguards synapse maintenance by regulating focal phosphatidylserine exposure at synapses.


Assuntos
Proteínas de Membrana/genética , Microglia/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fosfatidilserinas/farmacologia , Receptores Acoplados a Proteínas G/genética , Sinapses/efeitos dos fármacos , Animais , Regulação da Expressão Gênica , Genes Reporter , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/citologia , Microglia/metabolismo , Plasticidade Neuronal , Neurônios/citologia , Neurônios/metabolismo , Fosfatidilserinas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sinapses/genética , Sinapses/metabolismo , Transmissão Sináptica , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato , Proteína Vermelha Fluorescente
4.
Cereb Cortex ; 34(13): 161-171, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696595

RESUMO

Autism spectrum disorder (ASD) is a developmental disorder with a rising prevalence and unknown etiology presenting with deficits in cognition and abnormal behavior. We hypothesized that the investigation of the synaptic component of prefrontal cortex may provide proteomic signatures that may identify the biological underpinnings of cognitive deficits in childhood ASD. Subcellular fractions of synaptosomes from prefrontal cortices of age-, brain area-, and postmortem-interval-matched samples from children and adults with idiopathic ASD vs. controls were subjected to HPLC-tandem mass spectrometry. Analysis of data revealed the enrichment of ASD risk genes that participate in slow maturation of the postsynaptic density (PSD) structure and function during early brain development. Proteomic analysis revealed down regulation of PSD-related proteins including AMPA and NMDA receptors, GRM3, DLG4, olfactomedins, Shank1-3, Homer1, CaMK2α, NRXN1, NLGN2, Drebrin1, ARHGAP32, and Dock9 in children with autism (FDR-adjusted P < 0.05). In contrast, PSD-related alterations were less severe or unchanged in adult individuals with ASD. Network analyses revealed glutamate receptor abnormalities. Overall, the proteomic data support the concept that idiopathic autism is a synaptopathy involving PSD-related ASD risk genes. Interruption in evolutionarily conserved slow maturation of the PSD complex in prefrontal cortex may lead to the development of ASD in a susceptible individual.


Assuntos
Córtex Pré-Frontal Dorsolateral , Proteômica , Humanos , Criança , Masculino , Feminino , Adulto , Córtex Pré-Frontal Dorsolateral/metabolismo , Pré-Escolar , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/genética , Sinapses/metabolismo , Adolescente , Adulto Jovem , Transtorno Autístico/metabolismo , Transtorno Autístico/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Sinaptossomos/metabolismo , Córtex Pré-Frontal/metabolismo , Densidade Pós-Sináptica/metabolismo
5.
Cell Mol Life Sci ; 81(1): 224, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38769196

RESUMO

Synaptic loss is an early event in the penumbra area after an ischemic stroke. Promoting synaptic preservation in this area would likely improve functional neurological recovery. We aimed to detect proteins involved in endogenous protection mechanisms of synapses in the penumbra after stroke and to analyse potential beneficial effects of these candidates for a prospective stroke treatment. For this, we performed Liquid Chromatography coupled to Mass Spectrometry (LC-MS)-based proteomics of synaptosomes isolated from the ipsilateral hemispheres of mice subjected to experimental stroke at different time points (24 h, 4 and 7 days) and compared them to sham-operated mice. Proteomic analyses indicated that, among the differentially expressed proteins between the two groups, cystatin C (CysC) was significantly increased at 24 h and 4 days following stroke, before returning to steady-state levels at 7 days, thus indicating a potential transient and intrinsic rescue mechanism attempt of neurons. When CysC was applied to primary neuronal cultures subjected to an in vitro model of ischemic damage, this treatment significantly improved the preservation of synaptic structures. Notably, similar effects were observed when CysC was loaded into brain-derived extracellular vesicles (BDEVs). Finally, when CysC contained in BDEVs was administered intracerebroventricularly to stroked mice, it significantly increased the expression of synaptic markers such as SNAP25, Homer-1, and NCAM in the penumbra area compared to the group supplied with empty BDEVs. Thus, we show that CysC-loaded BDEVs promote synaptic protection after ischemic damage in vitro and in vivo, opening the possibility of a therapeutic use in stroke patients.


Assuntos
Isquemia Encefálica , Encéfalo , Cistatina C , Vesículas Extracelulares , Camundongos Endogâmicos C57BL , Sinapses , Animais , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/transplante , Cistatina C/metabolismo , Sinapses/metabolismo , Camundongos , Masculino , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Proteômica/métodos , Sinaptossomos/metabolismo , Neurônios/metabolismo , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia , Células Cultivadas , Modelos Animais de Doenças
6.
J Biol Chem ; 299(9): 105091, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37516240

RESUMO

α-Synuclein and family members ß- and γ-synuclein are presynaptic proteins that sense and generate membrane curvature, properties important for synaptic vesicle (SV) cycling. αßγ-synuclein triple knockout neurons exhibit SV endocytosis deficits. Here, we investigated if α-synuclein affects clathrin assembly in vitro. Visualizing clathrin assembly on membranes using a lipid monolayer system revealed that α-synuclein increases clathrin lattices size and curvature. On cell membranes, we observe that α-synuclein is colocalized with clathrin and its adapter AP180 in a concentric ring pattern. Clathrin puncta that contain both α-synuclein and AP180 were significantly larger than clathrin puncta containing either protein alone. We determined that this effect occurs in part through colocalization of α-synuclein with the phospholipid PI(4,5)P2 in the membrane. Immuno-electron microscopy (EM) of synaptosomes uncovered that α-synuclein relocalizes from SVs to the presynaptic membrane upon stimulation, positioning α-synuclein to function on presynaptic membranes during or after stimulation. Additionally, we show that deletion of synucleins impacts brain-derived clathrin-coated vesicle size. Thus, α-synuclein affects the size and curvature of clathrin structures on membranes and functions as an endocytic accessory protein.


Assuntos
Clatrina , Proteínas Monoméricas de Montagem de Clatrina , alfa-Sinucleína , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Membrana Celular/metabolismo , Clatrina/química , Clatrina/metabolismo , Endocitose , Microscopia Imunoeletrônica , Proteínas Monoméricas de Montagem de Clatrina/metabolismo , Neurônios/metabolismo , Terminações Pré-Sinápticas/metabolismo , Sinaptossomos/metabolismo , Transporte Proteico , Técnicas In Vitro , Fosfatidilinositol 4,5-Difosfato/metabolismo , Encéfalo/citologia , Vesículas Revestidas por Clatrina/metabolismo
7.
Hum Mol Genet ; 31(18): 3095-3106, 2022 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-35531971

RESUMO

Large-scale genomic studies of schizophrenia implicate genes involved in the epigenetic regulation of transcription by histone methylation and genes encoding components of the synapse. However, the interactions between these pathways in conferring risk to psychiatric illness are unknown. Loss-of-function (LoF) mutations in the gene encoding histone methyltransferase, SETD1A, confer substantial risk to schizophrenia. Among several roles, SETD1A is thought to be involved in the development and function of neuronal circuits. Here, we employed a multi-omics approach to study the effects of heterozygous Setd1a LoF on gene expression and synaptic composition in mouse cortex across five developmental timepoints from embryonic day 14 to postnatal day 70. Using RNA sequencing, we observed that Setd1a LoF resulted in the consistent downregulation of genes enriched for mitochondrial pathways. This effect extended to the synaptosome, in which we found age-specific disruption to both mitochondrial and synaptic proteins. Using large-scale patient genomics data, we observed no enrichment for genetic association with schizophrenia within differentially expressed transcripts or proteins, suggesting they derive from a distinct mechanism of risk from that implicated by genomic studies. This study highlights biological pathways through which SETD1A LOF may confer risk to schizophrenia. Further work is required to determine whether the effects observed in this model reflect human pathology.


Assuntos
Histona-Lisina N-Metiltransferase , Histonas , Animais , Epigênese Genética , Histona Metiltransferases/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Camundongos , Sinaptossomos/metabolismo , Transcriptoma/genética
8.
Eur J Neurosci ; 60(2): 3961-3972, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38973508

RESUMO

Converging electrophysiological, molecular and ultrastructural evidence supports the hypothesis that sleep promotes a net decrease in excitatory synaptic strength, counteracting the net synaptic potentiation caused by ongoing learning during waking. However, several outstanding questions about sleep-dependent synaptic weakening remain. Here, we address some of these questions by using two established molecular markers of synaptic strength, the levels of the AMPA (alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors containing the GluA1 subunit and the phosphorylation of GluA1 at serine 845 (p-GluA1(845)). We previously found that, in the rat cortex and hippocampus, these markers are lower after 6-8 h of sleep than after the same time spent awake. Here, we measure GluA1 and p-GluA1(845) levels in synaptosomes of mouse cortex after 5 h of either sleep, sleep deprivation, recovery sleep after sleep deprivation or selective REM sleep deprivation (32 C57BL/B6 adult mice, 16 females). We find that relative to after sleep deprivation, these synaptic markers are lower after sleep independent of whether the mice were allowed to enter REM sleep. Moreover, 5 h of recovery sleep following acute sleep deprivation is enough to renormalize their expression. Thus, the renormalization of GluA1 and p-GluA1(845) expression crucially relies on NREM sleep and can occur in a few hours of sleep after acute sleep deprivation.


Assuntos
Córtex Cerebral , Receptores de AMPA , Privação do Sono , Sinapses , Animais , Feminino , Masculino , Camundongos , Córtex Cerebral/metabolismo , Camundongos Endogâmicos C57BL , Fosforilação , Receptores de AMPA/metabolismo , Privação do Sono/metabolismo , Privação do Sono/fisiopatologia , Sinapses/metabolismo , Sinapses/fisiologia , Sinaptossomos/metabolismo
9.
J Pharmacol Exp Ther ; 391(1): 22-29, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-38272669

RESUMO

3,4-Methylenedioxymethamphetamine (MDMA) has shown efficacy as a medication adjunct for treating post-traumatic stress disorder (PTSD). However, MDMA is also used in nonmedical contexts that pose risk for cardiovascular and neurologic complications. It is well established that MDMA exerts its effects by stimulating transporter-mediated release of the monoamines 5-hydroxytryptamine (5-HT), norepinephrine, and dopamine. Current research efforts are aimed at developing MDMA-like monoamine releasers with better efficacy and safety profiles. To this end, we investigated neurochemical and behavioral effects of novel analogs of the designer drug 5-(2-methylaminopropyl)benzofuran (5-MAPB). We used in vitro transporter assays in rat brain synaptosomes to examine transmitter uptake inhibition and releasing properties for enantiomers of 5-(2-methylaminobutyl)benzofuran (5-MABB) and 6-(2-methylaminobutyl)benzofuran (6-MABB) compared with MDMA. We then tested these same compounds in male Sprague-Dawley rats trained to discriminate MDMA (1.5 mg/kg) from saline. In vitro results revealed that S isomers of 5- and 6-MABB are efficacious releasing agents at transporters for 5-HT (SERT), norepinephrine (NET), and dopamine (DAT). By contrast, R isomers are efficacious releasers at SERT and partial releasers at NET but lack releasing activity at DAT. In vivo results showed that all compounds produce dose-dependent increases in MDMA-lever responding and full substitution at the highest dose tested. The diminished NET and DAT releasing activities for R isomers of 5- and 6-MABB are associated with reduced potency for inducing behavioral effects. Collectively, these findings indicate that the aminoalkyl benzofuran scaffold may be a viable template for developing compounds with MDMA-like properties. SIGNIFICANCE STATEMENT: Despite the clinical utility of 3,4-methylenedioxymethamphetamine (MDMA), the drug is associated with certain cardiovascular risks and metabolic side effects. Developing a therapeutic alternative with MDMA-like monoamine releasing activity is of interest. Our in vitro and in vivo findings indicate that the aminoalkyl benzofuran scaffold may be useful for developing compounds with MDMA-like properties.


Assuntos
Benzofuranos , N-Metil-3,4-Metilenodioxianfetamina , Ratos Sprague-Dawley , Animais , Benzofuranos/farmacologia , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Ratos , Masculino , Sinaptossomos/metabolismo , Sinaptossomos/efeitos dos fármacos , Dopamina/metabolismo , Serotonina/metabolismo , Monoaminas Biogênicas/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/antagonistas & inibidores , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Norepinefrina/metabolismo , Discriminação Psicológica/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
10.
Biochemistry (Mosc) ; 89(6): 1031-1044, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38981699

RESUMO

Alzheimer's disease (AD) is a severe neurodegenerative condition affecting millions worldwide. Prevalence of AD correlates with increased life expectancy and aging population in the developed countries. Considering that AD is a multifactorial disease involving various pathological processes such as synaptic dysfunction, neuroinflammation, oxidative stress, and improper protein folding, a comprehensive approach targeting multiple pathways may prove effective in slowing the disease progression. Cellular therapy and its further development in the form of cell vesicle and particularly mitochondrial transplantation represent promising approaches for treating neurodegeneration. The use of synaptosomes, due to uniqueness of their contents, could mark a new stage in the development of comprehensive therapies for neurodegenerative diseases, particularly AD. Synaptosomes contain unique memory mitochondria, which differ not only in size but also in functionality compared to the mitochondria in the neuronal soma. These synaptosomal mitochondria actively participate in cellular communication and signal transmission within synapses. Synaptosomes also contain other elements such as their own protein synthesis machinery, synaptic vesicles with neurotransmitters, synaptic adhesion molecules, and microRNAs - all crucial for synaptic transmission and, consequently, cognitive processes. Complex molecular ensemble ensures maintenance of the synaptic autonomy of mitochondria. Additionally, synaptosomes, with their affinity for neurons, can serve as an optimal platform for targeted drug delivery to nerve cells. This review discusses unique composition of synaptosomes, their capabilities and advantages, as well as limitations of their suggested use as therapeutic agents for treating neurodegenerative pathologies, particularly AD.


Assuntos
Doença de Alzheimer , Sinaptossomos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/terapia , Doença de Alzheimer/patologia , Humanos , Sinaptossomos/metabolismo , Animais , Mitocôndrias/metabolismo , Transmissão Sináptica , Neurônios/metabolismo , Sinapses/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(6)2021 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-33526688

RESUMO

Chronic stress is one of the most critical factors in the onset of depressive disorders; hence, environmental factors such as psychosocial stress are commonly used to induce depressive-​like traits in animal models of depression. Ventral CA1 (vCA1) in hippocampus and basal lateral amygdala (BLA) are critical sites during chronic stress-induced alterations in depressive subjects; however, the underlying neural mechanisms remain unclear. Here we employed chronic unpredictable mild stress (CUMS) to model depression in mice and found that the activity of the posterior BLA to vCA1 (pBLA-vCA1) innervation was markedly reduced. Mice subjected to CUMS showed reduction in dendritic complexity, spine density, and synaptosomal AMPA receptors (AMPARs). Stimulation of pBLA-vCA1 innervation via chemogenetics or administration of cannabidiol (CBD) could reverse CUMS-induced synaptosomal AMPAR decrease and efficiently alleviate depressive-like behaviors in mice. These findings demonstrate a critical role for AMPARs and CBD modulation of pBLA-vCA1 innervation in CUMS-induced depressive-like behaviors.


Assuntos
Tonsila do Cerebelo/metabolismo , Depressão/genética , Hipocampo/metabolismo , Receptores de AMPA/genética , Estresse Psicológico/genética , Tonsila do Cerebelo/fisiopatologia , Animais , Complexo Nuclear Basolateral da Amígdala/metabolismo , Complexo Nuclear Basolateral da Amígdala/patologia , Canabidiol/farmacologia , Depressão/tratamento farmacológico , Depressão/metabolismo , Depressão/fisiopatologia , Modelos Animais de Doenças , Hipocampo/fisiopatologia , Humanos , Masculino , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/fisiopatologia , Sinaptossomos/metabolismo
12.
Environ Toxicol ; 39(4): 2138-2149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38108610

RESUMO

Recent evidence suggests that ferroptosis, an iron-dependent cell death process, may be involved in Alzheimer's disease (AD) pathology. The study evaluated the therapeutic potential of betaine and boric acid (BA) pretreatment administered to rats for 21 days in AD. Then, the rats were sacrificed, and morphological and biochemical analyses were performed in brain tissues. Next, an ex vivo AD model was created by applying amyloid-ß (Aß1-42) to synaptosomes isolated from the brain tissues. Synaptosomes were analyzed with micrograph images, and protein and mRNA levels of ferroptotic markers were determined. Betaine and BA pretreatments did not cause any morphological and biochemical differences in the brain tissue. However, Aß (1-42) administration in synaptosomes increased the levels of acyl-CoA synthetase long chain family member-4 (ACSL4), transferrin receptor-1 protein (TfR1), malondialdehyde (MDA), and 8-hydroxydeoxyguanosine (8-OHdG) and decreased the levels glutathione peroxidase-4 (GPx4) and glutathione (GSH). Moreover, ACSL4, GPx4, and TfR1 mRNA and protein levels were similar to the ELISA results. In contrast, betaine and BA pretreatments decreased the levels of ACSL4, TfR1, MDA, and 8-OHdG in synaptosomes incubated with Aß1-42, while promoting increased levels of GPx4 and GSH. In addition, betaine and BA pretreatments completely reversed ACSL4, GPx4, and TfR1 mRNA and protein levels. Therefore, betaine and BA pretreatments may contribute to the prevention of neurodegenerative damage by supporting antiferroptotic activities.


Assuntos
Doença de Alzheimer , Betaína , Ácidos Bóricos , Animais , Ratos , Betaína/farmacologia , Sinaptossomos , 8-Hidroxi-2'-Desoxiguanosina , Glutationa , RNA Mensageiro
13.
Int J Mol Sci ; 25(16)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39201534

RESUMO

The purpose of this study was to investigate whether and how albiflorin, a natural monoterpene glycoside, affects the release of glutamate, one of the most important neurotransmitters involved in neurotoxicity, from cerebrocortical nerve terminals (synaptosomes) in rats. The results showed that albiflorin reduced 4-aminopyridine (4-AP)-elicited glutamate release from synaptosomes, which was abrogated in the absence of extracellular Ca2+ or in the presence of the vesicular glutamate transporter inhibitor or a P/Q-type Ca2+ channel inhibitor, indicating a mechanism of action involving Ca2+-dependent depression of vesicular exocytotic glutamate release. Albiflorin failed to alter the increase in the fluorescence intensity of 3,3-diethylthiacarbocyanine iodide (DiSC3(5)), a membrane-potential-sensitive dye. In addition, the suppression of protein kinase A (PKA) abolished the effect of albiflorin on glutamate release. Albiflorin also reduced the phosphorylation of PKA and synaptosomal-associated protein of 25 kDa (SNAP-25) and synapsin I at PKA-specific residues, which correlated with decreased available synaptic vesicles. The results of transmission electron microscopy (TEM) also observed that albiflorin reduces the release competence of synaptic vesicles evoked by 4-AP in synaptosomes. In conclusion, by studying synaptosomally released glutamate, we suggested that albiflorin reduces vesicular exocytotic glutamate release by decreasing extracellular Ca2+ entry via P/Q-type Ca2+ channels and reducing PKA-mediated synapsin I and SNAP-25 phosphorylation.


Assuntos
Córtex Cerebral , Proteínas Quinases Dependentes de AMP Cíclico , Ácido Glutâmico , Sinaptossomos , Animais , Ácido Glutâmico/metabolismo , Sinaptossomos/metabolismo , Sinaptossomos/efeitos dos fármacos , Ratos , Córtex Cerebral/metabolismo , Córtex Cerebral/efeitos dos fármacos , Masculino , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Canais de Cálcio Tipo Q/metabolismo , Ratos Sprague-Dawley , Canais de Cálcio Tipo P/metabolismo , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Cálcio/metabolismo , Fosforilação/efeitos dos fármacos , Sinapsinas/metabolismo
14.
Int J Mol Sci ; 25(19)2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39408804

RESUMO

Maurotoxin (MTX) is a 34-residue peptide from Scorpio maurus venom. It is reticulated by four disulfide bridges with a unique arrangement compared to other scorpion toxins that target potassium (K+) channels. Structure-activity relationship studies have not been well performed for this toxin family. The screening of Scorpio maurus venom was performed by different steps of fractionation, followed by the ELISA test, using MTX antibodies, to isolate an MTX-like peptide. In vitro, in vivo and computational studies were performed to study the structure-activity relationship of the new isolated peptide. We isolated a new peptide designated MTX1, structurally related to MTX. It demonstrated toxicity on mice eight times more effectively than MTX. MTX1 blocks the Kv1.2 and Kv1.3 channels, expressed in Xenopus oocytes, with IC50 values of 0.26 and 180 nM, respectively. Moreover, MTX1 competitively interacts with both 125I-apamin (IC50 = 1.7 nM) and 125I-charybdotoxin (IC50 = 5 nM) for binding to rat brain synaptosomes. Despite its high sequence similarity (85%) to MTX, MTX1 exhibits a higher binding affinity towards the Kv1.2 and SKCa channels. Computational analysis highlights the significance of specific residues in the ß-sheet region, particularly the R27, in enhancing the binding affinity of MTX1 towards the Kv1.2 and SKCa channels.


Assuntos
Peptídeos , Venenos de Escorpião , Animais , Venenos de Escorpião/química , Camundongos , Relação Estrutura-Atividade , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Ratos , Escorpiões , Canal de Potássio Kv1.2/metabolismo , Canal de Potássio Kv1.2/química , Canal de Potássio Kv1.2/genética , Sequência de Aminoácidos , Canal de Potássio Kv1.3/metabolismo , Canal de Potássio Kv1.3/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/química , Bloqueadores dos Canais de Potássio/farmacologia , Sinaptossomos/metabolismo , Sinaptossomos/efeitos dos fármacos , Masculino , Oócitos/metabolismo , Oócitos/efeitos dos fármacos
15.
J Proteome Res ; 22(7): 2460-2476, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37326657

RESUMO

Label-free quantitation (LFQ) was applied to proteome profiling of rat brain cortical development during the early postnatal period. Male and female rat brain extracts were prepared using a convenient, detergent-free sample preparation technique at postnatal days (PND) 2, 8, 15, and 22. The PND protein ratios were calculated using Proteome Discoverer, and the PND protein change profiles were constructed separately for male and female animals for key presynaptic, postsynaptic, and adhesion brain proteins. The profiles were compared to the analogous profiles assembled from the published mouse and rat cortex proteomic data, including the fractionated-synaptosome data. The PND protein-change trendlines, Pearson correlation coefficient (PCC), and linear regression analysis of the statistically significant PND protein changes were used in the comparative analysis of the datasets. The analysis identified similarities and differences between the datasets. Importantly, there were significant similarities in the comparison of the rat cortex PND (current work) vs mouse (previously published) PND profiles, although in general, a lower abundance of synaptic proteins in mice than in rats was found. The male and female rat cortex PND profiles were expectedly almost identical (98-99% correlation by PCC), which also substantiated this LFQ nanoflow liquid chromatography-high-resolution mass spectrometry approach.


Assuntos
Proteoma , Proteômica , Ratos , Animais , Camundongos , Masculino , Feminino , Proteoma/análise , Encéfalo/metabolismo , Sinaptossomos/química
16.
Glia ; 71(4): 974-990, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36480007

RESUMO

Triggering receptor on myeloid cells 2 (TREM2) is an innate immune receptor, upregulated on the surface of microglia associated with amyloid plaques in Alzheimer's disease (AD). Individuals heterozygous for the R47H variant of TREM2 have greatly increased risk of developing AD. We examined the effects of wild-type (WT), R47H and knock-out (KO) of human TREM2 expression in three microglial cell systems. Addition of mouse BV-2 microglia expressing R47H TREM2 to primary mouse neuronal cultures caused neuronal loss, not observed with WT TREM2. Neuronal loss was prevented by using annexin V to block exposed phosphatidylserine, an eat-me signal and ligand of TREM2, suggesting loss was mediated by microglial phagocytosis of neurons exposing phosphatidylserine. Addition of human CHME-3 microglia expressing R47H TREM2 to LUHMES neuronal-like cells also caused loss compared to WT TREM2. Expression of R47H TREM2 in BV-2 and CHME-3 microglia increased their uptake of phosphatidylserine-beads and synaptosomes versus WT TREM2. Human iPSC-derived microglia with heterozygous R47H TREM2 had increased phagocytosis of synaptosomes vs common-variant TREM2. Additionally, phosphatidylserine liposomes increased activation of human iPSC-derived microglia expressing homozygous R47H TREM2 versus common-variant TREM2. Finally, overexpression of TREM2 in CHME-3 microglia caused increased expression of cystatin F, a cysteine protease inhibitor, and knock-down of cystatin F increased CHME-3 uptake of phosphatidylserine-beads. Together, these data suggest that R47H TREM2 may increase AD risk by increasing phagocytosis of synapses and neurons via greater activation by phosphatidylserine and that WT TREM2 may decrease microglial phagocytosis of synapses and neurons via cystatin F.


Assuntos
Doença de Alzheimer , Sinaptossomos , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Cistatinas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglia/metabolismo , Neurônios/patologia , Fagocitose/genética , Fosfatidilserinas/metabolismo , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Sinaptossomos/metabolismo , Sinaptossomos/patologia
17.
Hum Mol Genet ; 30(13): 1175-1187, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33601422

RESUMO

Synaptic dysfunction and cognitive decline in Huntington's disease (HD) involve hyperactive A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10). To identify the molecular mechanisms through which ADAM10 is associated with synaptic dysfunction in HD, we performed an immunoaffinity purification-mass spectrometry (IP-MS) study of endogenous ADAM10 in the brains of wild-type and HD mice. We found that proteins implicated in synapse organization, synaptic plasticity, and vesicle and organelles trafficking interact with ADAM10, suggesting that it may act as hub protein at the excitatory synapse. Importantly, the ADAM10 interactome is enriched in presynaptic proteins and ADAM10 co-immunoprecipitates with piccolo (PCLO), a key player in the recycling and maintenance of synaptic vesicles. In contrast, reduced ADAM10/PCLO immunoprecipitation occurs in the HD brain, with decreased density of synaptic vesicles in the reserve and docked pools at the HD presynaptic terminal. Conditional heterozygous deletion of ADAM10 in the forebrain of HD mice reduces active ADAM10 to wild-type level and normalizes ADAM10/PCLO complex formation and synaptic vesicle density and distribution. The results indicate that presynaptic ADAM10 and PCLO are a relevant component of HD pathogenesis.


Assuntos
Proteína ADAM10/metabolismo , Proteínas do Citoesqueleto/metabolismo , Doença de Huntington/metabolismo , Neuropeptídeos/metabolismo , Vesículas Sinápticas/metabolismo , Proteína ADAM10/genética , Animais , Western Blotting , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Humanos , Doença de Huntington/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Terminações Pré-Sinápticas/metabolismo , Ligação Proteica , Mapas de Interação de Proteínas/genética , Proteômica/métodos , Vesículas Sinápticas/ultraestrutura , Sinaptossomos/metabolismo , Espectrometria de Massas em Tandem/métodos
18.
Biochem Biophys Res Commun ; 638: 168-175, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459881

RESUMO

ALS2/alsin, the causative gene product for a number of juvenile recessive motor neuron diseases, acts as a guanine nucleotide exchange factor (GEF) for Rab5, regulating early endosome trafficking and maturation. It has been demonstrated that ALS2 forms a tetramer, and this oligomerization is essential for its GEF activity and endosomal localization in established cancer cells. However, despite that ALS2 deficiency is implicated in neurological diseases, neither the subcellular distribution of ALS2 nor the form of its complex in the central nervous system (CNS) has been investigated. In this study, we showed that ALS2 in the brain was enriched both in synaptosomal and cytosolic fractions, while those in the liver were almost exclusively present in cytosolic fraction by differential centrifugation. Gel filtration chromatography revealed that cytosolic ALS2 prepared both from the brain and liver formed a tetramer. Remarkably, synaptosomal ALS2 existed as a high-molecular weight complex in addition to a tetramer. Such complex was also observed not only in embryonic brain but also several neuronal and glial cultures, but not in fibroblast-derived cell lines. Thus, the high-molecular weight ALS2 complex represents a unique form of ALS2-homophilic oligomers in the CNS, which may play a role in the maintenance of neural function.


Assuntos
Esclerose Lateral Amiotrófica , Sinaptossomos , Camundongos , Animais , Sinaptossomos/metabolismo , Peso Molecular , Endossomos/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Sistema Nervoso Central/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Encéfalo/metabolismo
19.
Dev Neurosci ; 45(3): 126-138, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36882009

RESUMO

Alterations in the expression of genes encoding proteins involved in synapse formation, maturation, and function are a hallmark of many neurodevelopmental and psychiatric disorders. For example, there is reduced neocortical expression of the MET receptor tyrosine kinase (MET) transcript and protein in Autism Spectrum Disorder (ASD) and Rett syndrome. Preclinical in vivo and in vitro models manipulating MET signaling reveal that the receptor modulates excitatory synapse development and maturation in select forebrain circuits. The molecular adaptations underlying the altered synaptic development remain unknown. We performed a comparative mass spectrometry analysis of synaptosomes generated from the neocortex of wild type and Met null mice during the peak of synaptogenesis (postnatal day 14; data are available from ProteomeXchange with identifier PXD033204). The analyses revealed broad disruption of the developing synaptic proteome in the absence of MET, consistent with the localization of MET protein in pre- and postsynaptic compartments, including proteins associated with the neocortical synaptic MET interactome and those encoded by syndromic and ASD risk genes. In addition to an overrepresentation of altered proteins associated with the SNARE complex, multiple proteins in the ubiquitin-proteasome system and associated with the synaptic vesicle, as well as proteins that regulate actin filament organization and synaptic vesicle exocytosis/endocytosis, were disrupted. Taken together, the proteomic changes are consistent with structural and functional changes observed following alterations in MET signaling. We hypothesize that the molecular adaptations following Met deletion may reflect a general mechanism that produces circuit-specific molecular changes due to loss or reduction of synaptic signaling proteins.


Assuntos
Transtorno do Espectro Autista , Neocórtex , Camundongos , Animais , Sinaptossomos/metabolismo , Proteoma/metabolismo , Transtorno do Espectro Autista/genética , Proteômica/métodos , Sinapses/metabolismo
20.
Psychol Sci ; 34(5): 616-632, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37040450

RESUMO

Social adversity not only causes severe psychological diseases but also may improve people's ability to learn and grow. However, the beneficial effects of social adversity are often ignored. In this study, we investigated whether and how social adversity affects learning and memory in a mouse social defeat stress (SDS) model. A total of 652 mice were placed in experimental groups of six to 23 mice each. SDS enhanced spatial, novelty, and fear memory with increased synaptosome associated protein 25 (SNAP-25) level and dendritic spine density in hippocampal neurons among young but not middle-aged mice. Chemogenetic inhibition of hippocampal CaMK2A+ neurons blocked SDS-induced enhancement of learning or memory. Knockdown of SNAP-25 or blockade of N-methyl-D-aspartate (NMDA) receptor subunit GluN2B in the hippocampus prevented SDS-induced learning memory enhancement in an emotion-independent manner. These findings suggest that social adversity promotes learning and memory ability in youths and provide a neurobiological foundation for biopsychological antifragility.


Assuntos
Derrota Social , Sinaptossomos , Animais , Camundongos , Hipocampo , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Estresse Psicológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA