Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78.774
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 175(1): 146-158.e15, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30100182

RESUMO

Pathogen virulence exists on a continuum. The strategies that drive symptomatic or asymptomatic infections remain largely unknown. We took advantage of the concept of lethal dose 50 (LD50) to ask which component of individual non-genetic variation between hosts defines whether they survive or succumb to infection. Using the enteric pathogen Citrobacter, we found no difference in pathogen burdens between healthy and symptomatic populations. Iron metabolism-related genes were induced in asymptomatic hosts compared to symptomatic or naive mice. Dietary iron conferred complete protection without influencing pathogen burdens, even at 1000× the lethal dose of Citrobacter. Dietary iron induced insulin resistance, increasing glucose levels in the intestine that were necessary and sufficient to suppress pathogen virulence. A short course of dietary iron drove the selection of attenuated Citrobacter strains that can transmit and asymptomatically colonize naive hosts, demonstrating that environmental factors and cooperative metabolic strategies can drive conversion of pathogens toward commensalism.


Assuntos
Interações Hospedeiro-Patógeno/fisiologia , Ferro/metabolismo , Virulência/fisiologia , Animais , Infecções Assintomáticas , Citrobacter rodentium/metabolismo , Citrobacter rodentium/patogenicidade , Colite/tratamento farmacológico , Colite/metabolismo , Colo/microbiologia , Suplementos Nutricionais , Infecções por Enterobacteriaceae/tratamento farmacológico , Feminino , Resistência à Insulina/fisiologia , Intestino Delgado/microbiologia , Ferro/farmacologia , Dose Letal Mediana , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos DBA
2.
Nat Immunol ; 20(10): 1279-1290, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31501577

RESUMO

The revolution in microbiota research over the past decade has provided invaluable knowledge about the function of the microbial species that inhabit the human body. It has become widely accepted that these microorganisms, collectively called 'the microbiota', engage in networks of interactions with each other and with the host that aim to benefit both the microbial members and the mammalian members of this unique ecosystem. The lungs, previously thought to be sterile, are now known to harbor a unique microbiota and, additionally, to be influenced by microbial signals from distal body sites, such as the intestine. Here we review the role of the lung and gut microbiotas in respiratory health and disease and highlight the main pathways of communication that underlie the gut-lung axis.


Assuntos
Microbioma Gastrointestinal , Pneumopatias/microbiologia , Pulmão/microbiologia , Microbiota , Probióticos/uso terapêutico , Acinetobacter , Animais , Bifidobacterium , Suplementos Nutricionais , Feminino , Interações Hospedeiro-Patógeno , Humanos , Lactobacillus , Pulmão/imunologia , Pneumopatias/dietoterapia , Pneumopatias/imunologia , Exposição Materna , Gravidez
3.
Nature ; 628(8006): 180-185, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38480886

RESUMO

The gut microbiome has major roles in modulating host physiology. One such function is colonization resistance, or the ability of the microbial collective to protect the host against enteric pathogens1-3, including enterohaemorrhagic Escherichia coli (EHEC) serotype O157:H7, an attaching and effacing (AE) food-borne pathogen that causes severe gastroenteritis, enterocolitis, bloody diarrhea and acute renal failure4,5 (haemolytic uremic syndrome). Although gut microorganisms can provide colonization resistance by outcompeting some pathogens or modulating host defence provided by the gut barrier and intestinal immune cells6,7, this phenomenon remains poorly understood. Here, we show that activation of the neurotransmitter receptor dopamine receptor D2 (DRD2) in the intestinal epithelium by gut microbial metabolites produced upon dietary supplementation with the essential amino acid L-tryptophan protects the host against Citrobacter rodentium, a mouse AE pathogen that is widely used as a model for EHEC infection8,9. We further find that DRD2 activation by these tryptophan-derived metabolites decreases expression of a host actin regulatory protein involved in C. rodentium and EHEC attachment to the gut epithelium via formation of actin pedestals. Our results reveal a noncanonical colonization resistance pathway against AE pathogens that features an unconventional role for DRD2 outside the nervous system in controlling actin cytoskeletal organization in the gut epithelium. Our findings may inspire prophylactic and therapeutic approaches targeting DRD2 with dietary or pharmacological interventions to improve gut health and treat gastrointestinal infections, which afflict millions globally.


Assuntos
Citrobacter rodentium , Mucosa Intestinal , Receptores de Dopamina D2 , Triptofano , Animais , Feminino , Humanos , Masculino , Camundongos , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Carga Bacteriana/efeitos dos fármacos , Citrobacter rodentium/crescimento & desenvolvimento , Citrobacter rodentium/metabolismo , Citrobacter rodentium/patogenicidade , Suplementos Nutricionais , Modelos Animais de Doenças , Infecções por Enterobacteriaceae/microbiologia , Infecções por Enterobacteriaceae/prevenção & controle , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/prevenção & controle , Escherichia coli O157/patogenicidade , Escherichia coli O157/fisiologia , Mucosa Intestinal/citologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Receptores de Dopamina D2/metabolismo , Triptofano/administração & dosagem , Triptofano/metabolismo , Triptofano/farmacologia
4.
Nature ; 621(7979): 568-576, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37704722

RESUMO

Growth faltering in children (low length for age or low weight for length) during the first 1,000 days of life (from conception to 2 years of age) influences short-term and long-term health and survival1,2. Interventions such as nutritional supplementation during pregnancy and the postnatal period could help prevent growth faltering, but programmatic action has been insufficient to eliminate the high burden of stunting and wasting in low- and middle-income countries. Identification of age windows and population subgroups on which to focus will benefit future preventive efforts. Here we use a population intervention effects analysis of 33 longitudinal cohorts (83,671 children, 662,763 measurements) and 30 separate exposures to show that improving maternal anthropometry and child condition at birth accounted for population increases in length-for-age z-scores of up to 0.40 and weight-for-length z-scores of up to 0.15 by 24 months of age. Boys had consistently higher risk of all forms of growth faltering than girls. Early postnatal growth faltering predisposed children to subsequent and persistent growth faltering. Children with multiple growth deficits exhibited higher mortality rates from birth to 2 years of age than children without growth deficits (hazard ratios 1.9 to 8.7). The importance of prenatal causes and severe consequences for children who experienced early growth faltering support a focus on pre-conception and pregnancy as a key opportunity for new preventive interventions.


Assuntos
Caquexia , Países em Desenvolvimento , Transtornos do Crescimento , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Gravidez , Caquexia/economia , Caquexia/epidemiologia , Caquexia/etiologia , Caquexia/prevenção & controle , Estudos de Coortes , Países em Desenvolvimento/economia , Países em Desenvolvimento/estatística & dados numéricos , Suplementos Nutricionais , Transtornos do Crescimento/epidemiologia , Transtornos do Crescimento/prevenção & controle , Estudos Longitudinais , Mães , Fatores Sexuais , Desnutrição/economia , Desnutrição/epidemiologia , Desnutrição/etiologia , Desnutrição/prevenção & controle , Antropometria
5.
N Engl J Med ; 390(2): 143-153, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38197817

RESUMO

BACKGROUND: The World Health Organization recommends 1500 to 2000 mg of calcium daily as supplementation, divided into three doses, for pregnant persons in populations with low dietary calcium intake in order to reduce the risk of preeclampsia. The complexity of the dosing scheme, however, has led to implementation barriers. METHODS: We conducted two independent randomized trials of calcium supplementation, in India and Tanzania, to assess the noninferiority of a 500-mg daily dose to a 1500-mg daily dose of calcium supplementation. In each trial, the two primary outcomes were preeclampsia and preterm birth, and the noninferiority margins for the relative risks were 1.54 and 1.16, respectively. RESULTS: A total of 11,000 nulliparous pregnant women were included in each trial. The cumulative incidence of preeclampsia was 3.0% in the 500-mg group and 3.6% in the 1500-mg group in the India trial (relative risk, 0.84; 95% confidence interval [CI], 0.68 to 1.03) and 3.0% and 2.7%, respectively, in the Tanzania trial (relative risk, 1.10; 95% CI, 0.88 to 1.36) - findings consistent with the noninferiority of the lower dose in both trials. The percentage of live births that were preterm was 11.4% in the 500-mg group and 12.8% in the 1500-mg group in the India trial (relative risk, 0.89; 95% CI, 0.80 to 0.98), which was within the noninferiority margin of 1.16; in the Tanzania trial, the respective percentages were 10.4% and 9.7% (relative risk, 1.07; 95% CI, 0.95 to 1.21), which exceeded the noninferiority margin. CONCLUSIONS: In these two trials, low-dose calcium supplementation was noninferior to high-dose calcium supplementation with respect to the risk of preeclampsia. It was noninferior with respect to the risk of preterm live birth in the trial in India but not in the trial in Tanzania. (Funded by the Bill and Melinda Gates Foundation and others; ClinicalTrials.gov number, NCT03350516; Clinical Trials Registry-India number, CTRI/2018/02/012119; and Tanzania Medicines and Medical Devices Authority Trials Registry number, TFDA0018/CTR/0010/5).


Assuntos
Cálcio , Suplementos Nutricionais , Pré-Eclâmpsia , Nascimento Prematuro , Feminino , Humanos , Recém-Nascido , Gravidez , Cálcio/efeitos adversos , Cálcio/uso terapêutico , Suplementos Nutricionais/efeitos adversos , Pré-Eclâmpsia/epidemiologia , Pré-Eclâmpsia/prevenção & controle , Nascimento Prematuro/epidemiologia , Nascimento Prematuro/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Development ; 150(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36975381

RESUMO

Methionine is important for intestinal development and homeostasis in various organisms. However, the underlying mechanisms are poorly understood. Here, we demonstrate that the methionine adenosyltransferase gene Mat2a is essential for intestinal development and that the metabolite S-adenosyl-L-methionine (SAM) plays an important role in intestinal homeostasis. Intestinal epithelial cell (IEC)-specific knockout of Mat2a exhibits impaired intestinal development and neonatal lethality. Mat2a deletion in the adult intestine reduces cell proliferation and triggers IEC apoptosis, leading to severe intestinal epithelial atrophy and intestinal inflammation. Mechanistically, we reveal that SAM maintains the integrity of differentiated epithelium and protects IECs from apoptosis by suppressing the expression of caspases 3 and 8 and their activation. SAM supplementation improves the defective intestinal epithelium and reduces inflammatory infiltration sequentially. In conclusion, our study demonstrates that methionine metabolism and its intermediate metabolite SAM play essential roles in intestinal development and homeostasis in mice.


Assuntos
Metionina Adenosiltransferase , S-Adenosilmetionina , Camundongos , Animais , S-Adenosilmetionina/metabolismo , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Mucosa Intestinal/metabolismo , Metionina , Suplementos Nutricionais
7.
Trends Immunol ; 44(3): 217-230, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36709082

RESUMO

Obesity is associated with the development of various complications, including diabetes, atherosclerosis, and an increased risk for infections, driven by dysfunctional innate immune responses. Recent insights have revealed that the availability of nutrients is a key determinant of innate immune cell function. Although the presence of obesity is associated with overnutrition of macronutrients, several micronutrient deficiencies, including Vitamin D and zinc, are often present. Micronutrients have been attributed important immunomodulatory roles. In this review, we summarize current knowledge of the immunomodulatory effects of Vitamin D and zinc. We also suggest future lines of research to further improve our understanding of these micronutrients; this may serve as a stepping-stone to explore micronutrient supplementation to improve innate immune cell function during obesity.


Assuntos
Suplementos Nutricionais , Micronutrientes , Humanos , Vitamina D , Obesidade , Imunidade Inata , Zinco
8.
Nature ; 579(7800): 507-517, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32214253

RESUMO

Tumours depend on nutrients supplied by the host for their growth and survival. Modifications to the host's diet can change nutrient availability in the tumour microenvironment, which might represent a promising strategy for inhibiting tumour growth. Dietary modifications can limit tumour-specific nutritional requirements, alter certain nutrients that target the metabolic vulnerabilities of the tumour, or enhance the cytotoxicity of anti-cancer drugs. Recent reports have suggested that modification of several nutrients in the diet can alter the efficacy of cancer therapies, and some of the newest developments in this quickly expanding field are reviewed here. The results discussed indicate that the dietary habits and nutritional state of a patient must be taken into account during cancer research and therapy.


Assuntos
Dieta , Neoplasias/dietoterapia , Neoplasias/terapia , Estado Nutricional , Aminoácidos/deficiência , Aminoácidos/metabolismo , Animais , Suplementos Nutricionais , Jejum/fisiologia , Ácidos Graxos/metabolismo , Ácido Fólico/metabolismo , Frutose/deficiência , Frutose/metabolismo , Glucose/metabolismo , Humanos , Neoplasias/metabolismo , Neoplasias/patologia
9.
Mol Cell ; 69(6): 917-918, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29547718

RESUMO

In this issue of Molecular Cell, Lin et al. (2018) report that chondroitin-4-sulfate, which is found in a common supplement meant to alleviate degenerative joint disorders, promotes the growth of BRAF V600E mutant melanoma. This study not only has implications for patient care but also sheds light on a novel mechanism for regulating phosphoinositide 3-kinase signaling.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas B-raf , Linhagem Celular Tumoral , Sulfatos de Condroitina , Suplementos Nutricionais , Humanos , Melanoma , Sulfatos
10.
Mol Cell ; 69(6): 923-937.e8, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29547721

RESUMO

Dietary supplements such as vitamins and minerals are widely used in the hope of improving health but may have unidentified risks and side effects. In particular, a pathogenic link between dietary supplements and specific oncogenes remains unknown. Here we report that chondroitin-4-sulfate (CHSA), a natural glycosaminoglycan approved as a dietary supplement used for osteoarthritis, selectively promotes the tumor growth potential of BRAF V600E-expressing human melanoma cells in patient- and cell line-derived xenograft mice and confers resistance to BRAF inhibitors. Mechanistically, chondroitin sulfate glucuronyltransferase (CSGlcA-T) signals through its product CHSA to enhance casein kinase 2 (CK2)-PTEN binding and consequent phosphorylation and inhibition of PTEN, which requires CHSA chains and is essential to sustain AKT activation in BRAF V600E-expressing melanoma cells. However, this CHSA-dependent PTEN inhibition is dispensable in cancer cells expressing mutant NRAS or PI3KCA, which directly activate the PI3K-AKT pathway. These results suggest that dietary supplements may exhibit oncogene-dependent pro-tumor effects.


Assuntos
Carcinógenos/toxicidade , Transformação Celular Neoplásica/genética , Sulfatos de Condroitina/toxicidade , Suplementos Nutricionais/toxicidade , Melanoma/induzido quimicamente , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/induzido quimicamente , Animais , Antinematódeos/farmacologia , Caseína Quinase II/metabolismo , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , GTP Fosfo-Hidrolases/genética , Células HEK293 , Células HT29 , Humanos , Melanoma/tratamento farmacológico , Melanoma/enzimologia , Melanoma/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos Transgênicos , Células NIH 3T3 , Proteínas Nucleares/genética , PTEN Fosfo-Hidrolase/antagonistas & inibidores , PTEN Fosfo-Hidrolase/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/enzimologia , Neoplasias Cutâneas/genética , Fatores de Transcrição/genética , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Proc Natl Acad Sci U S A ; 120(23): e2216932120, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37252983

RESUMO

Dietary flavanols are food constituents found in certain fruits and vegetables that have been linked to cognitive aging. Previous studies suggested that consumption of dietary flavanols might specifically be associated with the hippocampal-dependent memory component of cognitive aging and that memory benefits of a flavanol intervention might depend on habitual diet quality. Here, we tested these hypotheses in the context of a large-scale study of 3,562 older adults, who were randomly assigned to a 3-y intervention of cocoa extract (500 mg of cocoa flavanols per day) or a placebo [(COcoa Supplement and Multivitamin Outcomes Study) COSMOS-Web, NCT04582617]. Using the alternative Healthy Eating Index in all participants and a urine-based biomarker of flavanol intake in a subset of participants [n = 1,361], we show that habitual flavanol consumption and diet quality at baseline are positively and selectively correlated with hippocampal-dependent memory. While the prespecified primary end point testing for an intervention-related improvement in memory in all participants after 1 y was not statistically significant, the flavanol intervention restored memory among participants in lower tertiles of habitual diet quality or habitual flavanol consumption. Increases in the flavanol biomarker over the course of the trial were associated with improving memory. Collectively, our results allow dietary flavanols to be considered in the context of a depletion-repletion paradigm and suggest that low flavanol consumption can act as a driver of the hippocampal-dependent component of cognitive aging.


Assuntos
Cacau , Dieta , Humanos , Idoso , Suplementos Nutricionais , Polifenóis , Biomarcadores , Método Duplo-Cego
12.
Proc Natl Acad Sci U S A ; 120(40): e2302361120, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37738291

RESUMO

The almost simultaneous emergence of major animal phyla during the early Cambrian shaped modern animal biodiversity. Reconstructing evolutionary relationships among such closely spaced branches in the animal tree of life has proven to be a major challenge, hindering understanding of early animal evolution and the fossil record. This is particularly true in the species-rich and highly varied Mollusca where dramatic inconsistency among paleontological, morphological, and molecular evidence has led to a long-standing debate about the group's phylogeny and the nature of dozens of enigmatic fossil taxa. A critical step needed to overcome this issue is to supplement available genomic data, which is plentiful for well-studied lineages, with genomes from rare but key lineages, such as Scaphopoda. Here, by presenting chromosome-level genomes from both extant scaphopod orders and leveraging complete genomes spanning Mollusca, we provide strong support for Scaphopoda as the sister taxon of Bivalvia, revitalizing the morphology-based Diasoma hypothesis originally proposed 50 years ago. Our molecular clock analysis confidently dates the split between Bivalvia and Scaphopoda at ~520 Ma, prompting a reinterpretation of controversial laterally compressed Early Cambrian fossils, including Anabarella, Watsonella, and Mellopegma, as stem diasomes. Moreover, we show that incongruence in the phylogenetic placement of Scaphopoda in previous phylogenomic studies was due to ancient incomplete lineage sorting (ILS) that occurred during the rapid radiation of Conchifera. Our findings highlight the need to consider ILS as a potential source of error in deep phylogeny reconstruction, especially in the context of the unique nature of the Cambrian Explosion.


Assuntos
Bivalves , Animais , Filogenia , Biodiversidade , Movimento Celular , Suplementos Nutricionais
13.
Hum Mol Genet ; 32(9): 1575-1588, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36637428

RESUMO

Folic acid (synthetic folate, FA) is consumed in excess in North America and may interact with common pathogenic variants in methylenetetrahydrofolate reductase (MTHFR); the most prevalent inborn error of folate metabolism with wide-ranging obesity-related comorbidities. While preclinical murine models have been valuable to inform on diet-gene interactions, a recent Folate Expert panel has encouraged validation of new animal models. In this study, we characterized a novel zebrafish model of mthfr deficiency and evaluated the effects of genetic loss of mthfr function and FA supplementation during embryonic development on energy homeostasis and metabolism. mthfr-deficient zebrafish were generated using CRISPR mutagenesis and supplemented with no FA (control, 0FA) or 100 µm FA (100FA) throughout embryonic development (0-5 days postfertilization). We show that the genetic loss of mthfr function in zebrafish recapitulates key biochemical hallmarks reported in MTHFR deficiency in humans and leads to greater lipid accumulation and aberrant cholesterol metabolism as reported in the Mthfr murine model. In mthfr-deficient zebrafish, energy homeostasis was also impaired as indicated by altered food intake, reduced metabolic rate and lower expression of central energy-regulatory genes. Microglia abundance, involved in healthy neuronal development, was also reduced. FA supplementation to control zebrafish mimicked many of the adverse effects of mthfr deficiency, some of which were also exacerbated in mthfr-deficient zebrafish. Together, these findings support the translatability of the mthfr-deficient zebrafish as a preclinical model in folate research.


Assuntos
Metilenotetra-Hidrofolato Redutase (NADPH2) , Peixe-Zebra , Humanos , Gravidez , Feminino , Camundongos , Animais , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Ácido Fólico , Suplementos Nutricionais , Homeostase , Desenvolvimento Embrionário/genética
14.
Hum Mol Genet ; 32(5): 810-824, 2023 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-36164730

RESUMO

Aminoacyl-tRNA synthetases are essential enzymes responsible for charging amino acids onto cognate tRNAs during protein synthesis. In histidyl-tRNA synthetase (HARS), autosomal dominant mutations V133F, V155G, Y330C and S356N in the HARS catalytic domain cause Charcot-Marie-Tooth disease type 2 W (CMT2W), while tRNA-binding domain mutation Y454S causes recessive Usher syndrome type IIIB. In a yeast model, all human HARS variants complemented a genomic deletion of the yeast ortholog HTS1 at high expression levels. CMT2W associated mutations, but not Y454S, resulted in reduced growth. We show mistranslation of histidine to glutamine and threonine in V155G and S356N but not Y330C mutants in yeast. Mistranslating V155G and S356N mutants lead to accumulation of insoluble proteins, which was rescued by histidine. Mutants V133F and Y330C showed the most significant growth defect and decreased HARS abundance in cells. Here, histidine supplementation led to insoluble protein aggregation and further reduced viability, indicating histidine toxicity associated with these mutants. V133F proteins displayed reduced thermal stability in vitro, which was rescued by tRNA. Our data will inform future treatment options for HARS patients, where histidine supplementation may either have a toxic or compensating effect depending on the nature of the causative HARS variant.


Assuntos
Aminoacil-tRNA Sintetases , Doença de Charcot-Marie-Tooth , Humanos , Doença de Charcot-Marie-Tooth/genética , Histidina/genética , Saccharomyces cerevisiae/genética , Aminoacil-tRNA Sintetases/genética , Mutação , RNA de Transferência/genética , Suplementos Nutricionais
15.
N Engl J Med ; 387(4): 299-309, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35939577

RESUMO

BACKGROUND: Vitamin D supplements are widely recommended for bone health in the general population, but data on whether they prevent fractures have been inconsistent. METHODS: In an ancillary study of the Vitamin D and Omega-3 Trial (VITAL), we tested whether supplemental vitamin D3 would result in a lower risk of fractures than placebo. VITAL was a two-by-two factorial, randomized, controlled trial that investigated whether supplemental vitamin D3 (2000 IU per day), n-3 fatty acids (1 g per day), or both would prevent cancer and cardiovascular disease in men 50 years of age or older and women 55 years of age or older in the United States. Participants were not recruited on the basis of vitamin D deficiency, low bone mass, or osteoporosis. Incident fractures were reported by participants on annual questionnaires and adjudicated by centralized medical-record review. The primary end points were incident total, nonvertebral, and hip fractures. Proportional-hazards models were used to estimate the treatment effect in intention-to-treat analyses. RESULTS: Among 25,871 participants (50.6% women [13,085 of 25,871] and 20.2% Black [5106 of 25,304]), we confirmed 1991 incident fractures in 1551 participants over a median follow-up of 5.3 years. Supplemental vitamin D3, as compared with placebo, did not have a significant effect on total fractures (which occurred in 769 of 12,927 participants in the vitamin D group and in 782 of 12,944 participants in the placebo group; hazard ratio, 0.98; 95% confidence interval [CI], 0.89 to 1.08; P = 0.70), nonvertebral fractures (hazard ratio, 0.97; 95% CI, 0.87 to 1.07; P = 0.50), or hip fractures (hazard ratio, 1.01; 95% CI, 0.70 to 1.47; P = 0.96). There was no modification of the treatment effect according to baseline characteristics, including age, sex, race or ethnic group, body-mass index, or serum 25-hydroxyvitamin D levels. There were no substantial between-group differences in adverse events as assessed in the parent trial. CONCLUSIONS: Vitamin D3 supplementation did not result in a significantly lower risk of fractures than placebo among generally healthy midlife and older adults who were not selected for vitamin D deficiency, low bone mass, or osteoporosis. (Funded by the National Institute of Arthritis and Musculoskeletal and Skin Diseases; VITAL ClinicalTrials.gov number, NCT01704859.).


Assuntos
Colecalciferol , Suplementos Nutricionais , Ácidos Graxos Ômega-3 , Fraturas Ósseas , Idoso , Colecalciferol/uso terapêutico , Método Duplo-Cego , Ácidos Graxos Ômega-3/uso terapêutico , Feminino , Fraturas Ósseas/epidemiologia , Fraturas Ósseas/prevenção & controle , Fraturas do Quadril/epidemiologia , Fraturas do Quadril/prevenção & controle , Humanos , Masculino , Pessoa de Meia-Idade , Osteoporose , Deficiência de Vitamina D
16.
N Engl J Med ; 387(17): 1579-1588, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36300974

RESUMO

BACKGROUND: Docosahexaenoic acid (DHA) is a component of neural tissue. Because its accretion into the brain is greatest during the final trimester of pregnancy, infants born before 29 weeks' gestation do not receive the normal supply of DHA. The effect of this deficiency on subsequent cognitive development is not well understood. METHODS: We assessed general intelligence at 5 years in children who had been enrolled in a trial of neonatal DHA supplementation to prevent bronchopulmonary dysplasia. In the previous trial, infants born before 29 weeks' gestation had been randomly assigned in a 1:1 ratio to receive an enteral emulsion that provided 60 mg of DHA per kilogram of body weight per day or a control emulsion from the first 3 days of enteral feeds until 36 weeks of postmenstrual age or discharge home, whichever occurred first. Children from 5 of the 13 centers in the original trial were invited to undergo assessment with the Wechsler Preschool and Primary Scale of Intelligence (WPPSI) at 5 years of corrected age. The primary outcome was the full-scale intelligence quotient (FSIQ) score. Secondary outcomes included the components of WPPSI. RESULTS: A total of 1273 infants underwent randomization in the original trial; of the 656 surviving children who had undergone randomization at the centers included in this follow-up study, 480 (73%) had an FSIQ score available - 241 in the DHA group and 239 in the control group. After imputation of missing data, the mean (±SD) FSIQ scores were 95.4±17.3 in the DHA group and 91.9±19.1 in the control group (adjusted difference, 3.45; 95% confidence interval, 0.38 to 6.53; P = 0.03). The results for secondary outcomes generally did not support that obtained for the primary outcome. Adverse events were similar in the two groups. CONCLUSIONS: In infants born before 29 weeks' gestation who had been enrolled in a trial to assess the effect of DHA supplementation on bronchopulmonary dysplasia, the use of an enteral DHA emulsion until 36 weeks of postmenstrual age was associated with modestly higher FSIQ scores at 5 years of age than control feeding. (Funded by the Australian National Health and Medical Research Council and Nu-Mega Ingredients; N3RO Australian New Zealand Clinical Trials Registry number, ACTRN12612000503820.).


Assuntos
Displasia Broncopulmonar , Cognição , Ácidos Docosa-Hexaenoicos , Recém-Nascido Prematuro , Inteligência , Criança , Pré-Escolar , Humanos , Lactente , Recém-Nascido , Austrália , Displasia Broncopulmonar/prevenção & controle , Suplementos Nutricionais/efeitos adversos , Ácidos Docosa-Hexaenoicos/deficiência , Ácidos Docosa-Hexaenoicos/farmacologia , Ácidos Docosa-Hexaenoicos/uso terapêutico , Emulsões , Seguimentos , Recém-Nascido Prematuro/crescimento & desenvolvimento , Inteligência/efeitos dos fármacos , Nutrição Enteral , Escalas de Wechsler , Cognição/efeitos dos fármacos
17.
Am J Pathol ; 194(5): 721-734, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38320631

RESUMO

Histopathology is the reference standard for pathology diagnosis, and has evolved with the digitization of glass slides [ie, whole slide images (WSIs)]. While trained histopathologists are able to diagnose diseases by examining WSIs visually, this process is time consuming and prone to variability. To address these issues, artificial intelligence models are being developed to generate slide-level representations of WSIs, summarizing the entire slide as a single vector. This enables various computational pathology applications, including interslide search, multimodal training, and slide-level classification. Achieving expressive and robust slide-level representations hinges on patch feature extraction and aggregation steps. This study proposed an additional binary patch grouping (BPG) step, a plugin that can be integrated into various slide-level representation pipelines, to enhance the quality of slide-level representation in bone marrow histopathology. BPG excludes patches with less clinical relevance through minimal interaction with the pathologist; a one-time human intervention for the entire process. This study further investigated domain-general versus domain-specific feature extraction models based on convolution and attention and examined two different feature aggregation methods, with and without BPG, showing BPG's generalizability. The results showed that using BPG boosts the performance of WSI retrieval (mean average precision at 10) by 4% and improves WSI classification (weighted-F1) by 5% compared to not using BPG. Additionally, domain-general large models and parameterized pooling produced the best-quality slide-level representations.


Assuntos
Inteligência Artificial , Medula Óssea , Humanos , Suplementos Nutricionais , Patologistas
18.
FASEB J ; 38(5): e23553, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38470398

RESUMO

Polycystic ovary syndrome (PCOS) is a common and complex endocrine disorder in reproductive-aged women that frequently leads to infertility due to poor oocyte quality. In this study, we identified a new active peptide (advanced glycation end products receptors RAGE344-355 ) from PCOS follicular fluid using mass spectrometry. We found that supplementing PCOS-like mouse oocytes with RAGE344-355 attenuated both meiotic defects and oxidative stress levels, ultimately preventing developmental defects. Additionally, our results suggest that RAGE344-355 may interact with eEF1a1 to mitigate oxidative meiotic defects in PCOS-like mouse oocytes. These findings highlight the potential for further clinical development of RAGE344-355 as a potent supplement and therapeutic option for women with PCOS. This research addresses an important clinical problem and offers promising opportunities for improving oocyte quality in PCOS patients.


Assuntos
Síndrome do Ovário Policístico , Humanos , Feminino , Animais , Camundongos , Adulto , Oócitos , Suplementos Nutricionais , Estresse Oxidativo , Peptídeos
19.
FASEB J ; 38(1): e23341, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38031982

RESUMO

Binge drinking (BD) is an especially pro-oxidant pattern of alcohol consumption, particularly widespread in the adolescent population. In the kidneys, it affects the glomerular filtration rate (GFR), leading to high blood pressure. BD exposure also disrupts folic acid (FA) homeostasis and its antioxidant properties. The aim of this study is to test a FA supplementation as an effective therapy against the oxidative, nitrosative, and apoptotic damage as well as the renal function alteration occurred after BD in adolescence. Four groups of adolescent rats were used: control, BD (exposed to intraperitoneal alcohol), control FA-supplemented group and BD FA-supplemented group. Dietary FA content in control groups was 2 ppm, and 8 ppm in supplemented groups. BD provoked an oxidative imbalance in the kidneys by dysregulating antioxidant enzymes and increasing the enzyme NADPH oxidase 4 (NOX4), which led to an increase in caspase-9. BD also altered the renal nitrosative status affecting the expression of the three nitric oxide (NO) synthase (NOS) isoforms, leading to a decrease in NO levels. Functionally, BD produced a hydric-electrolytic imbalance, a low GFR and an increase in blood pressure. FA supplementation to BD adolescent rats improved the oxidative, nitrosative, and apoptotic balance, recovering the hydric-electrolytic equilibrium and blood pressure. However, neither NO levels nor GFR were recovered, showing in this study for the first time that NO availability in the kidneys plays a crucial role in GFR regulation that the antioxidant effects of FA cannot repair.


Assuntos
Antioxidantes , Consumo Excessivo de Bebidas Alcoólicas , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Óxido Nítrico/metabolismo , Pressão Sanguínea , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Taxa de Filtração Glomerular , Rim/metabolismo , Suplementos Nutricionais , Etanol/farmacologia , Ácido Fólico/farmacologia , Ácido Fólico/metabolismo , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo
20.
Crit Rev Immunol ; 44(3): 37-52, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38421704

RESUMO

Regulatory T (Treg) cells hold promise for the ultimate cure of immune-mediated diseases. However, how to effectively restore Treg function in patients remains unknown. Previous reports suggest that activated dendritic cells (DCs) de novo synthesize locally high concentrations of 1,25-dihydroxy vitamin D, i.e., the active vitamin D or 1,25(OH)2D by upregulating the expression of 25-hydroxy vitamin D 1α-hydroxylase. Although 1,25(OH)2D has been shown to induce Treg cells, DC-derived 1,25(OH)2D only serves as a checkpoint to ensure well-balanced immune responses. Our animal studies have shown that 1,25(OH)2D requires high concentrations to generate Treg cells, which can cause severe side effects. In addition, our animal studies have also demonstrated that dendritic cells (DCs) overexpressing the 1α-hydroxylase de novo synthesize the effective Treg-inducing 1,25(OH)2D concentrations without causing the primary side effect of hypercalcemia (i.e., high blood calcium levels). This study furthers our previous animal studies and explores the efficacy of the la-hydroxylase-overexpressing DCs in inducing human CD4+FOXP3+regulatory T (Treg) cells. We discovered that the effective Treg-inducing doses of 1,25(OH)2D were within a range. Additionally, our data corroborated that the 1α-hydroxylase-overexpressing DCs synthesized 1,25(OH)2D within this concentration range in vivo, thus facilitating effective Treg cell induction. Moreover, this study demonstrated that 1α-hydroxylase expression levels were pivotal for DCs to induce Treg cells because physiological 25(OH)D levels were sufficient for the engineered but not parental DCs to enhance Treg cell induction. Interestingly, adding non-toxic zinc concentrations significantly augmented the Treg-inducing capacity of the engineered DCs. Our new findings offer a novel therapeutic avenue for immune-mediated human diseases, such as inflammatory bowel disease, type 1 diabetes, and multiple sclerosis, by integrating zinc with the 1α-hydroxylase-overexpressing DCs.


Assuntos
Linfócitos T Reguladores , Zinco , Animais , Humanos , Vitamina D , Oxigenases de Função Mista , Células Dendríticas , Suplementos Nutricionais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA