Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 160
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Clin Periodontol ; 51(2): 222-232, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38105008

RESUMO

AIM: The use of cannabis, which contains multiple antimicrobials, may be a risk factor for periodontitis. We hypothesized that multiple oral spirochetes would be phytocannabinoid-resistant and that cannabidiol (CBD) would act as an environmental stressor to which Treponema denticola would respond transcriptionally, thereby providing first insights into spirochetal survival strategies. MATERIALS AND METHODS: Oral spirochete growth was monitored spectrophotometrically in the presence and absence of physiologically relevant phytocannabinoid doses, the transcriptional response to phytocannabinoid exposure determined by RNAseq, specific gene activity fluxes verified using qRT-PCR and orthologues among fully sequenced oral spirochetes identified. RESULTS: Multiple strains of oral treponemes were resistant to CBD (0.1-10 µg/mL), while T. denticola ATCC 35405 was resistant to all phytocannabinoids tested (CBD, cannabinol [CBN], tetrahydrocannabinol [THC]). A total of 392 T. denticola ATCC 35405 genes were found to be CBD-responsive by RNAseq. A selected subset of these genes was independently verified by qRT-PCR. Genes found to be differentially activated by both methods included several involved in transcriptional regulation and toxin control. Suppressed genes included several involved in chemotaxis and proteolysis. CONCLUSIONS: Oral spirochetes, unlike some other periodontal bacteria, are resistant to physiological doses of phytocannabinoids. Investigation of CBD-induced transcriptomic changes provided insight into the resistance mechanisms of this important periodontal pathogen. These findings should be considered in the context of the reported enhanced susceptibility to periodontitis in cannabis users.


Assuntos
Canabidiol , Periodontite , Humanos , Canabidiol/farmacologia , Treponema denticola/genética , Treponema/genética , Spirochaetales/genética , Periodontite/genética , Periodontite/microbiologia , Canabinol , Perfilação da Expressão Gênica
2.
Anaerobe ; 87: 102852, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38614291

RESUMO

OBJECTIVE: Treponema denticola has been strongly implicated in the pathogenesis of chronic periodontitis. Previously, we reported that the potential transcriptional regulator TDE_0259 (oxtR1) is upregulated in the bacteriocin ABC transporter gene-deficient mutant. OxtR1 may regulate genes to adapt to environmental conditions during colonization; however, the exact role of the gene in T. denticola has not been reported. Therefore, we investigated its function using an oxtR1-deficient mutant. METHODS: The growth rates of the wild-type and oxtR1 mutant were monitored under anaerobic conditions; their antibacterial agent susceptibility and gene expression were assessed using a liquid dilution assay and DNA microarray, respectively. An electrophoretic mobility shift assay was performed to investigate the binding of OxtR1 to promoter regions. RESULTS: The growth rate of the bacterium was accelerated by the inactivation of oxtR1, and the mutant exhibited an increased minimum inhibitory concentration against ofloxacin. We observed a relative increase in the expression of genes associated with potential ferrodoxin (TDE_0260), flavodoxin, ABC transporters, heat-shock proteins, DNA helicase, iron compounds, and lipoproteins in the mutant. OxtR1 expression increased upon oxygen exposure, and oxtR1 complementation suppressed the expression of potential ferrodoxin. Our findings also suggested that OxtR1 binds to a potential promoter region of the TDE_0259-260 operon. Moreover, the mutant showed a marginal yet significantly faster growth rate than the wild-type strain under H2O2 exposure. CONCLUSION: The oxygen-sensing regulator OxtR1 plays a role in regulating the expression of a potential ferrodoxin, which may contribute to the response of T. denticola to oxygen-induced stress.


Assuntos
Regulação Bacteriana da Expressão Gênica , Treponema denticola , Treponema denticola/genética , Treponema denticola/efeitos dos fármacos , Treponema denticola/crescimento & desenvolvimento , Treponema denticola/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regiões Promotoras Genéticas , Estresse Oxidativo , Anaerobiose , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Oxigênio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Perfilação da Expressão Gênica , Estresse Fisiológico
3.
Int J Mol Sci ; 25(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38791137

RESUMO

The most common type of periodontal disease is chronic periodontitis, an inflammatory condition caused by pathogenic bacteria in subgingival plaque. The aim of our study was the development of a real-time PCR test as a diagnostic tool for the detection and differentiation of five periodontopathogenic bacteria, Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia, Prevotella intermedia, and Treponema denticola, in patients with periodontitis. We compared the results of our in-house method with the micro-IDent® semiquantitative commercially available test based on the PCR hybridization method. DNA was isolated from subgingival plaque samples taken from 50 patients and then analyzed by both methods. Comparing the results of the two methods, they show a specificity of 100% for all bacteria. The sensitivity for A. actinomycetemcomitans was 97.5%, for P. gingivalis 96.88%, and for P. intermedia 95.24%. The sensitivity for Tannerella forsythia and T. denticola was 100%. The Spearman correlation factor of two different measurements was 0.976 for A. actinomycetemcomitans, 0.967 for P. gingivalis, 0.949 for P. intermedia, 0.966 for Tannerella forsythia, and 0.917 for T. denticola. In conclusion, the in-house real-time PCR method developed in our laboratory can provide information about relative amount of five bacterial species present in subgingival plaque in patients with periodontitis. It is likely that such a test could be used in dental diagnostics in assessing the efficacy of any treatment to reduce the bacterial burden.


Assuntos
Periodontite , Porphyromonas gingivalis , Reação em Cadeia da Polimerase em Tempo Real , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Periodontite/microbiologia , Periodontite/diagnóstico , Porphyromonas gingivalis/isolamento & purificação , Porphyromonas gingivalis/genética , Aggregatibacter actinomycetemcomitans/isolamento & purificação , Aggregatibacter actinomycetemcomitans/genética , Treponema denticola/isolamento & purificação , Treponema denticola/genética , Masculino , Feminino , Tannerella forsythia/isolamento & purificação , Tannerella forsythia/genética , Sensibilidade e Especificidade , Prevotella intermedia/isolamento & purificação , Prevotella intermedia/genética , Pessoa de Meia-Idade , Adulto , DNA Bacteriano/genética , Placa Dentária/microbiologia , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/classificação
4.
J Bacteriol ; 205(2): e0046322, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36715541

RESUMO

FlgM, an antagonist of FliA (also known as σ28), inhibits transcription of bacterial class 3 flagellar genes. It does so primarily through binding to free σ28 to prevent it from forming a complex with core RNA polymerase. We recently identified an FliA homolog (FliATd) in the oral spirochete Treponema denticola; however, its antagonist FlgM remained uncharacterized. Herein, we provide several lines of evidence that TDE0201 functions as an antagonist of FliATd. TDE0201 is structurally similar to FlgM proteins, although its sequence is not conserved. Heterologous expression of TDE0201 in Escherichia coli inhibits its flagellin gene expression and motility. Biochemical and mutational analyses demonstrate that TDE0201 binds to FliATd and prevents it from binding to the σ28-dependent promoter. Deletions of flgM genes typically enhance bacterial class 3 flagellar gene expression; however, deletion of TDE0201 has an opposite effect (e.g., the mutant has a reduced level of flagellins). Follow-up studies revealed that deletion of TDE0201 leads to FliATd turnover, which in turn impairs the expression of flagellin genes. Swimming plate, cell tracking, and cryo-electron tomography analyses further disclosed that deletion of TDE0201 impairs spirochete motility and alters flagellar number and polarity: i.e., instead of having bipolar flagella, the mutant has flagella only at one end of cells. Collectively, these results indicate that TDE0201 is a FlgM homolog but acts differently from its counterparts in other bacteria. IMPORTANCE Spirochetes are a group of bacteria that cause several human diseases. A unique aspect of spirochetes is that they have bipolar periplasmic flagella (PFs), which bestow on the spirochetes a unique spiral shape and distinct swimming behaviors. While the structure and function of PFs have been extensively studied in spirochetes, the molecular mechanism that regulates the PFs' morphogenesis and assembly is poorly understood. In this report, FlgM, an anti-σ28 factor, is identified and functionally characterized in the oral spirochete Treponema denticola. Our results show that FlgM regulates the number and polarity of PFs via a unique mechanism. Identification of FliA and FlgM in T. denticola sets a benchmark to investigate their roles in other spirochetes.


Assuntos
Proteínas de Bactérias , Flagelina , Treponema denticola , Proteínas de Bactérias/genética , Escherichia coli/genética , Flagelos/metabolismo , Flagelina/genética , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Fator sigma/metabolismo , Treponema denticola/genética
5.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569480

RESUMO

miRNAs are major regulators of eukaryotic gene expression and host immunity, and play an important role in the inflammation-mediated pathways in periodontal disease (PD) pathogenesis. Expanding our previous observation with the global miRNA profiling using partial human mouth microbes, and lack of in vivo studies involving oral spirochete Treponema denticola-induced miRNAs, this study was designed to delineate the global miRNA expression kinetics during progression of periodontitis in mice infected with T. denticola by using NanoString nCounter® miRNA panels. All of the T. denticola-infected male and female mice at 8 and 16 weeks demonstrated bacterial colonization (100%) on the gingival surface, and an increase in alveolar bone resorption (p < 0.0001). A total of 70 miRNAs with at least 1.0-fold differential expression/regulation (DE) (26 upregulated and 44 downregulated) were identified. nCounter miRNA expression profiling identified 13 upregulated miRNAs (e.g., miR-133a, miR-378) and 25 downregulated miRNAs (e.g., miR-375, miR-34b-5p) in T. denticola-infected mouse mandibles during 8 weeks of infection, whereas 13 upregulated miRNAs (e.g., miR-486, miR-126-5p) and 19 downregulated miRNAs (miR-2135, miR-142-3p) were observed during 16 weeks of infection. One miRNA (miR-126-5p) showed significant difference between 8 and 16 weeks of infection. Interestingly, miR-126-5p has been presented as a potential biomarker in patients with periodontitis and coronary artery disease. Among the upregulated miRNAs, miR-486, miR-126-3p, miR-126-5p, miR-378a-3p, miR-22-3p, miR-151a-3p, miR-423-5p, and miR-221 were reported in human gingival plaques and saliva samples from periodontitis and with diabetes. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed various functional pathways of DE miRNAs, such as bacterial invasion of epithelial cells, Ras signaling, Fc gamma R-mediated phagocytosis, osteoclast differentiation, adherens signaling, and ubiquitin mediated proteolysis. This is the first study of DE miRNAs in mouse mandibles at different time-points of T. denticola infection; the combination of three specific miRNAs, miR-486, miR-126-3p, and miR-126-5p, may serve as an invasive biomarker of T. denticola in PD. These miRNAs may have a significant role in PD pathogenesis, and this research establishes a link between miRNA, periodontitis, and systemic diseases.


Assuntos
Doenças Transmissíveis , MicroRNAs , Doenças Periodontais , Periodontite , Humanos , Masculino , Feminino , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Treponema denticola/genética , Spirochaetales/genética , Treponema/genética , Treponema/metabolismo , Cinética , Perfilação da Expressão Gênica , Periodontite/genética , Doenças Periodontais/genética , Biomarcadores
6.
J Bacteriol ; 204(9): e0022822, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35913147

RESUMO

Treponema denticola, a keystone pathogen in periodontitis, is a model organism for studying Treponema physiology and host-microbe interactions. Its major surface protein Msp forms an oligomeric outer membrane complex that binds fibronectin, has cytotoxic pore-forming activity, and disrupts several intracellular processes in host cells. T. denticola msp is an ortholog of the Treponema pallidum tprA to -K gene family that includes tprK, whose remarkable in vivo hypervariability is proposed to contribute to T. pallidum immune evasion. We recently identified the primary Msp surface-exposed epitope and proposed a model of the Msp protein as a ß-barrel protein similar to Gram-negative bacterial porins. Here, we report fine-scale Msp mutagenesis demonstrating that both the N and C termini as well as the centrally located Msp surface epitope are required for native Msp oligomer expression. Removal of as few as three C-terminal amino acids abrogated Msp detection on the T. denticola cell surface, and deletion of four residues resulted in complete loss of detectable Msp. Substitution of a FLAG tag for either residues 6 to 13 of mature Msp or an 8-residue portion of the central Msp surface epitope resulted in expression of full-length Msp but absence of the oligomer, suggesting roles for both domains in oligomer formation. Consistent with previously reported Msp N-glycosylation, proteinase K treatment of intact cells released a 25 kDa polypeptide containing the Msp surface epitope into culture supernatants. Molecular modeling of Msp using novel metagenome-derived multiple sequence alignment (MSA) algorithms supports the hypothesis that Msp is a large-diameter, trimeric outer membrane porin-like protein whose potential transport substrate remains to be identified. IMPORTANCE The Treponema denticola gene encoding its major surface protein (Msp) is an ortholog of the T. pallidum tprA to -K gene family that includes tprK, whose remarkable in vivo hypervariability is proposed to contribute to T. pallidum immune evasion. Using a combined strategy of fine-scale mutagenesis and advanced predictive molecular modeling, we characterized the Msp protein and present a high-confidence model of its structure as an oligomer embedded in the outer membrane. This work adds to knowledge of Msp-like proteins in oral treponemes and may contribute to understanding the evolutionary and potential functional relationships between T. denticola Msp and the orthologous T. pallidum Tpr proteins.


Assuntos
Fibronectinas , Treponema denticola , Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Endopeptidase K/metabolismo , Epitopos , Fibronectinas/metabolismo , Peptídeos/metabolismo , Porinas/metabolismo , Treponema/química , Treponema/genética , Treponema/metabolismo , Treponema denticola/genética
7.
Nucleic Acids Res ; 48(20): 11468-11485, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33119758

RESUMO

Type I restriction-modification (R-M) systems consist of a DNA endonuclease (HsdR, HsdM and HsdS subunits) and methyltransferase (HsdM and HsdS subunits). The hsdS sequences flanked by inverted repeats (referred to as epigenetic invertons) in certain Type I R-M systems undergo invertase-catalyzed inversions. Previous studies in Streptococcus pneumoniae have shown that hsdS inversions within clonal populations produce subpopulations with profound differences in the methylome, cellular physiology and virulence. In this study, we bioinformatically identified six major clades of the tyrosine and serine family invertases homologs from 16 bacterial phyla, which potentially catalyze hsdS inversions in the epigenetic invertons. In particular, the epigenetic invertons are highly enriched in host-associated bacteria. We further verified hsdS inversions in the Type I R-M systems of four representative host-associated bacteria and found that each of the resultant hsdS allelic variants specifies methylation of a unique DNA sequence. In addition, transcriptome analysis revealed that hsdS allelic variations in Enterococcus faecalis exert significant impact on gene expression. These findings indicate that epigenetic switches driven by invertases in the epigenetic invertons broadly operate in the host-associated bacteria, which may broadly contribute to bacterial host adaptation and virulence beyond the role of the Type I R-M systems against phage infection.


Assuntos
Proteínas de Bactérias/genética , Enzimas de Restrição-Modificação do DNA/genética , Epigênese Genética , Regulação Bacteriana da Expressão Gênica , Bacteroides fragilis/genética , Metilação de DNA , DNA Bacteriano/química , Enterococcus faecalis/genética , Sequências Repetidas Invertidas , Streptococcus agalactiae/genética , Treponema denticola/genética
8.
Adv Exp Med Biol ; 1373: 159-174, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35612797

RESUMO

The development of oral biofilm models has been extremely important to study the specific role of most microbial species at the early stages of periodontitis. The current knowledge on monospecies or multispecies biofilms originates mainly from the observation of in vitro dynamic or static biofilm model systems, which were engineered to mimic clinical oral conditions. In the last few decades, mounting evidence has confirmed that biofilms are the major form of bacterial lifestyle, and more importantly, that microorganisms dwelling in sessile mixed-species aggregates display completely different phenotypes and physiological characteristics than when living in planktonic pure cultures. Interspecies interactions within these communities, mediated by chemical communication systems, have been shown to affect biofilm physiology and increase antimicrobial resistance by up to 1000 fold. These aspects reinforce the importance of developing multispecies biofilm models to better understand and control biofilms. Literature reports demonstrate that while monospecies models are still most commonly used in caries research, authors have used different multispecies models to study periodontal diseases. Periodontitis is a polymicrobial biofilm-dependent disease mainly associated with Porphyromonas gingivalis, Tannerella forsythia, and Treponema denticola. Interestingly, these species hardly adhere to substrates commonly used for biofilm formation, which makes multispecies models essential for an accurate analysis of periodontitis-related biofilms. The multispecies models currently available are generally composed of 6-10 species, but a more recent 34-species model was developed to better examine the dynamics within oral biofilms. The complexity of such polymicrobial biofilm models mimics more consistently the oral microbiome and different aspects of the oral environment. Collectively, the evidence on multispecies biofilm models described herein may support future studies on the use of antimicrobials for biofilm control as well as provide research opportunities to expand the current knowledge on interspecies interactions. The present manuscript reviews the most recent updates on in vitro biofilm model systems for periodontitis.


Assuntos
Periodontite , Treponema denticola , Biofilmes , Humanos , Plâncton , Porphyromonas gingivalis/genética , Treponema denticola/genética
9.
Proc Natl Acad Sci U S A ; 116(30): 14955-14960, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31270241

RESUMO

Many bacteria contain cytoplasmic chemoreceptors that lack sensor domains. Here, we demonstrate that such cytoplasmic receptors found in 8 different bacterial and archaeal phyla genetically couple to metalloproteins related to ß-lactamases and nitric oxide reductases. We show that this oxygen-binding di-iron protein (ODP) acts as a sensor for chemotactic responses to both iron and oxygen in the human pathogen Treponema denticola (Td). The ODP di-iron site binds oxygen at high affinity to reversibly form an unusually stable µ-peroxo adduct. Crystal structures of ODP from Td and the thermophile Thermotoga maritima (Tm) in the Fe[III]2-O22-, Zn[II], and apo states display differences in subunit association, conformation, and metal coordination that indicate potential mechanisms for sensing. In reconstituted systems, iron-peroxo ODP destabilizes the phosphorylated form of the receptor-coupled histidine kinase CheA, thereby providing a biochemical link between oxygen sensing and chemotaxis in diverse prokaryotes, including anaerobes of ancient origin.


Assuntos
Proteínas de Bactérias/metabolismo , Quimiotaxia , Proteínas de Ligação ao Ferro/metabolismo , Oxirredutases/metabolismo , Transdução de Sinais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Histidina Quinase/metabolismo , Ferro/metabolismo , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/genética , Oxirredutases/química , Oxirredutases/genética , Oxigênio/metabolismo , Filogenia , Ligação Proteica , Thermotoga maritima/enzimologia , Thermotoga maritima/genética , Treponema denticola/enzimologia , Treponema denticola/genética
10.
Int J Mol Sci ; 23(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563501

RESUMO

Periodontitis (PD) is a polymicrobial dysbiotic immuno-inflammatory disease. It is more prevalent in males and has poorly understood pathogenic molecular mechanisms. Our primary objective was to characterize alterations in sex-specific microRNA (miRNA, miR) after periodontal bacterial infection. Using partial human mouth microbes (PAHMM) (Streptococcus gordonii, Fusobacterium nucleatum, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia) in an ecological time-sequential polybacterial periodontal infection (ETSPPI) mouse model, we evaluated differential mandibular miRNA profiles by using high-throughput Nanostring nCounter® miRNA expression panels. All PAHMM mice showed bacterial colonization (100%) in the gingival surface, an increase in alveolar bone resorption (p < 0.0001), and the induction of a specific immunoglobin G antibody immune response (p < 0.001). Sex-specific differences in distal organ bacterial dissemination were observed in the heart (82% male vs. 28% female) and lungs (2% male vs. 68% female). Moreover, sex-specific differential expression (DE) of miRNA was identified in PAHMM mice. Out of 378 differentially expressed miRNAs, we identified seven miRNAs (miR-9, miR-148a, miR-669a, miR-199a-3p, miR-1274a, miR-377, and miR-690) in both sexes that may be implicated in the pathogenesis of periodontitis. A strong relationship was found between male-specific miR-377 upregulation and bacterial dissemination to the heart. This study demonstrates sex-specific differences in bacterial dissemination and in miRNA differential expression. A novel PAHMM mouse and ETSPPI model that replicates human pathobiology can be used to identify miRNA biomarkers in periodontitis.


Assuntos
Perda do Osso Alveolar , MicroRNAs , Periodontite , Animais , Feminino , Humanos , Masculino , Camundongos , MicroRNAs/genética , Periodontite/microbiologia , Porphyromonas gingivalis , Treponema denticola/genética
11.
Microbiol Immunol ; 65(12): 551-558, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34499368

RESUMO

Treponema denticola, a helically shaped motile microorganism, is a major pathogen of chronic periodontitis. Major surface protein (Msp) and dentilisin are virulence factors of T. denticola that are located on the outer sheath. The motility of T. denticola is deeply involved in colonization on and invasion into the host tissue. The outer sheath is located at the interface between the environment and T. denticola, and its components may also contribute to its motility via interaction with the materials outside the cells. The study aimed to clarify whether Msp or dentilisin contributes to the motility of T. denticola on solid surfaces, termed crawling, by investigating their effects using Msp-deficient and dentilisin-deficient T. denticola strains. Motility was analyzed by measuring the colony size in agar plates and velocity was analyzed using dark-field microscopy. The colony area of the mutant strains was smaller than that of the wild-type strain. The crawling velocity of the mutant strains was lower than that of the wild-type strain, with the lowest velocity observed in the dentilisin-deficient strain. Additionally, the ratio of the crawling distance by one revolution to the protoplasmic cylinder pitch (an indicator of the crawling efficiency) in the dentilisin mutant was significantly lower than that in the wild type strain and the Msp mutant. Together, these results indicate that dentilisin facilitates the crawling-dependent surface spreading of T. denticola.


Assuntos
Peptídeo Hidrolases , Treponema denticola , Proteínas de Bactérias/genética , Quimotripsina , Treponema denticola/genética , Fatores de Virulência/genética
12.
J Bacteriol ; 202(7)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-31932313

RESUMO

The availability of divalent metal cations required as cofactors for microbial metabolism is severely limited in the host environment. Bacteria have evolved highly regulated uptake systems to maintain essential metal homeostasis to meet cellular demands while preventing toxicity. The Tro operon (troABCDR), present in all sequenced Treponema spp., is a member of a highly conserved family of ATP-binding cassette transporters involved in metal cation uptake whose expression is controlled by TroR, a DtxR-like cation-responsive regulatory protein. Transcription of troA responds to divalent manganese and iron (T. denticola) or manganese and zinc (T. pallidum), and metal-dependent TroR binding to the troA promoter represses troA transcription. We report here the construction and complementation of defined T. denticola ΔtroR and ΔtroA strains to characterize (i) the role of TroA in metal-dependent T. denticola growth and (ii) the role of TroR in T. denticola gene expression. We show that TroA expression is required for T. denticola growth under iron- and manganese-limited conditions. Furthermore, TroR is required for the transcriptional regulation of troA in response to iron or manganese, and deletion of troR results in significant differential expression of more than 800 T. denticola genes in addition to troA These results suggest that (i) TroA-mediated cation uptake is important in metal homeostasis in vitro and may be important for Treponema survival in the host environment and (ii) the absence of TroR results in significant dysregulation of nearly one-third of the T. denticola genome. These effects may be direct (as with troA) or indirect due to dysregulation of metal homeostasis.IMPORTANCETreponema denticola is one of numerous host-associated spirochetes, a group including commensals, pathobionts, and at least one frank pathogen. While most T. denticola research concerns its role in periodontitis, its relative tractability for growth and genetic manipulation make it a useful model for studying Treponema physiology, metabolism, and host-microbe interactions. Metal micronutrient acquisition and homeostasis are highly regulated both in microbial cells and by host innate defense mechanisms that severely limit metal cation bioavailability. Here, we characterized the T. denticolatroABCDR operon, the role of TroA-mediated iron and manganese uptake in growth, and the effects of TroR on global gene expression. This study contributes to our understanding of the mechanisms involved in cellular metal homeostasis required for survival in the host environment.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Treponema denticola/crescimento & desenvolvimento , Treponema denticola/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Cátions/metabolismo , Teste de Complementação Genética , Mutagênese , Óperon , Transcrição Gênica
13.
Microb Pathog ; 144: 104193, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32304795

RESUMO

Periodontitis is an infectious inflammatory disease resulting from infection of biofilm forming bacteria. Several bacterial factors regulate inflammatory response and cause to tissue damage and loss of connection between gingival and tooth. Since bacterial virulence factors and also host immune responses have role, understanding of periodontal disease is complex, in overall we can say that in this disease epithelium is deleted by bacteria. Oral spirochetes are related to periodontitis, among them, Treponema denticola, have been associated with periodontal diseases such as early-onset periodontitis, necrotizing ulcerative gingivitis, and acute pericoronitis. This review will analyse mechanisms of pathogenesis of spirochetes in periodontitis. Microorganisms cause destruction of gingival tissue by two mechanisms. In one, damage results from the direct action of bacterial enzymes and cytotoxic products of bacterial metabolism. In the other, only bacterial components have role, and tissue destruction is the inevitable side effect of a subverted and exaggerated host inflammatory response to plaque antigens.


Assuntos
Periodontite/microbiologia , Spirochaetales/classificação , Spirochaetales/patogenicidade , Adesinas Bacterianas , Periodontite Agressiva , Proteínas de Bactérias , Toxinas Bacterianas , Gengiva/microbiologia , Lipopolissacarídeos , Lipoproteínas , Spirochaetales/genética , Treponema denticola/genética , Treponema denticola/patogenicidade , Fatores de Virulência/genética
14.
Cell Microbiol ; 21(2): e12886, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29935042

RESUMO

FlaG homologue has been found in several bacteria including spirochetes; however, its function is poorly characterised. In this report, we investigated the role of TDE1473, a putative FlaG, in the spirochete Treponema denticola, a keystone pathogen of periodontitis. TDE1473 resides in a large gene operon that is controlled by a σ70 -like promoter and encodes a putative FlaG protein of 123 amino acids. TDE1473 can be detected in the periplasmic flagella (PFs) of T. denticola, suggesting that it is a flagella-associated protein. Consistently, in vitro studies demonstrate that the recombinant TDE1473 interacts with the PFs in a dose-dependent manner and that such an interaction requires FlaA, a flagellar filament sheath protein. Deletion of TDE1473 leads to long and less motile mutant cells. Cryo-electron tomography analysis reveal that the wild-type cells have 2-3 PFs with nearly homogenous lengths (ranging from 3 to 6 µm), whereas the mutant cells have less intact PFs with disparate lengths (ranging from 0.1 to 9 µm). The phenotype of T. denticola TDE1473 mutant reported here is different from its counterparts in other bacteria, which provides insight into further understanding the role of FlaG in the regulation of bacterial cell morphogenesis and flagellation.


Assuntos
Proteínas de Bactérias/genética , Flagelos/genética , Treponema denticola/genética , Treponema denticola/patogenicidade , Sequência de Aminoácidos , Periodontite/microbiologia , Regiões Promotoras Genéticas/genética
15.
Anaerobe ; 62: 102170, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32044394

RESUMO

Treponema denticola is a spirochete that is etiologic for periodontal diseases. This bacterium is one of two periodontal pathogens that have been shown to have a complete three step enzymatic pathway (GTSP) that catabolizes glutathione to H2S. This pathway may contribute to the tissue pathology seen in periodontitis since diseased periodontal pockets have lower glutathione levels than healthy sites with a concomitant increase in H2S concentration. In order to be able to demonstrate that glutathione catabolism by the GTSP is critical for the pathogenic potential of T. denticola, allelic replacement mutagenesis was used to make a deletion mutant (Δggt) in the gene encoding the first enzyme in the GTSP. The mutant cannot produce H2S from glutathione since it lacks gamma-glutamyltransferase (GGT) activity. The hemolytic and hemoxidation activities of wild type T. denticola plus glutathione are reduced to background levels with the Δggt mutant and the mutant has lost the ability to grow aerobically when incubated with glutathione. The Δggt bacteria with glutathione cause less cell death in human gingival fibroblasts (hGFs) in vitro than do wild type T. denticola and the levels of hGF death correlate with the amounts of H2S produced. Importantly, the mutant spirochetes plus glutathione make significantly smaller lesions than wild type bacteria plus glutathione in a mouse back lesion model that assesses soft tissue destruction, a major symptom of periodontal diseases. Our results are the first to prove that T. denticola thiol-compound catabolism by its gamma-glutamyltransferase can play a significant role in the in the types of host tissue damage seen in periodontitis.


Assuntos
Glutationa/metabolismo , Infecções por Bactérias Gram-Negativas/microbiologia , Treponema denticola/metabolismo , Treponema denticola/patogenicidade , Biomarcadores , Fibroblastos , Genes Bacterianos , Hemólise , Humanos , Mutação , Treponema denticola/genética , Virulência
16.
Anaerobe ; 64: 102231, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32603680

RESUMO

Treponema denticola is a spirochete that is involved in causing periodontal diseases. This bacterium can produce H2S from thiol compounds found in the gingival crevicular fluid. Determining how H2S is made by oral bacteria is important since this molecule is present at high levels in periodontally-diseased pockets and the biological effects of H2S can explain some of the pathologies seen in periodontitis. Thus, it is of interest to identify the enzyme, or enzymes, involved in the synthesis of H2S by T. denticola. We, and others, have previously identified and characterized a T. denticola cystalysin, called HlyA, which hydrolyzes cysteine into H2S (and pyruvate and ammonia). However, there have been no studies to show that HlyA is, or is not, the only pathway that T. denticola can use to make H2S. To address this question, allelic replacement mutagenesis was used to make a deletion mutant (ΔhlyA) in the gene encoding HlyA. The mutant produces the same amount of H2S from cysteine as do wild type spirochetes, indicating that T. denticola has at least one other enzyme that can generate H2S from cysteine. To identify candidates for this other enzyme, a BLASTp search of T. denticola strain 33520 was done. There was one gene that encoded an HlyA homolog so we named it HlyB. Recombinant His-tagged HlyB was expressed in E. coli and partially purified. This enzyme was able to make H2S from cysteine in vitro. To test the role of HlyB in vivo, an HlyB deletion mutant (ΔhlyB) was constructed in T. denticola. This mutant still made normal levels of H2S from cysteine, but a strain mutated in both hly genes (ΔhlyA ΔhlyB) synthesizes significantly less H2S from cysteine. We conclude that the HlyA and HlyB enzymes perform redundant functions in vivo and are the major contributors to H2S production in T. denticola. However, at least one other enzyme can still convert cysteine to H2S in the ΔhlyA ΔhlyB mutant. An in silico analysis that identifies candidate genes for this other enzyme is presented.


Assuntos
Cistationina gama-Liase/metabolismo , Cisteína/metabolismo , Sulfeto de Hidrogênio/metabolismo , Treponema denticola/enzimologia , Treponema denticola/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , DNA Bacteriano/genética , Humanos , Mutação , Periodontite/microbiologia , Proteínas Recombinantes/metabolismo
17.
J Bacteriol ; 201(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30373754

RESUMO

Treponema denticola, one of several recognized periodontal pathogens, is a model organism for studying Treponema physiology and host-microbe interactions. Its major surface protein Msp (or MOSP) comprises an oligomeric outer membrane-associated complex that binds fibronectin, has cytotoxic pore-forming activity, and disrupts several intracellular responses. There are two hypotheses regarding native Msp structure and membrane topology. One hypothesis predicts that the entire Msp protein forms a ß-barrel structure similar to that of well-studied outer membrane porins of Gram-negative bacteria. The second hypothesis predicts a bipartite Msp with distinct and separate periplasmic N-terminal and porin-like ß-barrel C-terminal domains. The bipartite model, based on bioinformatic analysis of the orthologous Treponema pallidum Tpr proteins, is supported largely by studies of recombinant TprC and Msp polypeptides. The present study reports immunological studies in both T. denticola and Escherichia coli backgrounds to identify a prominent Msp surface epitope (residues 229 to 251 in ATCC 35405) in a domain that differs between strains with otherwise highly conserved Msps. These results were then used to evaluate a series of in silico structural models of representative T. denticola Msps. The data presented here are consistent with a model of Msp as a large-diameter ß-barrel porin. This work adds to the knowledge regarding the diverse Msp-like proteins in oral treponemes and may contribute to an understanding of the evolutionary and potential functional relationships between Msps of oral Treponema and the orthologous group of Tpr proteins of T. pallidum.IMPORTANCETreponema denticola is among a small subset of the oral microbiota contributing to severe periodontal disease. Due to its relative genetic tractability, T. denticola is a model organism for studying Treponema physiology and host-microbe interactions. T. denticola Msp is a highly expressed outer membrane-associated oligomeric protein that binds fibronectin, has cytotoxic pore-forming activity, and disrupts intracellular regulatory pathways. It shares homology with the orthologous group of T. pallidum Tpr proteins, one of which is implicated in T. pallidum in vivo antigenic variation. The outer membrane topologies of both Msp and the Tpr family proteins are unresolved, with conflicting reports on protein domain localization and function. In this study, we combined empirical immunological data derived both from diverse T. denticola strains and from recombinant Msp expression in E. coli with in silico predictive structural modeling of T. denticola Msp membrane topology, to move toward resolution of this important issue in Treponema biology.


Assuntos
Proteínas de Bactérias/química , Proteínas de Membrana/química , Porinas/química , Treponema denticola/enzimologia , Proteínas de Bactérias/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Membrana/genética , Modelos Moleculares , Porinas/genética , Conformação Proteica , Treponema denticola/genética
18.
Microb Pathog ; 135: 103661, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31400445

RESUMO

Treponema (T.) denticola is one of the key etiological agents in the development of periodontitis. The major outer sheath protein (Msp) of T. denticola has been shown to mediate pathogenesis and to facilitate adhesion of T. denticola to mucosal surfaces. This study aimed to find short polypeptides in the amino acid sequence of Msp which may be immunogenic and might elicit protective antisera against T. denticola. The complete msp sequence was divided into six fragments and the corresponding genes were cloned and expressed. Antisera against the polypeptides were raised in rabbits and fragment 3 (F3), hereinafter called PerioVax3 was the most potent fragment of the Msp in terms of yielding high titer antiserum. An adhesion assay was done to examine the inhibitory effects of antisera on the attachment of T. denticola to human gingival fibroblasts (HGFs) and human fibronectin. Antiserum against PerioVax3 significantly inhibited attachment of T. denticola to the substratum. Also, antiserum against PerioVax3 inhibited detachment of HGFs upon T. denticola exposure. To begin examining the clinical relevance of this work, blood samples from 12 sever periodontitis patients were collected and the sera were used in western blotting against the recombinant polypeptides. Periodontitis patient antisera exclusively detected PerioVax3 in western blotting. The data suggest that PerioVax3 carries epitopes that may trigger humoral immunity against T. denticola, which may protect against its adhesion functions. The complexity of periodontitis suggests that PerioVax3 may be considered for testing as a component of an experimental multivalent periodontal vaccine in further preclinical and clinical studies.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Epitopos/imunologia , Periodontite/imunologia , Treponema denticola/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/farmacologia , Antígenos de Bactérias/sangue , Antígenos de Bactérias/genética , Aderência Bacteriana/efeitos dos fármacos , Aderência Bacteriana/imunologia , Proteínas da Membrana Bacteriana Externa/sangue , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas de Bactérias/genética , Linhagem Celular , Clonagem Molecular , Modelos Animais de Doenças , Fibroblastos , Fibronectinas , Humanos , Masculino , Periodontite/sangue , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Treponema denticola/genética , Vacinas , Fatores de Virulência/imunologia
19.
Curr Top Microbiol Immunol ; 415: 39-62, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29026924

RESUMO

The oral microbiome consists of a remarkably diverse group of 500-700 bacterial species. The microbial etiology of periodontal disease is similarly complex. Of the ~400 bacterial species identified in subgingival plaque, at least 50 belong to the genus Treponema. As periodontal disease develops and progresses, T. denticola transitions from a low to high abundance species in the subgingival crevice. Changes in the overall composition of the bacterial population trigger significant changes in the local physical, immunological and physiochemical conditions. For T. denticola to thrive in periodontal pockets, it must be nimble and adapt to rapidly changing environmental conditions. The purpose of this chapter is to review the current understanding of the molecular basis of these essential adaptive responses, with a focus on the role of two component regulatory systems with global regulatory potential.


Assuntos
Regulação Bacteriana da Expressão Gênica , Treponema denticola/genética , Humanos , Doenças Periodontais/microbiologia , Bolsa Periodontal/microbiologia
20.
Biomed Microdevices ; 22(1): 5, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31823015

RESUMO

The reasons for restricting continuous flow polymerase chain reaction (CF-PCR) microfluidic chip from lab to application are that it is not portable and requires costly external precision pumps for sample injection. Herein, we employed water as the substitute for PCR solution, and investigated the effect of the cross-section, width-to-depth ratio, and the length ratio for three temperature zones of the micro channel on the thermal and flow distribution of fluid in micro tube by finite element analysis. Results show that the central velocity is uniform and stable velocity occupies the most if the cross-section is rectangular. The deviation between predefined temperature and theoretical temperature is slight and the fluid flux is the most if width-to-depth ratio is 1:1. It is suitable for the short DNA replication if the high temperature zone Wh is larger than the low temperature zone Wl, and vice versa. Then a portable CF-PCR microfluidic chip was fabricated and an automatic sample injection system was developed. As an application, we have successfully amplified the DNA of Treponema denticola in the chip within 8 min. Such a study may offer new insight into the design of CF-PCR microfluidic chip and promote it from lab-scale research to full-scale application.


Assuntos
Replicação do DNA , Desenho de Equipamento , Dispositivos Lab-On-A-Chip , Reação em Cadeia da Polimerase/instrumentação , DNA Bacteriano/genética , Temperatura , Treponema denticola/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA