Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Astrobiology ; 24(4): 423-441, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38563825

RESUMO

The possible existence of a microbial community in the venusian clouds is one of the most intriguing hypotheses in modern astrobiology. Such a community must be characterized by a high survivability potential under severe environmental conditions, the most extreme of which are very low pH levels and water activity. Considering different scenarios for the origin of life and geological history of our planet, a few of these scenarios are discussed in the context of the origin of hypothetical microbial life within the venusian cloud layer. The existence of liquid water on the surface of ancient Venus is one of the key outstanding questions influencing this possibility. We link the inherent attributes of microbial life as we know it that favor the persistence of life in such an environment and review the possible scenarios of life's origin and its evolution under a strong greenhouse effect and loss of water on Venus. We also propose a roadmap and describe a novel methodological approach for astrobiological research in the framework of future missions to Venus with the intent to reveal whether life exists today on the planet.


Assuntos
Vênus , Planetas , Exobiologia , Água/química
2.
Astrobiology ; 24(4): 407-422, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603526

RESUMO

Recent ground-based observations of Venus have detected a single spectral feature consistent with phosphine (PH3) in the middle atmosphere, a gas which has been suggested as a biosignature on rocky planets. The presence of PH3 in the oxidized atmosphere of Venus has not yet been explained by any abiotic process. However, state-of-the-art experimental and theoretical research published in previous works demonstrated a photochemical origin of another potential biosignature-the hydride methane-from carbon dioxide over acidic mineral surfaces on Mars. The production of methane includes formation of the HC · O radical. Our density functional theory (DFT) calculations predict an energetically plausible reaction network leading to PH3, involving either HC · O or H· radicals. We suggest that, similarly to the photochemical formation of methane over acidic minerals already discussed for Mars, the origin of PH3 in Venus' atmosphere could be explained by radical chemistry starting with the reaction of ·PO with HC·O, the latter being produced by reduction of CO2 over acidic dust in upper atmospheric layers of Venus by ultraviolet radiation. HPO, H2P·O, and H3P·OH have been identified as key intermediate species in our model pathway for phosphine synthesis.


Assuntos
Fosfinas , Vênus , Meio Ambiente Extraterreno , Raios Ultravioleta , Processos Fotoquímicos , Atmosfera , Metano
3.
Astrobiology ; 24(6): 628-634, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38800952

RESUMO

An enduring question in astrobiology is how we assess extraterrestrial environments as being suitable for life. We suggest that the most reliable assessments of the habitability of extraterrestrial environments are made with respect to the empirically determined limits to known life. We discuss qualitatively distinct categories of habitability: empirical habitability that is constrained by the observed limits to biological activity; habitability sensu stricto, which is defined with reference to the known or unknown limits to the activity of all known organisms; and habitability sensu lato (habitability in the broadest sense), which is circumscribed by the limit of all possible life in the universe, which is the most difficult (and perhaps impossible) to determine. We use the cloud deck of Venus, which is temperate but incompatible with known life, as an example to elaborate and hypothesize on these limits.


Assuntos
Exobiologia , Meio Ambiente Extraterreno , Vênus , Exobiologia/métodos , Vida
4.
Astrobiology ; 24(4): 386-396, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38498680

RESUMO

Scientists have long speculated about the potential habitability of Venus, not at the 700K surface, but in the cloud layers located at 48-60 km altitudes, where temperatures match those found on Earth's surface. However, the prevailing belief has been that Venus' clouds cannot support life due to the cloud chemical composition of concentrated sulfuric acid-a highly aggressive solvent. In this work, we study 20 biogenic amino acids at the range of Venus' cloud sulfuric acid concentrations (81% and 98% w/w, the rest water) and temperatures. We find 19 of the biogenic amino acids we tested are either unreactive (13 in 98% w/w and 12 in 81% w/w) or chemically modified in the side chain only, after 4 weeks. Our major finding, therefore, is that the amino acid backbone remains intact in concentrated sulfuric acid. These findings significantly broaden the range of biologically relevant molecules that could be components of a biochemistry based on a concentrated sulfuric acid solvent.


Assuntos
Vênus , Aminoácidos , Atmosfera/química , Solventes , Ácidos Sulfúricos/química
5.
Astrobiology ; 24(4): 343-370, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38452176

RESUMO

Long-standing unexplained Venus atmosphere observations and chemical anomalies point to unknown chemistry but also leave room for the possibility of life. The unexplained observations include several gases out of thermodynamic equilibrium (e.g., tens of ppm O2, the possible presence of PH3 and NH3, SO2 and H2O vertical abundance profiles), an unknown composition of large, lower cloud particles, and the "unknown absorber(s)." Here we first review relevant properties of the venusian atmosphere and then describe the atmospheric chemical anomalies and how they motivate future astrobiology missions to Venus.


Assuntos
Vênus , Exobiologia , Meio Ambiente Extraterreno , Gases/química , Atmosfera/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA