Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 144(4): 526-38, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21335235

RESUMO

In the eukaryotic 26S proteasome, the 20S particle is regulated by six AAA ATPase subunits and, in archaea, by a homologous ring complex, PAN. To clarify the role of ATP in proteolysis, we studied how nucleotides bind to PAN. Although PAN has six identical subunits, it binds ATPs in pairs, and its subunits exhibit three conformational states with high, low, or no affinity for ATP. When PAN binds two ATPγS molecules or two ATPγS plus two ADP molecules, it is maximally active in binding protein substrates, associating with the 20S particle, and promoting 20S gate opening. However, binding of four ATPγS molecules reduces these functions. The 26S proteasome shows similar nucleotide dependence. These findings imply an ordered cyclical mechanism in which two ATPase subunits bind ATP simultaneously and dock into the 20S. These results can explain how these hexameric ATPases interact with and "wobble" on top of the heptameric 20S proteasome.


Assuntos
Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/metabolismo , Trifosfato de Adenosina/análogos & derivados , Animais , Archaea , Nucleotídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Coelhos , Thermoplasma/metabolismo
2.
Nat Methods ; 16(4): 333-340, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30858598

RESUMO

Atomic-level information about the structure and dynamics of biomolecules is critical for an understanding of their function. Nuclear magnetic resonance (NMR) spectroscopy provides unique insights into the dynamic nature of biomolecules and their interactions, capturing transient conformers and their features. However, relaxation-induced line broadening and signal overlap make it challenging to apply NMR spectroscopy to large biological systems. Here we took advantage of the high sensitivity and broad chemical shift range of 19F nuclei and leveraged the remarkable relaxation properties of the aromatic 19F-13C spin pair to disperse 19F resonances in a two-dimensional transverse relaxation-optimized spectroscopy spectrum. We demonstrate the application of 19F-13C transverse relaxation-optimized spectroscopy to investigate proteins and nucleic acids. This experiment expands the scope of 19F NMR in the study of the structure, dynamics, and function of large and complex biological systems and provides a powerful background-free NMR probe.


Assuntos
Isótopos de Carbono/química , Ressonância Magnética Nuclear Biomolecular/instrumentação , Ressonância Magnética Nuclear Biomolecular/métodos , Ácidos Nucleicos/química , Proteínas/química , DNA/química , Escherichia coli/metabolismo , Flúor/química , Fluoruracila/química , Campos Magnéticos , Peso Molecular , Mutagênese Sítio-Dirigida , Complexo de Endopeptidases do Proteassoma/química , Thermoplasma/metabolismo
3.
Extremophiles ; 25(4): 393-402, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34196829

RESUMO

Serine hydroxymethyltransferase (SHMT) and threonine aldolase are classified as fold type I pyridoxal-5'-phosphate-dependent enzymes and engaged in glycine biosynthesis from serine and threonine, respectively. The acidothermophilic archaeon Thermoplasma acidophilum possesses two distinct SHMT genes, while there is no gene encoding threonine aldolase in its genome. In the present study, the two SHMT genes (Ta0811 and Ta1509) were heterologously expressed in Escherichia coli and Thermococcus kodakarensis, respectively, and biochemical properties of their products were investigated. Ta1509 protein exhibited dual activities to catalyze tetrahydrofolate (THF)-dependent serine cleavage and THF-independent threonine cleavage, similar to other SHMTs reported to date. In contrast, the Ta0811 protein lacks amino acid residues involved in the THF-binding motif and catalyzes only the THF-independent cleavage of threonine. Kinetic analysis revealed that the threonine-cleavage activity of the Ta0811 protein was 3.5 times higher than the serine-cleavage activity of Ta1509 protein. In addition, mRNA expression of Ta0811 gene in T. acidophilum was approximately 20 times more abundant than that of Ta1509. These observations suggest that retroaldol cleavage of threonine, mediated by the Ta0811 protein, has a major role in glycine biosynthesis in T. acidophilum.


Assuntos
Glicina Hidroximetiltransferase , Thermoplasma , Expressão Gênica , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Cinética , Serina , Thermoplasma/metabolismo
4.
Proc Natl Acad Sci U S A ; 114(46): E9846-E9854, 2017 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-29087330

RESUMO

The 20S proteasome core particle (20S CP) plays an integral role in cellular homeostasis by degrading proteins no longer required for function. The process is, in part, controlled via gating residues localized to the ends of the heptameric barrel-like CP structure that occlude substrate entry pores, preventing unregulated degradation of substrates that might otherwise enter the proteasome. Previously, we showed that the N-terminal residues of the α-subunits of the CP from the archaeon Thermoplasma acidophilum are arranged such that, on average, two of the seven termini are localized inside the lumen of the proteasome, thereby plugging the entry pore and functioning as a gate. However, the mechanism of gating remains unclear. Using solution NMR and a labeling procedure in which a series of mixed proteasome rings are prepared such that the percentage of gate-containing subunits is varied, we address the energetics of gating and establish whether gating is a cooperative process involving the concerted action of residues from more than a single protomer. Our results establish that the intrinsic probability of a gate entering the lumen favors the in state by close to 20-fold, that entry of each gate is noncooperative, with the number of gates that can be accommodated inside the lumen a function of the substrate entry pore size and the bulkiness of the gating residues. Insight into the origin of the high affinity for the in state is obtained from spin-relaxation experiments. More generally, our approach provides an avenue for dissecting interactions of individual protomers in homo-oligomeric complexes.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Thermoplasma/enzimologia , Proteínas Arqueais/genética , Modelos Moleculares , Mutagênese , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteólise , Marcadores de Spin , Thermoplasma/química , Thermoplasma/genética , Thermoplasma/metabolismo
5.
Int J Mol Sci ; 20(20)2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640225

RESUMO

The main phospholipid (MPL) of Thermoplasma acidophilum DSM 1728 was isolated, purified and physico-chemically characterized by differential scanning calorimetry (DSC)/differential thermal analysis (DTA) for its thermotropic behavior, alone and in mixtures with other lipids, cholesterol, hydrophobic peptides and pore-forming ionophores. Model membranes from MPL were investigated; black lipid membrane, Langmuir-Blodgett monolayer, and liposomes. Laboratory results were compared to computer simulation. MPL forms stable and resistant liposomes with highly proton-impermeable membrane and mixes at certain degree with common bilayer-forming lipids. Monomeric bacteriorhodopsin and ATP synthase from Micrococcus luteus were co-reconstituted and light-driven ATP synthesis measured. This review reports about almost four decades of research on Thermoplasma membrane and its MPL as well as transfer of this research to Thermoplasma species recently isolated from Indonesian volcanoes.


Assuntos
Fosfolipídeos/metabolismo , Thermoplasma/metabolismo , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Varredura Diferencial de Calorimetria , Simulação por Computador , Análise Diferencial Térmica , Glicosilação , Lipossomos/metabolismo , Fosfolipídeos/química
6.
Chemistry ; 24(9): 2270-2276, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29265588

RESUMO

Nuclear magnetic resonance spectroscopy is the prime tool to probe structure and dynamics of biomolecules at atomic resolution. A serious challenge for that method is the size limit imposed on molecules to be studied. Standard studies are typically restricted to ca. 30-40 kDa. More recent developments lead to spin relaxation measurements in methyl groups in single proteins or protein complexes as large as a mega-Dalton, which directly allow the extraction of angular information or experiments with paramagnetic samples. However, these probes are all of indirect nature in contrast to the most intuitive and easy-to-interpret structural/dynamics restraint, the internuclear distance, which can be measured by nuclear Overhauser enhancement (NOE). Herein, we demonstrate time-averaged distance measurements on the 360 kDa half proteasome from Thermoplasma acidophilium. The approach is based on exact quantification of the NOE (eNOE). Our findings open up an avenue for such measurements on very large molecules. These restraints will help in a detailed determination of conformational changes upon perturbation such as ligand binding.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Complexo de Endopeptidases do Proteassoma/química , Cristalografia por Raios X , Simulação de Dinâmica Molecular , Peso Molecular , Estrutura Quaternária de Proteína , Teoria Quântica , Thermoplasma/metabolismo
7.
Mol Cell ; 30(3): 360-8, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18471981

RESUMO

Substrates enter the cylindrical 20S proteasome through a gated channel that is regulated by the ATPases in the 19S regulatory particle in eukaryotes or the homologous PAN ATPase complex in archaea. These ATPases contain a conserved C-terminal hydrophobic-tyrosine-X (HbYX) motif that triggers gate opening upon ATP binding. Using cryo-electron microscopy, we identified the sites in the archaeal 20S where PAN's C-terminal residues bind and determined the structures of the gate in its closed and open forms. Peptides containing the HbYX motif bind to 20S in the pockets between neighboring alpha subunits where they interact with conserved residues required for gate opening. This interaction induces a rotation in the alpha subunits and displacement of a reverse-turn loop that stabilizes the open-gate conformation. This mechanism differs from that of PA26/28, which lacks the HbYX motif and does not cause alpha subunit rotation. These findings demonstrated how the ATPases' C termini function to facilitate substrate entry.


Assuntos
Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/ultraestrutura , Proteínas Arqueais/metabolismo , Proteínas Arqueais/ultraestrutura , Complexo de Endopeptidases do Proteassoma/metabolismo , Complexo de Endopeptidases do Proteassoma/ultraestrutura , Conformação Proteica , Adenosina Trifosfatases/genética , Motivos de Aminoácidos , Animais , Proteínas Arqueais/genética , Sítios de Ligação , Microscopia Crioeletrônica , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Peptídeos/química , Peptídeos/genética , Peptídeos/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Thermoplasma/química , Thermoplasma/metabolismo
8.
Mol Cell ; 32(2): 259-75, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18951093

RESUMO

Kae1 is a universally conserved ATPase and part of the essential gene set in bacteria. In archaea and eukaryotes, Kae1 is embedded within the protein kinase-containing KEOPS complex. Mutation of KEOPS subunits in yeast leads to striking telomere and transcription defects, but the exact biochemical function of KEOPS is not known. As a first step to elucidating its function, we solved the atomic structure of archaea-derived KEOPS complexes involving Kae1, Bud32, Pcc1, and Cgi121 subunits. Our studies suggest that Kae1 is regulated at two levels by the primordial protein kinase Bud32, which is itself regulated by Cgi121. Moreover, Pcc1 appears to function as a dimerization module, perhaps suggesting that KEOPS may be a processive molecular machine. Lastly, as Bud32 lacks the conventional substrate-recognition infrastructure of eukaryotic protein kinases including an activation segment, Bud32 may provide a glimpse of the evolutionary history of the protein kinase family.


Assuntos
Proteínas Arqueais/química , Complexos Multiproteicos/química , Proteínas Quinases/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Proteínas de Transporte/química , Cristalografia por Raios X , Escherichia coli/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Mathanococcus/genética , Mathanococcus/metabolismo , Modelos Moleculares , Complexos Multiproteicos/fisiologia , Ressonância Magnética Nuclear Biomolecular , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Homologia de Sequência de Aminoácidos , Telômero/metabolismo , Thermoplasma/genética , Thermoplasma/metabolismo , Transcrição Gênica
9.
Proc Natl Acad Sci U S A ; 110(9): 3327-32, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23401548

RESUMO

Proteasomes are essential and ubiquitous ATP-dependent proteases that function in eukarya, archaea, and some bacteria. These destructive but critically important proteolytic machines use a 20S core peptidase and a hexameric ATPase associated with a variety of cellular activities (AAA+) unfolding ring that unfolds and spools substrates into the peptidase chamber. In archaea, 20S can function with the AAA+ Cdc48 or proteasome-activating nucleotidase (PAN) unfoldases. Both interactions are stabilized by C-terminal tripeptides in AAA+ subunits that dock into pockets on the 20S periphery. Here, we provide evidence that archaeal Cdc48 also uses a distinct set of near-axial interactions to bind 20S and propose that similar dual determinants mediate PAN-20S interactions and Rpt(1-6)-20S interactions in the 26S proteasome. Current dogma holds that the Rpt(1-6) unfolding ring of the 19S regulatory particle is the only AAA+ partner of eukaryotic 20S. By contrast, we show that mammalian Cdc48, a key player in cell-cycle regulation, membrane fusion, and endoplasmic-reticulum-associated degradation, activates mammalian 20S and find that a mouse Cdc48 variant supports protein degradation in combination with 20S. Our results suggest that eukaryotic Cdc48 orthologs function directly with 20S to maintain intracellular protein quality control.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Evolução Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Adenosina Trifosfatases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Proteínas de Ciclo Celular/química , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Proteínas Mutantes/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica , Estrutura Secundária de Proteína , Proteólise , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae , Especificidade por Substrato , Thermoplasma/metabolismo , Proteína com Valosina
10.
J Lipid Res ; 56(10): 1861-79, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26269359

RESUMO

A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer.


Assuntos
Éteres de Glicerila/metabolismo , Fusão de Membrana/fisiologia , Lipídeos de Membrana/metabolismo , Animais , Células Cultivadas , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Éteres de Glicerila/química , Humanos , Bicamadas Lipídicas/metabolismo , Lipossomos/metabolismo , Lipídeos de Membrana/química , Esfingolipídeos/química , Esfingolipídeos/metabolismo , Suínos , Thermoplasma/metabolismo
11.
J Biol Chem ; 289(23): 15957-67, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24755225

RESUMO

The lack of a few conserved enzymes in the classical mevalonate pathway and the widespread existence of isopentenyl phosphate kinase suggest the presence of a partly modified mevalonate pathway in most archaea and in some bacteria. In the pathway, (R)-mevalonate 5-phosphate is thought to be metabolized to isopentenyl diphosphate via isopentenyl phosphate. The long anticipated enzyme that catalyzes the reaction from (R)-mevalonate 5-phosphate to isopentenyl phosphate was recently identified in a Cloroflexi bacterium, Roseiflexus castenholzii, and in a halophilic archaeon, Haloferax volcanii. However, our trial to convert the intermediates of the classical and modified mevalonate pathways into isopentenyl diphosphate using cell-free extract from a thermophilic archaeon Thermoplasma acidophilum implied that the branch point intermediate of these known pathways, i.e. (R)-mevalonate 5-phosphate, is unlikely to be the precursor of isoprenoid. Through the process of characterizing the recombinant homologs of mevalonate pathway-related enzymes from the archaeon, a distant homolog of diphosphomevalonate decarboxylase was found to catalyze the phosphorylation of (R)-mevalonate to yield (R)-mevalonate 3-phosphate. The product could be converted into isopentenyl phosphate, probably through (R)-mevalonate 3,5-bisphosphate, by the action of unidentified T. acidophilum enzymes fractionated by anion-exchange chromatography. These findings demonstrate the presence of a third alternative "Thermoplasma-type" mevalonate pathway, which involves (R)-mevalonate 3-phosphotransferase and probably both (R)-mevalonate 3-phosphate 5-phosphotransferase and (R)-mevalonate 3,5-bisphosphate decarboxylase, in addition to isopentenyl phosphate kinase.


Assuntos
Ácido Mevalônico/análogos & derivados , Ácido Mevalônico/metabolismo , Thermoplasma/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sequência de Bases , Sistema Livre de Células , Cromatografia por Troca Iônica , Cromatografia em Camada Fina , Primers do DNA , Filogenia
12.
Biosci Biotechnol Biochem ; 79(3): 432-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25419910

RESUMO

The eukaryotic MCM is activated by forming the CMG complex with Cdc45 and GINS to work as a replicative helicase. The eukaryotic GINS consists of four different proteins to form tetrameric complex. In contrast, the TaGins51 protein from the thermophilic archaeon, Thermoplasma acidophilum forms a homotetramer (TaGINS), and interacts with the cognate MCM (TaMCM) to stimulate the DNA-binding, ATPase, and helicase activities of TaMCM. All Gins proteins from Archaea and Eukarya contain α-helical A- and ß-stranded B-domains. Here, we found that TaGins51 forms the tetramer without the B-domain. However, the A-domain without the linker region between the A- and B-domains could not form a stable tetramer, and furthermore, the A-domain by itself could not stimulate the TaMCM activity. These results suggest that the formation of the Gins51 tetramer is necessary for MCM activation, and the disordered linker region between the two domains is critical for the functional complex formation.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , DNA Helicases/metabolismo , Multimerização Proteica , Thermoplasma/enzimologia , Proteínas Arqueais/genética , Ativação Enzimática , Mutação , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Thermoplasma/metabolismo
13.
Proc Natl Acad Sci U S A ; 109(50): E3454-62, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23150576

RESUMO

Protein degradation plays a critical role in cellular homeostasis, in regulating the cell cycle, and in the generation of peptides that are used in the immune response. The 20S proteasome core particle (CP), a barrel-like structure consisting of four heptameric protein rings stacked axially on top of each other, is central to this process. CP function is controlled by activator complexes that bind 75 Å away from sites catalyzing proteolysis, and biochemical data are consistent with an allosteric mechanism by which binding is communicated to distal active sites. However, little structural evidence has emerged from the high-resolution images of the CP. Using methyl TROSY NMR spectroscopy, we demonstrate that in solution, the CP interconverts between multiple conformations whose relative populations are shifted on binding of the 11S activator or mutation of residues that contact activators. These conformers differ in contiguous regions of structure that connect activator binding to the CP active sites, and changes in their populations lead to differences in substrate proteolysis patterns. Moreover, various active site modifications result in conformational changes to the activator binding site by modulating the relative populations of these same CP conformers. This distribution is also affected by the binding of a small-molecule allosteric inhibitor of proteolysis, chloroquine, suggesting an important avenue in the development of therapeutics for proteasome inhibition.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Endopeptidases/química , Endopeptidases/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/metabolismo , Regulação Alostérica , Sítio Alostérico/genética , Sequência de Aminoácidos , Proteínas Arqueais/genética , Cloroquina/metabolismo , Endopeptidases/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ressonância Magnética Nuclear Biomolecular , Complexo de Endopeptidases do Proteassoma/genética , Conformação Proteica , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Thermoplasma/genética , Thermoplasma/metabolismo
14.
Biochemistry ; 53(25): 4161-8, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24914732

RESUMO

Isoprenoids make up a remarkably diverse class of more than 25000 biomolecules that include familiar compounds such as cholesterol, chlorophyll, vitamin A, ubiquinone, and natural rubber. The two essential building blocks of all isoprenoids, isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), are ubiquitous in the three domains of life. In most eukaryotes and archaea, IPP and DMAPP are generated through the mevalonate pathway. We have identified two novel enzymes, mevalonate-3-kinase and mevalonate-3-phosphate-5-kinase from Thermoplasma acidophilum, which act sequentially in a putative alternate mevalonate pathway. We propose that a yet unidentified ATP-independent decarboxylase acts upon mevalonate 3,5-bisphosphate, yielding isopentenyl phosphate, which is subsequently phosphorylated by the known isopentenyl phosphate kinase from T. acidophilum to generate the universal isoprenoid precursor, IPP.


Assuntos
Ácido Mevalônico/análogos & derivados , Organofosfatos/metabolismo , Fosfotransferases/metabolismo , Thermoplasma/metabolismo , Ácido Mevalônico/metabolismo , Fosforilação , Fosfotransferases/genética
15.
J Biol Chem ; 288(39): 28217-29, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23935105

RESUMO

G-quadruplex (G4) DNA, an alternate structure formed by Hoogsteen hydrogen bonds between guanines in G-rich sequences, threatens genomic stability by perturbing normal DNA transactions including replication, repair, and transcription. A variety of G4 topologies (intra- and intermolecular) can form in vitro, but the molecular architecture and cellular factors influencing G4 landscape in vivo are not clear. Helicases that unwind structured DNA molecules are emerging as an important class of G4-resolving enzymes. The BRCA1-associated FANCJ helicase is among those helicases able to unwind G4 DNA in vitro, and FANCJ mutations are associated with breast cancer and linked to Fanconi anemia. FANCJ belongs to a conserved iron-sulfur (Fe S) cluster family of helicases important for genomic stability including XPD (nucleotide excision repair), DDX11 (sister chromatid cohesion), and RTEL (telomere metabolism), genetically linked to xeroderma pigmentosum/Cockayne syndrome, Warsaw breakage syndrome, and dyskeratosis congenita, respectively. To elucidate the role of FANCJ in genomic stability, its molecular functions in G4 metabolism were examined. FANCJ efficiently unwound in a kinetic and ATPase-dependent manner entropically favored unimolecular G4 DNA, whereas other Fe-S helicases tested did not. The G4-specific ligands Phen-DC3 or Phen-DC6 inhibited FANCJ helicase on unimolecular G4 ∼1000-fold better than bi- or tetramolecular G4 DNA. The G4 ligand telomestatin induced DNA damage in human cells deficient in FANCJ but not DDX11 or XPD. These findings suggest FANCJ is a specialized Fe-S cluster helicase that preserves chromosomal stability by unwinding unimolecular G4 DNA likely to form in transiently unwound single-stranded genomic regions.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/química , Proteínas de Grupos de Complementação da Anemia de Fanconi/química , Quadruplex G , Regulação da Expressão Gênica , Instabilidade Genômica , Proteínas Ferro-Enxofre/química , Fatores de Transcrição de Zíper de Leucina Básica/genética , DNA/química , DNA Helicases/genética , Reparo do DNA , Replicação do DNA , Escherichia coli/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Guanina/química , Humanos , Concentração Inibidora 50 , Ligantes , Interferência de RNA , Proteínas Recombinantes/química , Thermoplasma/metabolismo
16.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 5): 1281-8, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24816097

RESUMO

The iron-dependent regulator (IdeR) is a metal ion-activated transcriptional repressor that regulates the expression of genes encoding proteins involved in iron uptake to maintain metal-ion homeostasis. IdeR is a functional homologue of the diphtheria toxin repressor (DtxR), and both belong to the DtxR/MntR family of metalloregulators. The structure of Fe(2+)-bound IdeR (TA0872) from Themoplasma acidophilum was determined at 2.1 Å resolution by X-ray crystallography using single-wavelength anomalous diffraction. The presence of Fe(2+), which is the true biological activator of IdeR, in the metal-binding site was ascertained by the use of anomalous difference electron-density maps using diffraction data collected at the Fe absorption edge. Each DtxR/IdeR subunit contains two metal ion-binding sites separated by 9 Å, labelled the primary and ancillary sites, whereas the crystal structures of IdeR from T. acidophilum show a binuclear iron cluster separated by 3.2 Å, which is novel to T. acidophilum IdeR. The metal-binding site analogous to the primary site in DtxR was unoccupied, and the ancillary site was occupied by binuclear clustered ions. This difference suggests that T. acidophilum IdeR and its closely related homologues are regulated by a mechanism distinct from that of either DtxR or MntR. T. acidophilum IdeR was also shown to have a metal-dependent DNA-binding property by electrophoretic mobility shift assay.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/metabolismo , Ferro/metabolismo , Thermoplasma/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Modelos Moleculares , Conformação Proteica , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Thermoplasma/química
17.
Extremophiles ; 18(5): 915-24, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25107272

RESUMO

In DNA replication studies, the mechanism for regulation of the various steps from initiation to elongation is a crucial subject to understand cell cycle control. The eukaryotic minichromosome maintenance (MCM) protein complex is recruited to the replication origin by Cdc6 and Cdt1 to form the pre-replication complex, and participates in forming the CMG complex formation with Cdc45 and GINS to work as the active helicase. Intriguingly, Thermoplasma acidophilum, as well as many other archaea, has only one Gins protein homolog, contrary to the heterotetramer of the eukaryotic GINS made of four different proteins. The Gins51 protein reportedly forms a homotetramer (TaGINS) and physically interacts with TaMCM. In addition, TaCdc6-2, one of the two Cdc6/Orc1 homologs in T. acidophilum reportedly stimulates the ATPase and helicase activities of TaMCM in vitro. Here, we found a reaction condition, in which TaGINS stimulated the ATPase and helicase activities of TaMCM in a concentration dependent manner. Furthermore, the stimulation of the TaMCM helicase activity by TaGINS was enhanced by the addition of TaCdc6-2. A gel retardation assay revealed that TaMCM, TaGINS, and TaCdc6-2 form a complex on ssDNA. However, glutaraldehyde-crosslinking was necessary to detect the shifted band, indicating that the ternary complex of TaMCM-TaGINS-TaCdc6-2 is not stable in vitro. Immunoprecipitation experiment supported a weak interaction of these three proteins in vivo. Activation of the replicative helicase by a mechanism including a Cdc6-like protein suggests the divergent evolution after the division into Archaea and Eukarya.


Assuntos
Proteínas Arqueais/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Thermoplasma/enzimologia , Ligação Proteica , Origem de Replicação , Thermoplasma/metabolismo
18.
RNA Biol ; 11(12): 1568-85, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25616408

RESUMO

The analysis of ribonucleic acids (RNA) by mass spectrometry has been a valuable analytical approach for more than 25 years. In fact, mass spectrometry has become a method of choice for the analysis of modified nucleosides from RNA isolated out of biological samples. This review summarizes recent progress that has been made in both nucleoside and oligonucleotide mass spectral analysis. Applications of mass spectrometry in the identification, characterization and quantification of modified nucleosides are discussed. At the oligonucleotide level, advances in modern mass spectrometry approaches combined with the standard RNA modification mapping protocol enable the characterization of RNAs of varying lengths ranging from low molecular weight short interfering RNAs (siRNAs) to the extremely large 23 S rRNAs. New variations and improvements to this protocol are reviewed, including top-down strategies, as these developments now enable qualitative and quantitative measurements of RNA modification patterns in a variety of biological systems.


Assuntos
Nucleosídeos/análise , Oligonucleotídeos/análise , Processamento Pós-Transcricional do RNA , RNA Mensageiro/análise , RNA Ribossômico 23S/análise , RNA Interferente Pequeno/análise , RNA não Traduzido/análise , Sequência de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Espectrometria de Massas/instrumentação , Espectrometria de Massas/métodos , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Nucleosídeos/química , Nucleosídeos/metabolismo , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Ribossômico 23S/química , RNA Ribossômico 23S/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , RNA não Traduzido/química , RNA não Traduzido/metabolismo , Thermoplasma/genética , Thermoplasma/metabolismo
19.
Biol Pharm Bull ; 37(3): 481-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24583867

RESUMO

The genome of the facultative anaerobic thermoacidophilic archaeon Thermoplasma volcanium contains the open-reading frames (ORFs) tvsod and tvogg, which are predicted to encode a putative superoxide dismutase and an 8-oxoguanine DNA glycosylase, respectively. Tvsod is immediately upstream of tvogg, and these two ORFs are aligned in a head-to-tail manner in a single operon. A previous study showed that T. volcanium contains an ORF (TVN0292) encoding the ferric uptake regulator (Fur) and that the T. volcanium Fur protein (TvFur) binds to its own promoter in a metal-dependent manner in vitro. Here, we demonstrated that TvFur also binds to the tvsod-tvogg promoter and determined the TvFur-binding sequences in the tvsod-tvogg promoter by DNaseI footprinting analysis. These results suggest that Fur is required for resistance against reactive oxygen species in this facultative anaerobic archaeon.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos , Óperon , Estresse Oxidativo/genética , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Thermoplasma/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Dados de Sequência Molecular , Fases de Leitura Aberta , Proteínas Repressoras/metabolismo , Thermoplasma/metabolismo
20.
Angew Chem Int Ed Engl ; 53(5): 1443-7, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24459061

RESUMO

The group II chaperonin thermosome (THS) from the archaea Thermoplasma acidophilum is reported as nanoreactor for atom-transfer radical polymerization (ATRP). A copper catalyst was entrapped into the THS to confine the polymerization into this protein cage. THS possesses pores that are wide enough to release polymers into solution. The nanoreactor favorably influenced the polymerization of N-isopropyl acrylamide and poly(ethylene glycol)methylether acrylate. Narrowly dispersed polymers with polydispersity indices (PDIs) down to 1.06 were obtained in the protein nanoreactor, while control reactions with a globular protein-catalyst conjugate only yielded polymers with PDIs above 1.84.


Assuntos
Chaperoninas/metabolismo , Radicais Livres/química , Nanotecnologia , Termossomos/metabolismo , Acrilamidas/química , Acrilamidas/metabolismo , Catálise , Chaperoninas/química , Cobre/química , Ligantes , Poliaminas/química , Poliaminas/metabolismo , Polimerização , Thermoplasma/metabolismo , Termossomos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA