Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 19.927
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 40: 271-294, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35080919

RESUMO

Vertebrate immune systems suppress viral infection using both innate restriction factors and adaptive immunity. Viruses mutate to escape these defenses, driving hosts to counterevolve to regain fitness. This cycle recurs repeatedly, resulting in an evolutionary arms race whose outcome depends on the pace and likelihood of adaptation by host and viral genes. Although viruses evolve faster than their vertebrate hosts, their proteins are subject to numerous functional constraints that impact the probability of adaptation. These constraints are globally defined by evolutionary landscapes, which describe the fitness and adaptive potential of all possible mutations. We review deep mutational scanning experiments mapping the evolutionary landscapes of both host and viral proteins engaged in arms races. For restriction factors and some broadly neutralizing antibodies, landscapes favor the host, which may help to level the evolutionary playing field against rapidly evolving viruses. We discuss the biophysical underpinnings of these landscapes and their therapeutic implications.


Assuntos
Viroses , Vírus , Animais , Evolução Biológica , Humanos , Mutação , Proteínas Virais , Viroses/genética , Vírus/genética
2.
Annu Rev Immunol ; 38: 511-539, 2020 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-32340578

RESUMO

The continuous interactions between host and pathogens during their coevolution have shaped both the immune system and the countermeasures used by pathogens. Natural killer (NK) cells are innate lymphocytes that are considered central players in the antiviral response. Not only do they express a variety of inhibitory and activating receptors to discriminate and eliminate target cells but they can also produce immunoregulatory cytokines to alert the immune system. Reciprocally, several unrelated viruses including cytomegalovirus, human immunodeficiency virus, influenza virus, and dengue virus have evolved a multitude of mechanisms to evade NK cell function, such as the targeting of pathways for NK cell receptors and their ligands, apoptosis, and cytokine-mediated signaling. The studies discussed in this article provide further insights into the antiviral function of NK cells and the pathways involved, their constituent proteins, and ways in which they could be manipulated for host benefit.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Evasão da Resposta Imune , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Vírus/imunologia , Animais , Biomarcadores , Citocinas/metabolismo , Humanos , Receptores de Células Matadoras Naturais/metabolismo , Transdução de Sinais , Viroses/imunologia , Viroses/metabolismo , Viroses/virologia
3.
Annu Rev Immunol ; 36: 667-694, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29677479

RESUMO

Pattern recognition receptors (PRRs) survey intra- and extracellular spaces for pathogen-associated molecular patterns (PAMPs) within microbial products of infection. Recognition and binding to cognate PAMP ligand by specific PRRs initiates signaling cascades that culminate in a coordinated intracellular innate immune response designed to control infection. In particular, our immune system has evolved specialized PRRs to discriminate viral nucleic acid from host. These are critical sensors of viral RNA to trigger innate immunity in the vertebrate host. Different families of PRRs of virus infection have been defined and reveal a diversity of PAMP specificity for wide viral pathogen coverage to recognize and extinguish virus infection. In this review, we discuss recent insights in pathogen recognition by the RIG-I-like receptors, related RNA helicases, Toll-like receptors, and other RNA sensor PRRs, to present emerging themes in innate immune signaling during virus infection.


Assuntos
Proteína DEAD-box 58/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Viroses/etiologia , Viroses/metabolismo , Vírus/imunologia , Animais , RNA Helicases DEAD-box/metabolismo , Humanos , Processamento de Proteína Pós-Traducional , RNA Helicases/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Receptores Imunológicos , Transdução de Sinais , Receptores Toll-Like/metabolismo
4.
Cell ; 186(10): 2041-2043, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37172560

RESUMO

Viruses and multinucleated cells rely on fusogens to facilitate the fusion of their membranes. In this issue of Cell, Millay and colleagues demonstrate that replacing viral fusogens with mammalian skeletal muscle fusogens leads to the specific transduction of skeletal muscle and the ability to deliver gene therapy constructs in a therapeutically relevant muscle disease.


Assuntos
Terapia Genética , Músculo Esquelético , Vírus , Animais , Fusão Celular , Mamíferos
5.
Cell ; 186(5): 957-974.e28, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36812912

RESUMO

Bats are distinctive among mammals due to their ability to fly, use laryngeal echolocation, and tolerate viruses. However, there are currently no reliable cellular models for studying bat biology or their response to viral infections. Here, we created induced pluripotent stem cells (iPSCs) from two species of bats: the wild greater horseshoe bat (Rhinolophus ferrumequinum) and the greater mouse-eared bat (Myotis myotis). The iPSCs from both bat species showed similar characteristics and had a gene expression profile resembling that of cells attacked by viruses. They also had a high number of endogenous viral sequences, particularly retroviruses. These results suggest that bats have evolved mechanisms to tolerate a large load of viral sequences and may have a more intertwined relationship with viruses than previously thought. Further study of bat iPSCs and their differentiated progeny will provide insights into bat biology, virus host relationships, and the molecular basis of bats' special traits.


Assuntos
Quirópteros , Células-Tronco Pluripotentes , Viroses , Vírus , Animais , Vírus/genética , Transcriptoma , Filogenia
6.
Cell ; 186(9): 2040-2040.e1, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37116474

RESUMO

Farmed mammals may act as hosts for zoonotic viruses that can cause disease outbreaks in humans. This SnapShot shows which farmed mammals, and to what extent, are of particular risk of harboring and spreading viruses from viral families that are commonly associated with zoonotic disease. It also discusses genome surveillance methods and biosafety measures. To view this SnapShot, open or download the PDF.


Assuntos
Vírus , Zoonoses , Animais , Humanos , Mamíferos , Surtos de Doenças , Medição de Risco
7.
Cell ; 186(17): 3642-3658.e32, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37437570

RESUMO

A system for programmable export of RNA molecules from living cells would enable both non-destructive monitoring of cell dynamics and engineering of cells capable of delivering executable RNA programs to other cells. We developed genetically encoded cellular RNA exporters, inspired by viruses, that efficiently package and secrete cargo RNA molecules from mammalian cells within protective nanoparticles. Exporting and sequencing RNA barcodes enabled non-destructive monitoring of cell population dynamics with clonal resolution. Further, by incorporating fusogens into the nanoparticles, we demonstrated the delivery, expression, and functional activity of exported mRNA in recipient cells. We term these systems COURIER (controlled output and uptake of RNA for interrogation, expression, and regulation). COURIER enables measurement of cell dynamics and establishes a foundation for hybrid cell and gene therapies based on cell-to-cell delivery of RNA.


Assuntos
Técnicas Citológicas , Técnicas Genéticas , RNA , Animais , Transporte Biológico , Mamíferos/metabolismo , RNA/genética , RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vírus/genética , Tipagem Molecular , Análise de Sequência de RNA
8.
Cell ; 184(6): 1604-1620, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33740455

RESUMO

Historically, emerging viruses appear constantly and have cost millions of human lives. Currently, climate change and intense globalization have created favorable conditions for viral transmission. Therefore, effective antivirals, especially those targeting the conserved protein in multiple unrelated viruses, such as the compounds targeting RNA-dependent RNA polymerase, are urgently needed to combat more emerging and re-emerging viruses in the future. Here we reviewed the development of antivirals with common targets, including those against the same protein across viruses, or the same viral function, to provide clues for development of antivirals for future epidemics.


Assuntos
Antivirais/uso terapêutico , Doenças Transmissíveis Emergentes/tratamento farmacológico , Doenças Transmissíveis Emergentes/epidemiologia , Terapia de Alvo Molecular/métodos , Pandemias , Viroses/tratamento farmacológico , Viroses/epidemiologia , Vírus/enzimologia , Animais , Antivirais/farmacologia , Doenças Transmissíveis Emergentes/virologia , Humanos , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas do Envelope Viral/antagonistas & inibidores , Viroses/virologia , Internalização do Vírus/efeitos dos fármacos
9.
Annu Rev Biochem ; 89: 309-332, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32186918

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) together with their accompanying cas (CRISPR-associated) genes are found frequently in bacteria and archaea, serving to defend against invading foreign DNA, such as viral genomes. CRISPR-Cas systems provide a uniquely powerful defense because they can adapt to newly encountered genomes. The adaptive ability of these systems has been exploited, leading to their development as highly effective tools for genome editing. The widespread use of CRISPR-Cas systems has driven a need for methods to control their activity. This review focuses on anti-CRISPRs (Acrs), proteins produced by viruses and other mobile genetic elements that can potently inhibit CRISPR-Cas systems. Discovered in 2013, there are now 54 distinct families of these proteins described, and the functional mechanisms of more than a dozen have been characterized in molecular detail. The investigation of Acrs is leading to a variety of practical applications and is providing exciting new insight into the biology of CRISPR-Cas systems.


Assuntos
Sistemas CRISPR-Cas/efeitos dos fármacos , Edição de Genes/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Virais/genética , Vírus/genética , Archaea/genética , Archaea/imunologia , Archaea/virologia , Bactérias/genética , Bactérias/imunologia , Bactérias/virologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Coevolução Biológica , Proteínas Associadas a CRISPR/antagonistas & inibidores , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , DNA/antagonistas & inibidores , DNA/química , DNA/genética , DNA/metabolismo , Clivagem do DNA/efeitos dos fármacos , Endodesoxirribonucleases/antagonistas & inibidores , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Humanos , Modelos Moleculares , Família Multigênica , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais/farmacologia , Vírus/metabolismo , Vírus/patogenicidade
10.
Cell ; 182(1): 5-6, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32649879

RESUMO

Increasingly, cyclic nucleotide second messengers are implicated in antiviral defense systems in bacteria and archaea as well as in eukaryotes. In this issue of Cell, Lowey et al. describe SAVED-a widespread, uncharacterized cyclic nucleotide sensor protein domain that activates cell defense systems. The structure of SAVED reveals links to the CRISPR system, which also generates cyclic nucleotides in response to viral infection.


Assuntos
Bacteriófagos , Vírus , Archaea/genética , Bactérias/genética , Bacteriófagos/genética , Oligonucleotídeos , Vírus/genética
11.
Cell ; 182(3): 786-786.e1, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32763187

RESUMO

In order to initiate successful infection, viruses have to transmit and deliver their genome from one host cell or organism to another. To achieve this, enveloped viruses must first fuse their membrane with those of the target host cell. Here, we describe the sequence of events leading to the entry of representative enveloped viruses, highlighting the strategies they use to gain access to the host cell cytosol.


Assuntos
Endocitose , Endossomos/virologia , Fusão de Membrana , Internalização do Vírus , Vírus/metabolismo , Animais , Endossomos/metabolismo , Humanos , Viroses/enzimologia , Viroses/metabolismo , Vírus/genética
12.
Cell ; 182(4): 787-789, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32730810

RESUMO

Rosalind Franklin provided the key data for deriving the double helix structure of DNA. The English chemist also pioneered structural studies of colloids, viruses, and RNA. To celebrate the 100th anniversary of Franklin's birth, I summarize her work, which shaped the emerging discipline of molecular biology.


Assuntos
Biologia Molecular/história , Biografias como Assunto , DNA/química , História do Século XX , RNA/química , Vírus/química , Difração de Raios X
13.
Cell ; 181(5): 1046-1061.e6, 2020 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-32392465

RESUMO

Since their discovery, giant viruses have expanded our understanding of the principles of virology. Due to their gargantuan size and complexity, little is known about the life cycles of these viruses. To answer outstanding questions regarding giant virus infection mechanisms, we set out to determine biomolecular conditions that promote giant virus genome release. We generated four infection intermediates in Samba virus (Mimivirus genus, lineage A) as visualized by cryoelectron microscopy (cryo-EM), cryoelectron tomography (cryo-ET), and scanning electron microscopy (SEM). Each of these four intermediates reflects similar morphology to a stage that occurs in vivo. We show that these genome release stages are conserved in other mimiviruses. Finally, we identified proteins that are released from Samba and newly discovered Tupanvirus through differential mass spectrometry. Our work revealed the molecular forces that trigger infection are conserved among disparate giant viruses. This study is also the first to identify specific proteins released during the initial stages of giant virus infection.


Assuntos
Vírus Gigantes/genética , Vírus Gigantes/metabolismo , Vírus Gigantes/fisiologia , Capsídeo/metabolismo , Vírus de DNA/genética , Genoma Viral/genética , Proteômica/métodos , Montagem de Vírus/genética , Montagem de Vírus/fisiologia , Viroses/genética , Vírus/genética
14.
Annu Rev Cell Dev Biol ; 37: 171-197, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34270326

RESUMO

Viral egress and transmission have long been described to take place through single free virus particles. However, viruses can also shed into the environment and transmit as populations clustered inside extracellular vesicles (EVs), a process we had first called vesicle-mediated en bloc transmission. These membrane-cloaked virus clusters can originate from a variety of cellular organelles including autophagosomes, plasma membrane, and multivesicular bodies. Their viral cargo can be multiples of nonenveloped or enveloped virus particles or even naked infectious genomes, but egress is always nonlytic, with the cell remaining intact. Here we put forth the thesis that EV-cloaked viral clusters are a distinct form of infectious unit as compared to free single viruses (nonenveloped or enveloped) or even free virus aggregates. We discuss how efficient and prevalent these infectious EVs are in the context of virus-associated diseases and highlight the importance of their proper detection and disinfection for public health.


Assuntos
Vesículas Extracelulares , Vírus , Vesículas Extracelulares/metabolismo , Vírus/genética
15.
Cell ; 177(5): 1084-1085, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100262

RESUMO

The virome is increasingly recognized as a key part of individual cells (as endogenous retroviruses or persistent infection) and multicellular organisms (as either pathogens or commensals) and, as shown by Gregory et al. (2019), as diverse components of ocean ecosystems.


Assuntos
Afogamento , Microbiota , Vírus/genética , DNA , Humanos
16.
Cell ; 178(4): 779-794, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31398336

RESUMO

Metagenomic sequencing is revolutionizing the detection and characterization of microbial species, and a wide variety of software tools are available to perform taxonomic classification of these data. The fast pace of development of these tools and the complexity of metagenomic data make it important that researchers are able to benchmark their performance. Here, we review current approaches for metagenomic analysis and evaluate the performance of 20 metagenomic classifiers using simulated and experimental datasets. We describe the key metrics used to assess performance, offer a framework for the comparison of additional classifiers, and discuss the future of metagenomic data analysis.


Assuntos
Bactérias/classificação , Benchmarking/métodos , Fungos/classificação , Metagenoma/genética , Metagenômica/métodos , Vírus/classificação , Bactérias/genética , Bases de Dados Genéticas , Fungos/genética , Filogenia , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Software , Vírus/genética
17.
Cell ; 174(4): 772-774, 2018 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-30096306

RESUMO

Viruses have evolved inhibitors to counteract the CRISPR immune response, but they are not fully potent and need some time to be expressed after the beginning of infection. In this issue of Cell, Borges et al. and Landsberger et al. show that sequential infection gradually immunosuppresses the host to allow effective CRISPR inhibition.


Assuntos
Bacteriófagos/genética , Vírus/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas
18.
Cell ; 172(6): 1168-1172, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29522738

RESUMO

We know less about viruses than any other lifeform. Fortunately, metagenomics has led to a massive expansion in the known diversity of the virosphere. Here, we discuss how metagenomics has changed our understanding of RNA viruses and present some of the remaining challenges, including characterization of the "dark matter" of divergent viral genomes.


Assuntos
Variação Genética , Genoma Viral/genética , Metagenômica/métodos , Vírus/genética , Evolução Molecular , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus/classificação
19.
Cell ; 172(6): 1319-1334, 2018 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-29522750

RESUMO

Enveloped viruses enter cells by inducing fusion of viral and cellular membranes, a process catalyzed by a specialized membrane-fusion protein expressed on their surface. This review focuses on recent structural studies of viral fusion proteins with an emphasis on their metastable prefusion form and on interactions with neutralizing antibodies. The fusion glycoproteins have been difficult to study because they are present in a labile, metastable form at the surface of infectious virions. Such metastability is a functional requirement, allowing these proteins to refold into a lower energy conformation while transferring the difference in energy to catalyze the membrane fusion reaction. Structural studies have shown that stable immunogens presenting the same antigenic sites as the labile wild-type proteins efficiently elicit potently neutralizing antibodies, providing a framework with which to engineer the antigens for stability, as well as identifying key vulnerability sites that can be used in next-generation subunit vaccine design.


Assuntos
Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , Viroses/imunologia , Vírus/imunologia , Animais , Desenho de Fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Proteínas do Envelope Viral/imunologia , Proteínas Virais de Fusão/imunologia , Proteínas Virais de Fusão/metabolismo , Viroses/virologia , Vírus/metabolismo
20.
Immunity ; 55(11): 1974-1977, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36351371

RESUMO

Bats serve as hosts of viruses that can cause disease in humans. In this issue of Immunity, Gamage et al. characterize the immune cell repertoire in Eonycteris spelaea bat lung tissue using single-cell transcriptomics, providing insight into the in vivo immune response to infection with a Pteropine orthoreovirus (PRV3M) and establishing a paradigm for future comparative immunology studies.


Assuntos
Quirópteros , Vírus , Humanos , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA