Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.199
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 628(8006): 195-203, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480879

RESUMO

Sustained smouldering, or low-grade activation, of myeloid cells is a common hallmark of several chronic neurological diseases, including multiple sclerosis1. Distinct metabolic and mitochondrial features guide the activation and the diverse functional states of myeloid cells2. However, how these metabolic features act to perpetuate inflammation of the central nervous system is unclear. Here, using a multiomics approach, we identify a molecular signature that sustains the activation of microglia through mitochondrial complex I activity driving reverse electron transport and the production of reactive oxygen species. Mechanistically, blocking complex I in pro-inflammatory microglia protects the central nervous system against neurotoxic damage and improves functional outcomes in an animal disease model in vivo. Complex I activity in microglia is a potential therapeutic target to foster neuroprotection in chronic inflammatory disorders of the central nervous system3.


Assuntos
Complexo I de Transporte de Elétrons , Inflamação , Microglia , Doenças Neuroinflamatórias , Animais , Feminino , Humanos , Masculino , Camundongos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo I de Transporte de Elétrons/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Multiômica , Células Mieloides/metabolismo , Células Mieloides/patologia , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/patologia , Espécies Reativas de Oxigênio/metabolismo
2.
J Cell Mol Med ; 28(9): e18338, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38683122

RESUMO

Respiratory syncytial virus (RSV) infects neuronal cells in the central nervous system (CNS), resulting in neurological symptoms. In the present study, we intended to explore the mechanism of RSV infection-induced neuroinflammatory injury from the perspective of the immune response and sought to identify effective protective measures against the injury. The findings showed that toll-like receptor 4 (TLR4) was activated after RSV infection in human neuronal SY5Y cells. Furthermore, TLR4 activation induced autophagy and apoptosis in neuronal cells, promoted the formation of the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, and increased the secretion of downstream inflammatory cytokines such as interleukin-1ß (IL-1ß), interleukin-18 (IL-18) and tumour necrosis factor-α (TNF-α). Interestingly, blockade of TLR4 or treatment with exogenous melatonin significantly suppressed TLR4 activation as well as TLR4-mediated apoptosis, autophagy and immune responses. Therefore, we infer that melatonin may act on the TLR4 to ameliorate RSV-induced neuronal injury, which provides a new therapeutic target for RSV infection.


Assuntos
Apoptose , Autofagia , Inflamassomos , Melatonina , Proteína 3 que Contém Domínio de Pirina da Família NLR , Infecções por Vírus Respiratório Sincicial , Receptor 4 Toll-Like , Humanos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Sistema Nervoso Central/virologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/patologia , Citocinas/metabolismo , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Melatonina/farmacologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/virologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/efeitos dos fármacos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Infecções por Vírus Respiratório Sincicial/metabolismo , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Infecções por Vírus Respiratório Sincicial/imunologia , Infecções por Vírus Respiratório Sincicial/patologia , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/fisiologia , Receptor 4 Toll-Like/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo
3.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000265

RESUMO

Rotenone, as a common pesticide and insecticide frequently found in environmental samples, may be present in aquatic habitats worldwide. Exposure to low concentrations of this compound may cause alterations in the nervous system, thus contributing to Parkinsonian motor symptoms in both vertebrates and invertebrates. However, the effects of chronic exposure to low doses of rotenone on the activity of neurotransmitters that govern motor functions and on the specific molecular mechanisms leading to movement morbidity remain largely unknown for many aquatic invertebrates. In this study, we analyzed the effects that rotenone poisoning exerts on the activity of dopamine (DA) and acetylcholine (ACh) synthesis enzymes in the central nervous system (CNS) of Asian shore crab, Hemigrapsus sanguineus (de Haan, 1835), and elucidated the association of its locomotor behavior with Parkinson's-like symptoms. An immunocytochemistry analysis showed a reduction in tyrosine hydroxylase (TH) in the median brain and the ventral nerve cord (VNC), which correlated with the subsequent decrease in the locomotor activity of shore crabs. We also observed a variation in cholinergic neurons' activity, mostly in the ventral regions of the VNC. Moreover, the rotenone-treated crabs showed signs of damage to ChAT-lir neurons in the VNC. These data suggest that chronic treatment with low doses of rotenone decreases the DA level in the VNC and the ACh level in the brain and leads to progressive and irreversible reductions in the crab's locomotor activity, life span, and changes in behavior.


Assuntos
Braquiúros , Sistema Nervoso Central , Neurônios Colinérgicos , Neurônios Dopaminérgicos , Rotenona , Animais , Rotenona/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Neurônios Colinérgicos/efeitos dos fármacos , Neurônios Colinérgicos/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Braquiúros/efeitos dos fármacos , Braquiúros/metabolismo , Dopamina/metabolismo , Acetilcolina/metabolismo , Inseticidas/toxicidade , Tirosina 3-Mono-Oxigenase/metabolismo , Locomoção/efeitos dos fármacos
4.
Acta Neuropsychiatr ; 36(3): 129-138, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38178717

RESUMO

Bradykinin (BK), a well-studied mediator of physiological and pathological processes in the peripheral system, has garnered less attention regarding its function in the central nervous system, particularly in behavioural regulation. This review delves into the historical progression of research focused on the behavioural effects of BK and other drugs that act via similar mechanisms to provide new insights into the pathophysiology and pharmacotherapy of psychiatric disorders. Evidence from experiments with animal models indicates that BK modulates defensive reactions associated with panic symptoms and the response to acute stressors. The mechanisms are not entirely understood but point to complex interactions with other neurotransmitter systems, such as opioids, and intracellular signalling cascades. By addressing the existing research gaps in this field, we present new proposals for future research endeavours to foster a new era of investigation regarding BK's role in emotional regulation. Implications for psychiatry, chiefly for panic and depressive disorders are also discussed.


Assuntos
Bradicinina , Sistema Nervoso Central , Humanos , Animais , Bradicinina/metabolismo , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Transtorno de Pânico/metabolismo , Transtornos Mentais/metabolismo , Transtornos Mentais/tratamento farmacológico , Transtorno Depressivo/metabolismo , Transtorno Depressivo/tratamento farmacológico
5.
Yi Chuan ; 46(6): 478-489, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38886151

RESUMO

Metronidazole (MTZ), a commonly used anti-infective drug in clinical practice, has also been employed as a prodrug in cell-targeted ablation systems in scientific research, exhibiting significant application value. However, it has been demonstrated that MTZ can induce neurotoxic symptoms to some extent during its use, and there is currently a lack of effective means to circumvent its toxicity in both clinical and research settings, which limits its application. Therefore, exploring the specific mechanisms underlying MTZ-induced neurotoxic symptoms and elucidating countermeasures will enhance the practical value of MTZ. In this study, using a zebrafish spinal cord injury regeneration model, we confirmed that MTZ neurotoxicity leads to impaired axon regeneration in the central nervous system. By overexpressing il34 in the central nervous system of zebrafish, we eliminated the inhibitory effect of MTZ on axonal regeneration and demonstrated that the pro-regenerative effect against MTZ neurotoxicity is not caused by excessive macrophages/microglia chemoattracted by interleukin 34(Il34). Transcriptome sequencing analysis and GO enrichment analysis of differentially expressed genes between groups revealed that Il34 may counteract MTZ neurotoxicity and promote spinal cord injury repair through biological processes that enhance cellular adhesion and cell location. In summary, our work uncovers a possible cause of MTZ neurotoxicity and provides a new perspective for eliminating MTZ toxicity.


Assuntos
Metronidazol , Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Peixe-Zebra , Animais , Metronidazol/farmacologia , Metronidazol/efeitos adversos , Regeneração da Medula Espinal/efeitos dos fármacos , Traumatismos da Medula Espinal/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
6.
FASEB J ; 36(2): e22132, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34986275

RESUMO

Ponesimod is a sphingosine 1-phosphate (S1P) receptor (S1PR) modulator that was recently approved for treating relapsing forms of multiple sclerosis (MS). Three other FDA-approved S1PR modulators for MS-fingolimod, siponimod, and ozanimod-share peripheral immunological effects via common S1P1 interactions, yet ponesimod may access distinct central nervous system (CNS) mechanisms through its selectivity for the S1P1 receptor. Here, ponesimod was examined for S1PR internalization and binding, human astrocyte signaling and single-cell RNA-seq (scRNA-seq) gene expression, and in vivo using murine cuprizone-mediated demyelination. Studies confirmed ponesimod's selectivity for S1P1 without comparable engagement to the other S1PR subtypes (S1P2,3,4,5 ). Ponesimod showed pharmacological properties of acute agonism followed by chronic functional antagonism of S1P1 . A major locus of S1P1 expression in the CNS is on astrocytes, and scRNA-seq of primary human astrocytes exposed to ponesimod identified a gene ontology relationship of reduced neuroinflammation and reduction in known astrocyte disease-related genes including those of immediate early astrocytes that have been strongly associated with disease progression in MS animal models. Remarkably, ponesimod prevented cuprizone-induced demyelination selectively in the cingulum, but not in the corpus callosum. These data support the CNS activities of ponesimod through S1P1 , including protective, and likely selective, effects against demyelination in a major connection pathway of the brain, the limbic fibers of the cingulum, lesions of which have been associated with several neurologic impairments including MS fatigue.


Assuntos
Astrócitos/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Substâncias Protetoras/farmacologia , Receptores de Esfingosina-1-Fosfato/metabolismo , Tiazóis/farmacologia , Animais , Astrócitos/efeitos dos fármacos , Linhagem Celular Tumoral , Células Cultivadas , Sistema Nervoso Central/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos
7.
Proc Natl Acad Sci U S A ; 117(35): 21527-21535, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32817520

RESUMO

Given the known neuroreparative actions of IL-33 in experimental models of central nervous system (CNS) injury, we predicted that compounds which induce IL-33 are likely to promote remyelination. We found anacardic acid as a candidate molecule to serve as a therapeutic agent to promote remyelination. Addition of anacardic acid to cultured oligodendrocyte precursor cells (OPCs) rapidly increased expression of myelin genes and myelin proteins, suggesting a direct induction of genes involved in myelination by anacardic acid. Also, when added to OPCs, anacardic acid resulted in the induction of IL-33. In vivo, treatment of with anacardic acid in doses which ranged from 0.025 mg/kg to 2.5 mg/kg, improved pathologic scores in experimental allergic encephalitis (EAE) and in the cuprizone model of demyelination/remyelination. Electron microscopic studies performed in mice fed with cuprizone and treated with anacardic acid showed lower g-ratio scores when compared to controls, suggesting increased remyelination of axons. In EAE, improvement in paralytic scores was seen when the drug was given prior to or following the onset of paralytic signs. In EAE and in the cuprizone model, areas of myelin loss, which are likely to remyelinate, was associated with a greater recruitment of IL-33-expressing OPCs in mice which received anacardic acid when compared to controls.


Assuntos
Ácidos Anacárdicos/farmacologia , Interleucina-33/biossíntese , Remielinização/efeitos dos fármacos , Animais , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Doenças Desmielinizantes/tratamento farmacológico , Doenças Desmielinizantes/metabolismo , Feminino , Interleucina-33/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína Básica da Mielina/metabolismo , Proteínas da Mielina/metabolismo , Bainha de Mielina/metabolismo , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Células Precursoras de Oligodendrócitos/metabolismo , Oligodendroglia/metabolismo , Remielinização/fisiologia , Células-Tronco/metabolismo
8.
Rev Invest Clin ; 75(1): 1-12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36854079

RESUMO

Abstract: Epilepsy is a multifactorial pathology that has allowed the development of various drugs aiming to combat it. This effort was formally initiated in the 1940s when phenytoin began to be used. It eventually turned out to be a drug with great anticonvulsant efficacy. At present, several potentially good new generation anti-seizure medications (ASMs) have been developed. Most of them present more tolerability and less toxic effects. However, they continue to have adverse effects at different levels. In addition, some seizures are difficult to treat with ASMs, representing 30% of the total cases of people who suffer from epilepsy. This review aims to explore the genetic and molecular mechanisms of ASMs neurotoxicity, proposing the study of damage caused by epileptic seizures, in addition to the deterioration generated by anti-seizure drug administration within the central nervous system. It is beyond question that there is a need to develop drugs that lower the lower the risk of secondary and toxic effects of ASMs. Simultaneously, we must find strategies that produce fewer harmful interactions and more health benefits when taking anti-seizure drugs.


Assuntos
Anticonvulsivantes , Sistema Nervoso Central , Humanos , Sistema Nervoso Central/efeitos dos fármacos , Anticonvulsivantes/efeitos adversos , Epilepsia/tratamento farmacológico
9.
J Neurophysiol ; 127(1): 150-160, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34936830

RESUMO

Serotonin (5-HT) is a neuromodulator that is critical for regulating the excitability of spinal motoneurons and the generation of muscle torque. However, the role of 5-HT in modulating human motor unit activity during rapid contractions has yet to be assessed. Nine healthy participants (23.7 ± 2.2 yr) ingested 8 mg of the competitive 5-HT2 antagonist cyproheptadine in a double-blinded, placebo-controlled, repeated-measures experiment. Rapid dorsiflexion contractions were performed at 30%, 50%, and 70% of maximal voluntary contraction (MVC), where motor unit activity was assessed by high-density surface electromyographic decomposition. A second protocol was performed where a sustained, fatigue-inducing dorsiflexion contraction was completed before undertaking the same 30%, 50%, and 70% MVC rapid contractions and motor unit analysis. Motor unit discharge rate (P < 0.001) and rate of torque development (RTD; P = 0.019) for the unfatigued muscle were both significantly lower for the cyproheptadine condition. Following the fatigue inducing contraction, cyproheptadine reduced motor unit discharge rate (P < 0.001) and RTD (P = 0.024), whereas the effects of cyproheptadine on motor unit discharge rate and RTD increased with increasing contraction intensity. Overall, these results support the viewpoint that serotonergic effects in the central nervous system occur fast enough to regulate motor unit discharge rate during rapid powerful contractions.NEW & NOTEWORTHY We have shown that serotonin activity in the central nervous system plays a role in regulating human motor unit discharge rate during rapid contractions. Our findings support the viewpoint that serotonergic effects in the central nervous system are fast and are most prominent during contractions that are characterized by high motor unit discharge rates and large amounts of torque development.


Assuntos
Sistema Nervoso Central/metabolismo , Neurônios Motores/fisiologia , Contração Muscular/fisiologia , Fadiga Muscular/fisiologia , Recrutamento Neurofisiológico/fisiologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Serotonina/metabolismo , Adulto , Sistema Nervoso Central/efeitos dos fármacos , Ciproeptadina/farmacologia , Método Duplo-Cego , Eletromiografia , Feminino , Humanos , Masculino , Neurônios Motores/efeitos dos fármacos , Contração Muscular/efeitos dos fármacos , Fadiga Muscular/efeitos dos fármacos , Recrutamento Neurofisiológico/efeitos dos fármacos , Adulto Jovem
10.
Annu Rev Pharmacol Toxicol ; 59: 149-170, 2019 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-30625282

RESUMO

Fingolimod (FTY720, Gilenya) was the first US Food and Drug Administration-approved oral therapy for relapsing forms of multiple sclerosis (MS). Research on modified fungal metabolites converged with basic science studies that had identified lysophospholipid (LP) sphingosine 1-phosphate (S1P) receptors, providing mechanistic insights on fingolimod while validating LP receptors as drug targets. Mechanism of action (MOA) studies identified receptor-mediated processes involving the immune system and the central nervous system (CNS). These dual actions represent a more general theme for S1P and likely other LP receptor modulators. Fingolimod's direct CNS activities likely contribute to its efficacy in MS, with particular relevance to treating progressive disease stages and forms that involve neurodegeneration. The evolving understanding of fingolimod's MOA has provided strategies for developing next-generation compounds with superior attributes, suggesting new ways to target S1P as well as other LP receptor modulators for novel therapeutics in the CNS and other organ systems.


Assuntos
Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Animais , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Humanos , Lisofosfolipídeos/metabolismo , Esclerose Múltipla/metabolismo , Receptores de Esfingosina-1-Fosfato/metabolismo
11.
Int J Neuropsychopharmacol ; 25(1): 1-12, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34648616

RESUMO

From the earliest days of the coronavirus disease 2019 (COVID-19) pandemic, there have been reports of significant neurological and psychological symptoms following Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. This narrative review is designed to examine the potential psychoneuroendocrine pathogenic mechanisms by which SARS-CoV-2 elicits psychiatric sequelae as well as to posit potential pharmacologic strategies to address and reverse these pathologies. Following a brief overview of neurological and psychological sequelae from previous viral pandemics, we address mechanisms by which SARS-CoV-2 could enter or otherwise elicit changes in the CNS. We then examine the hypothesis that COVID-19-induced psychiatric disorders result from challenges to the neuroendocrine system, in particular the hypothalamic-pituitary-adrenal stress axis and monoamine synthesis, physiological mechanisms that are only further enhanced by the pandemic-induced social environment of fear, isolation, and socioeconomic pressure. Finally, we evaluate several FDA-approved therapeutics in the context of COVID-19-induced psychoneuroendocrine disorders.


Assuntos
COVID-19/virologia , Viroses do Sistema Nervoso Central/virologia , Sistema Nervoso Central/virologia , Sistemas Neurossecretores/virologia , SARS-CoV-2/patogenicidade , Anti-Inflamatórios/uso terapêutico , Antidepressivos/uso terapêutico , Antivirais/uso terapêutico , COVID-19/fisiopatologia , COVID-19/psicologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiopatologia , Viroses do Sistema Nervoso Central/tratamento farmacológico , Viroses do Sistema Nervoso Central/fisiopatologia , Viroses do Sistema Nervoso Central/psicologia , Interações Hospedeiro-Patógeno , Humanos , Neuroimunomodulação , Sistemas Neurossecretores/efeitos dos fármacos , Sistemas Neurossecretores/metabolismo , Sistemas Neurossecretores/fisiopatologia , Prognóstico , Fatores de Risco , Internalização do Vírus , Tratamento Farmacológico da COVID-19
12.
Cell Mol Neurobiol ; 42(3): 489-500, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32772307

RESUMO

The world faces an exceptional new public health concern caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), subsequently termed the coronavirus disease 2019 (COVID-19) by the World Health Organization (WHO). Although the clinical symptoms mostly have been characterized, the scientific community still doesn´t know how SARS-CoV-2 successfully reaches and spreads throughout the central nervous system (CNS) inducing brain damage. The recent detection of SARS-CoV-2 in the cerebrospinal fluid (CSF) and in frontal lobe sections from postmortem examination has confirmed the presence of the virus in neural tissue. This finding reveals a new direction in the search for a neurotherapeutic strategy in the COVID-19 patients with underlying diseases. Here, we discuss the COVID-19 outbreak in a neuroinvasiveness context and suggest the therapeutic use of high doses of melatonin, which may favorably modulate the immune response and neuroinflammation caused by SARS-CoV-2. However, clinical trials elucidating the efficacy of melatonin in the prevention and clinical management in the COVID-19 patients should be actively encouraged.


Assuntos
Tratamento Farmacológico da COVID-19 , Sistema Nervoso Central/virologia , Melatonina/uso terapêutico , SARS-CoV-2/patogenicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/virologia , COVID-19/complicações , COVID-19/patologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/patologia , Fármacos do Sistema Nervoso Central/farmacologia , Fármacos do Sistema Nervoso Central/uso terapêutico , Viroses do Sistema Nervoso Central/tratamento farmacológico , Viroses do Sistema Nervoso Central/patologia , Humanos , Melatonina/farmacologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
13.
Cell Mol Biol Lett ; 27(1): 10, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35109786

RESUMO

The novel coronavirus disease 2019 (COVID-19) pandemic has spread worldwide, and finding a safe therapeutic strategy and effective vaccine is critical to overcoming severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Therefore, elucidation of pathogenesis mechanisms, especially entry routes of SARS-CoV-2 may help propose antiviral drugs and novel vaccines. Several receptors have been demonstrated for the interaction of spike (S) protein of SARS-CoV-2 with host cells, including angiotensin-converting enzyme (ACE2), ephrin ligands and Eph receptors, neuropilin 1 (NRP-1), P2X7, and CD147. The expression of these entry receptors in the central nervous system (CNS) may make the CNS prone to SARS-CoV-2 invasion, leading to neurodegenerative diseases. The present review provides potential pathological mechanisms of SARS-CoV-2 infection in the CNS, including entry receptors and cytokines involved in neuroinflammatory conditions. Moreover, it explains several neurodegenerative disorders associated with COVID-19. Finally, we suggest inflammasome and JaK inhibitors as potential therapeutic strategies for neurodegenerative diseases.


Assuntos
Tratamento Farmacológico da COVID-19 , Sistema Nervoso Central/efeitos dos fármacos , Inflamassomos/efeitos dos fármacos , Doenças Neurodegenerativas/tratamento farmacológico , Receptores Virais/genética , SARS-CoV-2/efeitos dos fármacos , Internalização do Vírus/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Antivirais/uso terapêutico , Basigina/genética , Basigina/metabolismo , COVID-19/genética , COVID-19/metabolismo , COVID-19/virologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/virologia , Efrinas/genética , Efrinas/metabolismo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Fatores Imunológicos/uso terapêutico , Inflamassomos/genética , Inflamassomos/metabolismo , Inibidores de Janus Quinases/uso terapêutico , Janus Quinases/antagonistas & inibidores , Janus Quinases/genética , Janus Quinases/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/virologia , Neuropilina-1/genética , Neuropilina-1/metabolismo , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Receptores Virais/antagonistas & inibidores , Receptores Virais/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade , Transdução de Sinais
14.
Regul Toxicol Pharmacol ; 129: 105116, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35017023

RESUMO

Derisking is not a pharmaceutical industry strategy to reduce time, effort, or costs in drug development. Derisking strategies originated within the National Institutes of Health as a predicate to good science. There is a growing sentiment within drug development programs to diminish the importance of behavioral measures in toxicological studies and in the Tiered Safety assessment plans of the U.S. Regulatory Agencies and the International Commission on Harmonization. The validity and reliability of the Functional Observational Batter (FOB) is critically dependent on consistency and technical quality in each risk assessment plan. US Federal and International drug approval organizations have universally adopted the concept of principles of test construction rather than delineating specific behavioral assay endpoints for inclusion of the FOB in nonclinical safety protocols. The validity and reliability of behavioral observations in standardized neurotoxicity screening is critically dependent on the FOB developed by the Study Director with the Sponsor throughout all stages of testing.. The individual risk factors selected for observation to be included in the early Tier 1 safety program should be determined by the mechanism and mode of action of the test article. The results of Tier I testing are the basis for Tier II testing designs. Critical to the compliance with Good Laboratory Practices is the documentation of training of the operational staff scheduled to conduct all aspects of the established protocol.


Assuntos
Fármacos do Sistema Nervoso Central/efeitos adversos , Sistema Nervoso Central/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/normas , Síndromes Neurotóxicas/diagnóstico , Pesquisadores/normas , Animais , Desenvolvimento de Medicamentos , Humanos , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Pesquisadores/educação , Estados Unidos , United States Food and Drug Administration/normas
15.
Proc Natl Acad Sci U S A ; 116(50): 25311-25321, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31740610

RESUMO

The microbiota is now recognized as a key influence on the host immune response in the central nervous system (CNS). As such, there has been some progress toward therapies that modulate the microbiota with the aim of limiting immune-mediated demyelination, as occurs in multiple sclerosis. However, remyelination-the regeneration of myelin sheaths-also depends upon an immune response, and the effects that such interventions might have on remyelination have not yet been explored. Here, we show that the inflammatory response during CNS remyelination in mice is modulated by antibiotic or probiotic treatment, as well as in germ-free mice. We also explore the effect of these changes on oligodendrocyte progenitor cell differentiation, which is inhibited by antibiotics but unaffected by our other interventions. These results reveal that high combined doses of oral antibiotics impair oligodendrocyte progenitor cell responses during remyelination and further our understanding of how mammalian regeneration relates to the microbiota.


Assuntos
Sistema Nervoso Central/fisiopatologia , Microbioma Gastrointestinal , Esclerose Múltipla/imunologia , Esclerose Múltipla/microbiologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Diferenciação Celular/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/imunologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/fisiopatologia , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Probióticos/administração & dosagem , Remielinização/efeitos dos fármacos , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
16.
Proc Natl Acad Sci U S A ; 116(28): 14270-14279, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235580

RESUMO

Stroke is a major cause of serious disability due to the brain's limited capacity to regenerate damaged tissue and neuronal circuits. After ischemic injury, a multiphasic degenerative and inflammatory response is coupled with severely restricted vascular and neuronal repair, resulting in permanent functional deficits. Although clinical evidence indicates that revascularization of the ischemic brain regions is crucial for functional recovery, no therapeutics that promote angiogenesis after cerebral stroke are currently available. Besides vascular growth factors, guidance molecules have been identified to regulate aspects of angiogenesis in the central nervous system (CNS) and may provide targets for therapeutic angiogenesis. In this study, we demonstrate that genetic deletion of the neurite outgrowth inhibitor Nogo-A or one of its corresponding receptors, S1PR2, improves vascular sprouting and repair and reduces neurological deficits after cerebral ischemia in mice. These findings were reproduced in a therapeutic approach using intrathecal anti-Nogo-A antibodies; such a therapy is currently in clinical testing for spinal cord injury. These results provide a basis for a therapeutic blockage of inhibitory guidance molecules to improve vascular and neural repair after ischemic CNS injuries.


Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Isquemia Encefálica/tratamento farmacológico , Proteínas Nogo/genética , Receptores de Esfingosina-1-Fosfato/genética , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Isquemia Encefálica/genética , Isquemia Encefálica/imunologia , Isquemia Encefálica/patologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/imunologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Proteínas Nogo/antagonistas & inibidores , Proteínas Nogo/imunologia , Tratos Piramidais/efeitos dos fármacos , Tratos Piramidais/patologia , Recuperação de Função Fisiológica/genética , Receptores de Esfingosina-1-Fosfato/antagonistas & inibidores , Receptores de Esfingosina-1-Fosfato/imunologia , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/imunologia , Traumatismos da Medula Espinal/patologia , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/patologia
17.
Proc Natl Acad Sci U S A ; 116(28): 14290-14299, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31235582

RESUMO

Animal models of central nervous system (CNS) demyelination, including toxin-induced focal demyelination and immune-mediated demyelination through experimental autoimmune encephalomyelitis (EAE), have provided valuable insights into the mechanisms of neuroinflammation and CNS remyelination. However, the ability to track changes in transcripts, proteins, and metabolites, as well as cellular populations during the evolution of a focal lesion, has remained challenging. Here, we developed a method to label CNS demyelinating lesions by the intraperitoneal injection of a vital dye, neutral red (NR), into mice before killing. We demonstrate that NR-labeled lesions can be easily identified on the intact spinal cord in both lysolecithin- and EAE-mediated demyelination models. Using fluorescence microscopy, we detected NR in activated macrophages/microglia and astrocytes, but not in oligodendrocytes present in lesions. Importantly, we successfully performed RT-qPCR, Western blot, flow cytometry, and mass spectrometry analysis of precisely dissected NR-labeled lesions at 5, 10, and 20 d postlesion (dpl) and found differential changes in transcripts, proteins, cell populations, and metabolites in lesions over the course of remyelination. Therefore, NR administration is a simple and powerful method to track and analyze the detailed molecular, cellular, and metabolic changes that occur within the lesion microenvironment over time following CNS injury. Furthermore, this method can be used to identify molecular and metabolic pathways that regulate neuroinflammation and remyelination and facilitate the development of therapies to promote repair in demyelinating disorders such as multiple sclerosis.


Assuntos
Sistema Nervoso Central/diagnóstico por imagem , Microglia/efeitos dos fármacos , Esclerose Múltipla/diagnóstico por imagem , Doenças do Sistema Nervoso/diagnóstico por imagem , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Astrócitos/ultraestrutura , Microambiente Celular/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Citometria de Fluxo , Humanos , Lisofosfatidilcolinas/toxicidade , Camundongos , Microglia/metabolismo , Microglia/patologia , Microglia/ultraestrutura , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Bainha de Mielina/efeitos dos fármacos , Bainha de Mielina/patologia , Bainha de Mielina/ultraestrutura , Regeneração Nervosa/efeitos dos fármacos , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/patologia , Vermelho Neutro/farmacologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Remielinização/efeitos dos fármacos , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia
18.
Pharmacol Rev ; 71(4): 520-538, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31530573

RESUMO

Chromosome conformation capture methods have revealed the dynamics of genome architecture which is spatially organized into topologically associated domains, with gene regulation mediated by enhancer-promoter pairs in chromatin space. New evidence shows that endogenous hormones and several xenobiotics act within circumscribed topological domains of the spatial genome, impacting subsets of the chromatin contacts of enhancer-gene promoter pairs in cis and trans Results from the National Institutes of Health-funded PsychENCODE project and the study of chromatin remodeling complexes have converged to provide a clearer understanding of the organization of the neurogenic epigenome in humans. Neuropsychiatric diseases, including schizophrenia, bipolar spectrum disorder, autism spectrum disorder, attention deficit hyperactivity disorder, and other neuropsychiatric disorders are significantly associated with mutations in neurogenic transcriptional networks. In this review, we have reanalyzed the results from publications of the PsychENCODE Consortium using pharmacoinformatics network analysis to better understand druggable targets that control neurogenic transcriptional networks. We found that valproic acid and other psychotropic drugs directly alter these networks, including chromatin remodeling complexes, transcription factors, and other epigenetic modifiers. We envision a new generation of CNS therapeutics targeted at neurogenic transcriptional control networks, including druggable parts of chromatin remodeling complexes and master transcription factor-controlled pharmacogenomic networks. This may provide a route to the modification of interconnected gene pathways impacted by disease in patients with neuropsychiatric and neurodegenerative disorders. Direct and indirect therapeutic strategies to modify the master regulators of neurogenic transcriptional control networks may ultimately help extend the life span of CNS neurons impacted by disease.


Assuntos
Redes Reguladoras de Genes/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/fisiologia , Cromatina/efeitos dos fármacos , Cromatina/genética , Cromatina/metabolismo , Epigênese Genética , Genoma Humano/efeitos dos fármacos , Humanos , Receptores de Neurotransmissores/agonistas , Receptores de Neurotransmissores/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
19.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35216103

RESUMO

An increasing number of people experience disorders related to the central nervous system (CNS). Thus, new forms of therapy, which may be helpful in repairing processes' enhancement and restoring declined brain functions, are constantly being sought. One of the most relevant physiological processes occurring in the brain for its entire life is neuroplasticity. It has tremendous significance concerning CNS disorders since neurological recovery mainly depends on restoring its structural and functional organization. The main factors contributing to nerve tissue damage are oxidative stress and inflammation. Hence, marine carotenoids, abundantly occurring in the aquatic environment, being potent antioxidant compounds, may play a pivotal role in nerve cell protection. Furthermore, recent results revealed another valuable characteristic of these compounds in CNS therapy. By inhibiting oxidative stress and neuroinflammation, carotenoids promote synaptogenesis and neurogenesis, consequently presenting neuroprotective activity. Therefore, this paper focuses on the carotenoids obtained from marine sources and their impact on neuroplasticity enhancement.


Assuntos
Carotenoides/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Animais , Sistema Nervoso Central/efeitos dos fármacos , Humanos , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos
20.
Int J Mol Sci ; 23(2)2022 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-35054957

RESUMO

Nanoparticles with oligonucleotides bound to the outside or incorporated into the matrix can be used for gene editing or to modulate gene expression in the CNS. These nanocarriers are usually optimised for transfection of neurons or glia. They can also facilitate transcytosis across the brain endothelium to circumvent the blood-brain barrier. This review examines the different formulations of nanocarriers and their oligonucleotide cargoes, in relation to their ability to enter the brain and modulate gene expression or disease. The size of the nanocarrier is critical in determining the rate of clearance from the plasma as well as the intracellular routes of endothelial transcytosis. The surface charge is important in determining how it interacts with the endothelium and the target cell. The structure of the oligonucleotide affects its stability and rate of degradation, while the chemical formulation of the nanocarrier primarily controls the location and rate of cargo release. Due to the major anatomical differences between humans and animal models of disease, successful gene therapy with oligonucleotides in humans has required intrathecal injection. In animal models, some progress has been made with intraventricular or intravenous injection of oligonucleotides on nanocarriers. However, getting significant amounts of nanocarriers across the blood-brain barrier in humans will likely require targeting endothelial solute carriers or vesicular transport systems.


Assuntos
Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Nanopartículas , Oligonucleotídeos/administração & dosagem , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/ultraestrutura , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/etiologia , Doenças do Sistema Nervoso Central/metabolismo , Fenômenos Químicos , Endotélio/efeitos dos fármacos , Endotélio/metabolismo , Ouro , Humanos , Nanopartículas Metálicas , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA