Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Am J Physiol Cell Physiol ; 327(2): C380-C386, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38953842

RESUMO

Cell surface receptors play crucial roles in cellular responses to extracellular ligands, helping to modulate the functions of a cell based on information coming from outside the cell. Syndecan refers to a family of cell adhesion receptors that regulate both extracellular and cytosolic events. Alteration of syndecan expression disrupts regulatory mechanisms in a cell type-specific fashion, often leading to serious diseases, notably cancer. Given the multifaceted functions and distinct tissue distributions of syndecan, it will be important to unravel the gene-level intricacies of syndecan expression and thereby further understand its involvement in various carcinogenic processes. Although accumulating evidence indicates that the protein expression patterns of syndecan family members are significantly altered in cancer cells, the underlying gene-level mechanisms remain largely unknown. This review endeavors to explore syndecan gene expression levels across different cancer types by scrutinizing extensive cancer genome datasets using tools such as cBioPortal. Our analysis unveils that somatic mutations in SDC genes are rare occurrences, whereas copy number alterations are frequently observed across diverse cancers, particularly in SDC2 and SDC4. Notably, amplifications of SDC2 and SDC4 correlate with heightened metastatic potential and dismal prognosis. This underscores the recurrent nature of SDC2 and SDC4 amplifications during carcinogenesis and sheds light on their role in promoting cancer activity through augmented protein expression. The identification of these amplifications not only enriches our understanding of carcinogenic mechanisms but also hints at the potential therapeutic avenue of targeting SDC2 and SDC4 to curb cancer cell proliferation and metastasis.


Assuntos
Amplificação de Genes , Humanos , Regulação Neoplásica da Expressão Gênica , Metástase Neoplásica , Animais , Sindecana-4/genética , Sindecana-4/metabolismo , Sindecanas/genética , Sindecanas/metabolismo , Carcinoma/genética , Carcinoma/patologia , Carcinoma/metabolismo , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
2.
Cell Biol Int ; 48(6): 883-897, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38591778

RESUMO

Anoikis is a process of programmed cell death induced by the loss of cell/matrix interactions. In previous work, we have shown that the acquisition of anoikis resistance upregulates syndecan-4 (SDC4) expression in endothelial cells. In addition, SDC4 gene silencing by microRNA interference reverses the transformed phenotype of anoikis-resistant endothelial cells. Due to this role of SDC4 in regulating the behavior of anoikis-resistant endothelial cells, we have evaluated that the functional consequences of SDC4 silencing in the extracellular matrix (ECM) remodeling in anoikis-resistant rabbit aortic endothelial cells submitted to SDC4 gene silencing (miR-Syn4-Adh-1-EC). For this, we evaluated the expression of adhesive proteins, ECM receptors, nonreceptor protein-tyrosine kinases, and ECM-degrading enzymes and their inhibitors. Altered cell behavior was monitored by adhesion, migration, and tube formation assays. We found that SDC4 silencing led to a decrease in migration and angiogenic capacity of anoikis-resistant endothelial cells; this was accompanied by an increase in adhesion to fibronectin. Furthermore, after SDC4 silencing, we observed an increase in the expression of fibronectin, collagen IV, and vitronectin, and a decrease in the expression of integrin α5ß1 and αvß3, besides that, silenced cells show an increase in Src and FAK expression. Quantitative polymerase chain reaction and Western blot analysis demonstrated that SDC4 silencing leads to altered gene and protein expression of MMP2, MMP9, and HSPE. Compared with parental cells, SDC4 silenced cells showed a decrease in nitric oxide production and eNOS expression. In conclusion, these data demonstrate that SDC4 plays an important role in ECM remodeling. In addition, our findings represent an important step toward understanding the mechanism by which SDC4 can reverse the transformed phenotype of anoikis-resistant endothelial cells.


Assuntos
Anoikis , Células Endoteliais , Matriz Extracelular , Inativação Gênica , Sindecana-4 , Sindecana-4/metabolismo , Sindecana-4/genética , Animais , Matriz Extracelular/metabolismo , Células Endoteliais/metabolismo , Coelhos , Adesão Celular , Movimento Celular , Fibronectinas/metabolismo , Células Cultivadas
3.
Mol Biol Rep ; 51(1): 604, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700644

RESUMO

BACKGROUND: The healing process after a myocardial infarction (MI) in humans involves complex events that replace damaged tissue with a fibrotic scar. The affected cardiac tissue may lose its function permanently. In contrast, zebrafish display a remarkable capacity for scar-free heart regeneration. Previous studies have revealed that syndecan-4 (SDC4) regulates inflammatory response and fibroblast activity following cardiac injury in higher vertebrates. However, whether and how Sdc4 regulates heart regeneration in highly regenerative zebrafish remains unknown. METHODS AND RESULTS: This study showed that sdc4 expression was differentially regulated during zebrafish heart regeneration by transcriptional analysis. Specifically, sdc4 expression increased rapidly and transiently in the early regeneration phase upon ventricular cryoinjury. Moreover, the knockdown of sdc4 led to a significant reduction in extracellular matrix protein deposition, immune cell accumulation, and cell proliferation at the lesion site. The expression of tgfb1a and col1a1a, as well as the protein expression of Fibronectin, were all down-regulated under sdc4 knockdown. In addition, we verified that sdc4 expression was required for cardiac repair in zebrafish via in vivo electrocardiogram analysis. Loss of sdc4 expression caused an apparent pathological Q wave and ST elevation, which are signs of human MI patients. CONCLUSIONS: Our findings support that Sdc4 is required to mediate pleiotropic repair responses in the early stage of zebrafish heart regeneration.


Assuntos
Coração , Regeneração , Sindecana-4 , Peixe-Zebra , Animais , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Sindecana-4/genética , Sindecana-4/metabolismo , Regeneração/genética , Coração/fisiologia , Coração/fisiopatologia , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Proliferação de Células/genética , Miocárdio/metabolismo , Miocárdio/patologia , Técnicas de Silenciamento de Genes
4.
J Appl Toxicol ; 44(6): 908-918, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396353

RESUMO

Cadmium (Cd) is one of the most polluting heavy metal in the environment. Cd exposure has been elucidated to cause dysfunction of the glomerular filtration barrier (GFB). However, the underlying mechanism remains unclear. C57BL/6J male mice were administered with 2.28 mg/kg cadmium chloride (CdCl2) dissolved in distilled water by oral gavage for 14 days. The expression of SDC4 in the kidney tissues was detected. Human renal glomerular endothelial cells (HRGECs) were exposed to varying concentrations of CdCl2 for 24 h. The mRNA levels of SDC4, along with matrix metalloproteinase (MMP)-2 and 9, were analyzed by quantitative PCR. Additionally, the protein expression levels of SDC4, MMP-2/9, and both total and phosphorylated forms of Smad2/3 (P-Smad2/3) were detected by western blot. The extravasation rate of fluorescein isothiocyanate-dextran through the Transwell was used to evaluate the permeability of HRGECs. SB431542 was used as an inhibitor of transforming growth factor (TGF)-ß signaling pathway to further investigate the role of TGF-ß. Cd reduced SDC4 expression in both mouse kidney tissues and HRGECs. In addition, Cd exposure increased permeability and upregulated P-Smad2/3 levels in HRGECs. SB431542 treatment inhibited the phosphorylation of Smad2/3, Cd-induced SDC4 downregulation, and hyperpermeability. MMP-2/9 levels increased by Cd exposure was also blocked by SB431542, demonstrating the involvement of TGF-ß/Smad pathway in low-dose Cd-induced SDC4 reduction in HRGECs. Given that SDC4 is an essential component of glycocalyx, protection or repair of endothelial glycocalyx is a potential strategy for preventing or treating kidney diseases associated with environmental Cd exposure.


Assuntos
Cádmio , Células Endoteliais , Glicocálix , Glomérulos Renais , Sindecana-4 , Animais , Humanos , Masculino , Camundongos , Cádmio/toxicidade , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Glicocálix/efeitos dos fármacos , Glicocálix/metabolismo , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Sindecana-4/metabolismo , Sindecana-4/genética , Fator de Crescimento Transformador beta/metabolismo
5.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062776

RESUMO

Antithrombin III (ATIII) is a potent endogenous anticoagulant that binds to heparan sulfate proteoglycans (HSPGs) on endothelial cells' surfaces. Among these HSPGs, syndecans (SDCs) are crucial as transmembrane receptors bridging extracellular ligands with intracellular signaling pathways. Specifically, syndecan-4 (SDC4) has been identified as a key receptor on endothelial cells for transmitting the signaling effects of ATIII. Meanwhile, SDCs have been implicated in facilitating the cellular internalization of SARS-CoV-2. Given the complex interactions between ATIII and SDC4, our study analyzed the impact of ATIII on the virus entry into host cells. While ATIII binds to all SDC isoforms, it shows the strongest affinity for SDC4. SDCs' heparan sulfate chains primarily influence ATIII's SDC attachment, although other parts might also play a role in ATIII's dominant affinity toward SDC4. ATIII significantly reduces SARS-CoV-2's cellular entry into cell lines expressing SDCs, suggesting a competitive inhibition mechanism at the SDC binding sites, particularly SDC4. Conversely, the virus or its spike protein decreases the availability of SDCs on the cell surface, reducing ATIII's cellular attachment and hence contributing to a procoagulant environment characteristic of COVID-19.


Assuntos
Antitrombina III , COVID-19 , SARS-CoV-2 , Sindecana-4 , Internalização do Vírus , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , SARS-CoV-2/efeitos dos fármacos , Sindecana-4/metabolismo , COVID-19/virologia , COVID-19/metabolismo , Internalização do Vírus/efeitos dos fármacos , Antitrombina III/metabolismo , Antitrombina III/farmacologia , Ligação Proteica , Vacinas contra COVID-19/imunologia , Tratamento Farmacológico da COVID-19 , Sindecanas/metabolismo , Animais
6.
Cells ; 13(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38891079

RESUMO

The transmembrane proteoglycan syndecan-4 is known to be involved in the hypertrophic response to pressure overload. Although multiple downstream signaling pathways have been found to be involved in this response in a syndecan-4-dependent manner, there are likely more signaling components involved. As part of a larger syndecan-4 interactome screening, we have previously identified MLP as a binding partner to the cytoplasmic tail of syndecan-4. Interestingly, many human MLP mutations have been found in patients with hypertrophic (HCM) and dilated cardiomyopathy (DCM). To gain deeper insight into the role of the syndecan-4-MLP interaction and its potential involvement in MLP-associated cardiomyopathy, we have here investigated the syndecan-4-MLP interaction in primary adult rat cardiomyocytes and the H9c2 cell line. The binding of syndecan-4 and MLP was analyzed in total lysates and subcellular fractions of primary adult rat cardiomyocytes, and baseline and differentiated H9c2 cells by immunoprecipitation. MLP and syndecan-4 localization were determined by confocal microscopy, and MLP oligomerization was determined by immunoblotting under native conditions. Syndecan-4-MLP binding, as well as MLP self-association, were also analyzed by ELISA and peptide arrays. Our results showed that MLP-WT and syndecan-4 co-localized in many subcellular compartments; however, their binding was only detected in nuclear-enriched fractions of isolated adult cardiomyocytes. In vitro, syndecan-4 bound to MLP at three sites, and this binding was reduced in some HCM-associated MLP mutations. While MLP and syndecan-4 also co-localized in many subcellular fractions of H9c2 cells, these proteins did not bind at baseline or after differentiation into cardiomyocyte-resembling cells. Independently of syndecan-4, mutated MLP proteins had an altered subcellular localization in H9c2 cells, compared to MLP-WT. The DCM- and HCM-associated MLP mutations, W4R, L44P, C58G, R64C, Y66C, K69R, G72R, and Q91L, affected the oligomerization of MLP with an increase in monomeric at the expense of trimeric and tetrameric recombinant MLP protein. Lastly, two crucial sites for MLP self-association were identified, which were reduced in most MLP mutations. Our data indicate that the syndecan-4-MLP interaction was present in nuclear-enriched fractions of isolated adult cardiomyocytes and that this interaction was disrupted by some HCM-associated MLP mutations. MLP mutations were also linked to changes in MLP oligomerization and self-association, which may be essential for its interaction with syndecan-4 and a critical molecular mechanism of MLP-associated cardiomyopathy.


Assuntos
Miócitos Cardíacos , Ligação Proteica , Sindecana-4 , Animais , Humanos , Ratos , Linhagem Celular , Miócitos Cardíacos/metabolismo , Sindecana-4/metabolismo , Sindecana-4/genética
7.
Matrix Biol ; 131: 46-61, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38806135

RESUMO

Syndecan 4 (SDC4), a cell surface heparan sulfate proteoglycan, is known to regulate matrix catabolism by nucleus pulposus cells in an inflammatory milieu. However, the role of SDC4 in the aging spine has never been explored. Here we analyzed the spinal phenotype of Sdc4 global knockout (KO) mice as a function of age. Micro-computed tomography showed that Sdc4 deletion severely reduced vertebral trabecular and cortical bone mass, and biomechanical properties of vertebrae were significantly altered in Sdc4 KO mice. These changes in vertebral bone were likely due to elevated osteoclastic activity. The histological assessment showed subtle phenotypic changes in the intervertebral disc. Imaging-Fourier transform-infrared analyses showed a reduced relative ratio of mature collagen crosslinks in young adult nucleus pulposus (NP) and annulus fibrosus (AF) of KO compared to wildtype discs. Additionally, relative chondroitin sulfate levels increased in the NP compartment of the KO mice. Transcriptomic analysis of NP tissue using CompBio, an AI-based tool showed biological themes associated with prominent dysregulation of heparan sulfate GAG degradation, mitochondria metabolism, autophagy, endoplasmic reticulum (ER)-associated misfolded protein processes and ER to Golgi protein processing. Overall, this study highlights the important role of SDC4 in fine-tuning vertebral bone homeostasis and extracellular matrix homeostasis in the mouse intervertebral disc.


Assuntos
Envelhecimento , Doenças Ósseas Metabólicas , Homeostase , Camundongos Knockout , Sindecana-4 , Animais , Camundongos , Sindecana-4/metabolismo , Sindecana-4/genética , Envelhecimento/metabolismo , Envelhecimento/genética , Doenças Ósseas Metabólicas/genética , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/patologia , Microtomografia por Raio-X , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Núcleo Pulposo/metabolismo , Núcleo Pulposo/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Coluna Vertebral/metabolismo , Coluna Vertebral/patologia , Coluna Vertebral/diagnóstico por imagem , Anel Fibroso/metabolismo , Anel Fibroso/patologia , Osteoclastos/metabolismo
8.
Diabetes ; 73(6): 964-976, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38530908

RESUMO

Adiponectin has vascular anti-inflammatory and protective effects. Although adiponectin protects against the development of albuminuria, historically, the focus has been on podocyte protection within the glomerular filtration barrier (GFB). The first barrier to albumin in the GFB is the endothelial glycocalyx (eGlx), a surface gel-like barrier covering glomerular endothelial cells (GEnCs). In diabetes, eGlx dysfunction occurs before podocyte damage; hence, we hypothesized that adiponectin could protect from eGlx damage to prevent early vascular damage in diabetic kidney disease (DKD). Globular adiponectin (gAd) activated AMPK signaling in human GEnCs through AdipoR1. It significantly reduced eGlx shedding and the tumor necrosis factor-α (TNF-α)-mediated increase in syndecan-4 (SDC4) and MMP2 mRNA expression in GEnCs in vitro. It protected against increased TNF-α mRNA expression in glomeruli isolated from db/db mice and against expression of genes associated with glycocalyx shedding (namely, SDC4, MMP2, and MMP9). In addition, gAd protected against increased glomerular albumin permeability (Ps'alb) in glomeruli isolated from db/db mice when administered intraperitoneally and when applied directly to glomeruli (ex vivo). Ps'alb was inversely correlated with eGlx depth in vivo. In summary, adiponectin restored eGlx depth, which was correlated with improved glomerular barrier function, in diabetes.


Assuntos
Adiponectina , Diabetes Mellitus Tipo 2 , Glicocálix , Glomérulos Renais , Animais , Glicocálix/metabolismo , Glicocálix/efeitos dos fármacos , Adiponectina/metabolismo , Adiponectina/genética , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Glomérulos Renais/efeitos dos fármacos , Humanos , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Masculino , Barreira de Filtração Glomerular/metabolismo , Barreira de Filtração Glomerular/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Sindecana-4/metabolismo , Sindecana-4/genética , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA