Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 97(6): e0041523, 2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37306574

RESUMO

Rift Valley fever virus (RVFV) (family Phenuiviridae) can cause severe disease, and outbreaks of this mosquito-borne pathogen pose a significant threat to public and animal health. Yet many molecular aspects of RVFV pathogenesis remain incompletely understood. Natural RVFV infections are acute, characterized by a rapid onset of peak viremia during the first days post-infection, followed by a rapid decline. Although in vitro studies identified a major role of interferon (IFN) responses in counteracting the infection, a comprehensive overview of the specific host factors that play a role in RVFV pathogenesis in vivo is still lacking. Here, the host in vivo transcriptional profiles in the liver and spleen tissues of lambs exposed to RVFV are studied using RNA sequencing (RNA-seq) technology. We validate that IFN-mediated pathways are robustly activated in response to infection. We also link the observed hepatocellular necrosis with severely compromised organ function, which is reflected as a marked downregulation of multiple metabolic enzymes essential for homeostasis. Furthermore, we associate the elevated basal expression of LRP1 in the liver with RVFV tissue tropism. Collectively, the results of this study deepen the knowledge of the in vivo host response during RVFV infection and reveal new insights into the gene regulation networks underlying pathogenesis in a natural host. IMPORTANCE Rift Valley fever virus (RVFV) is a mosquito-transmitted pathogen capable of causing severe disease in animals and humans. Outbreaks of RVFV pose a significant threat to public health and can result in substantial economic losses. Little is known about the molecular basis of RVFV pathogenesis in vivo, particularly in its natural hosts. We employed RNA-seq technology to investigate genome-wide host responses in the liver and spleen of lambs during acute RVFV infection. We show that RVFV infection drastically decreases the expression of metabolic enzymes, which impairs normal liver function. Moreover, we highlight that basal expression levels of the host factor LRP1 may be a determinant of RVFV tissue tropism. This study links the typical pathological phenotype induced by RVFV infection with tissue-specific gene expression profiles, thereby improving our understanding of RVFV pathogenesis.


Assuntos
Homeostase , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Febre do Vale de Rift/patologia , Vírus da Febre do Vale do Rift/patogenicidade , Ovinos , Transcriptoma , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Fígado , Interações Hospedeiro-Patógeno , Interferons/metabolismo
2.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33597209

RESUMO

The potential for emerging mosquito-borne viruses to cause fetal infection in pregnant women was overlooked until the Zika fever outbreak several years ago. Rift Valley fever virus (RVFV) is an emerging arbovirus with a long history of fetal infection and death in pregnant livestock. The effect of RVFV infection on pregnant women is not well understood. This Gem examines the effects that this important emerging pathogen has during pregnancy, its potential impact on pregnant women, and the current research efforts designed to understand and mitigate adverse effects of RVFV infection during pregnancy.


Assuntos
Surtos de Doenças , Complicações Infecciosas na Gravidez , Febre do Vale de Rift , Vírus da Febre do Vale do Rift/patogenicidade , Animais , Animais Domésticos/virologia , Feminino , Humanos , Gravidez , Complicações Infecciosas na Gravidez/epidemiologia , Complicações Infecciosas na Gravidez/virologia , Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/virologia , Zoonoses Virais/epidemiologia
3.
J Virol ; 95(1)2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33087469

RESUMO

Rift Valley fever virus (RVFV) is a highly pathogenic zoonotic arbovirus endemic in many African countries and the Arabian Peninsula. Animal infections cause high rates of mortality and abortion among sheep, goats, and cattle. In humans, an estimated 1 to 2% of RVFV infections result in severe disease (encephalitis, hepatitis, or retinitis) with a high rate of lethality when associated with hemorrhagic fever. The RVFV NSs protein, which is the main virulence factor, counteracts the host innate antiviral response to favor viral replication and spread. However, the mechanisms underlying RVFV-induced cytopathic effects and the role of NSs in these alterations remain for the most part unknown. In this work, we have analyzed the effects of NSs expression on the actin cytoskeleton while conducting infections with the NSs-expressing virulent (ZH548) and attenuated (MP12) strains of RVFV and the non-NSs-expressing avirulent (ZH548ΔNSs) strain, as well as after the ectopic expression of NSs. In macrophages, fibroblasts, and hepatocytes, NSs expression prevented the upregulation of Abl2 (a major regulator of the actin cytoskeleton) expression otherwise induced by avirulent infections and identified here as part of the antiviral response. The presence of NSs was also linked to an increased mobility of ZH548-infected cells compared to ZH548ΔNSs-infected fibroblasts and to strong changes in cell morphology in nonmigrating hepatocytes, with reduction of lamellipodia, cell spreading, and dissolution of adherens junctions reminiscent of the ZH548-induced cytopathic effects observed in vivo Finally, we show evidence of the presence of NSs within long actin-rich structures associated with NSs dissemination from NSs-expressing toward non-NSs-expressing cells.IMPORTANCE Rift Valley fever virus (RVFV) is a dangerous human and animal pathogen that was ranked by the World Health Organization in 2018 as among the eight pathogens of most concern for being likely to cause wide epidemics in the near future and for which there are no, or insufficient, countermeasures. The focus of this work is to address the question of the mechanisms underlying RVFV-induced cytopathic effects that participate in RVFV pathogenicity. We demonstrate here that RVFV targets cell adhesion and the actin cytoskeleton at the transcriptional and cellular level, affecting cell mobility and inducing cell shape collapse, along with distortion of cell-cell adhesion. All these effects may participate in RVFV-induced pathogenicity, facilitate virulent RVFV dissemination, and thus constitute interesting potential targets for future development of antiviral therapeutic strategies that, in the case of RVFV, as with several other emerging arboviruses, are presently lacking.


Assuntos
Citoesqueleto de Actina/genética , Proteínas Tirosina Quinases/genética , Febre do Vale de Rift/patologia , Vírus da Febre do Vale do Rift/patogenicidade , Proteínas não Estruturais Virais/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Adesão Celular , Linhagem Celular , Movimento Celular , Forma Celular , Interações Hospedeiro-Patógeno , Imunidade Inata , Camundongos , Mutação , Proteínas Tirosina Quinases/metabolismo , Febre do Vale de Rift/metabolismo , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/metabolismo , Proteínas não Estruturais Virais/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Replicação Viral
4.
Vet Pathol ; 57(6): 791-806, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32885745

RESUMO

Infection with Rift Valley fever phlebovirus (RVFV) causes abortion storms and a wide variety of outcomes for both ewes and fetuses. Sheep fetuses and placenta specimens were examined during the 2010-2011 River Valley fever (RVF) outbreak in South Africa. A total of 72 fetuses were studied of which 58 were confirmed positive for RVF. Placenta specimens were available for 35 cases. Macroscopic lesions in fetuses were nonspecific and included marked edema and occasional hemorrhages in visceral organs. Microscopically, multifocal hepatic necrosis was present in 48 of 58 cases, and apoptotic bodies, foci of liquefactive hepatic necrosis (primary foci), and eosinophilic intranuclear inclusions in hepatocytes were useful diagnostic features. Lymphocytolysis was present in all lymphoid organs examined with the exception of thymus and Peyer's patches, and pyknosis or karyorrhexis was often present in renal glomeruli. The most significant histologic lesion in the placenta was necrosis of trophoblasts and endothelial cells in the cotyledonary and intercotyledonary chorioallantois. Immunolabeling for RVFV was most consistent in trophoblasts of the cotyledon or caruncle. Other antigen-positive cells included hepatocytes, renal tubular epithelial, juxtaglomerular and extraglomerular mesangial cells, vascular smooth muscle, endothelial and adrenocortical cells, cardiomyocytes, Purkinje fibers, and macrophages. Fetal organ samples for diagnosis must minimally include liver, kidney, and spleen. From the placenta, the minimum recommended specimens for histopathology include the cotyledonary units and caruncles from the endometrium, if available. The diagnostic investigation of abortion in endemic areas should always include routine testing for RVFV, and a diagnosis during interepidemic periods might be missed if only limited specimens are available for examination.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Doenças dos Ovinos , Animais , Anticorpos Antivirais , Células Endoteliais , Feminino , Feto , Placenta , Gravidez , Vírus da Febre do Vale do Rift/patogenicidade , Ovinos , África do Sul , Tropismo
5.
J Virol ; 92(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30258000

RESUMO

Rift Valley fever virus (RVFV) is an arbovirus that causes disease in livestock and humans in Africa and the Middle East. While human disease is typically mild and self-limiting, some individuals develop severe manifestations, such as hepatitis, hemorrhagic fever, or encephalitis. Encephalitis occurs 2 to 3 weeks after acute illness; therefore, we hypothesized that it was a result of an inadequate adaptive immunity. To test this hypothesis in vivo, we used an attenuated virus (DelNSsRVFV) that does not typically cause disease in mice. We first characterized the normal immune response to infection with DelNSsRVFV in immunocompetent mice and noted expansion of natural killer cells and monocytes, as well as activation of both CD8 and CD4 T cells. Depleting C57BL/6 mice of CD4 T cells prior to DelNSsRVFV infection resulted in encephalitis in 30% of the mice; in encephalitic mice, we noted infiltration of T cells and inflammatory monocytes into the brain. CD4 and CD8 codepletion in C57BL/6 mice, as well as CD4 depletion in CCR2 knockout mice, increased the frequency of encephalitis, demonstrating that these cell types normally contributed to the prevention of disease. Encephalitic mice had similar viral RNA loads in the brain regardless of which cell types were depleted, suggesting that CD4 T cells, CD8 T cells, and inflammatory monocytes did little to control viral replication in the brain. CD4-depleted mice exhibited diminished humoral and T cell memory responses, suggesting that these immune mechanisms contributed to peripheral control of virus, thus preventing infection of the brain.IMPORTANCE RVFV is found in Africa and the Middle East and is transmitted by mosquitos or through contact with infected animals. Infected individuals can develop mild disease or more severe forms, such as hepatitis or encephalitis. In order to understand why some individuals develop encephalitis, we first need to know which immune functions protect those who do not develop this form of disease. In this study, we used a mouse model of RVFV infection to demonstrate that CD4 T cells, CD8 T cells, and monocytes all contribute to prevention of encephalitis. Their likely mechanism of action is preventing RVFV from ever reaching the brain.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Encefalite Viral/prevenção & controle , Monócitos/metabolismo , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologia , Animais , Encéfalo/imunologia , Encéfalo/virologia , Encefalite Viral/imunologia , Imunidade Humoral , Imunidade Inata , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CCR2/genética , Febre do Vale de Rift/imunologia , Vírus da Febre do Vale do Rift/patogenicidade
6.
Virus Genes ; 55(1): 1-11, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30426314

RESUMO

Rift Valley fever phlebovirus (RVFV) is a mosquito-transmitted pathogen endemic to sub-Saharan Africa and the Arabian Peninsula. RVFV is a threat to both animal and human health and has costly economic consequences mainly related to livestock production and trade. Competent hosts and vectors for RVFV are widespread, existing outside of endemic countries including the USA. Thus, the possibility of RVFV spreading to the USA or other countries worldwide is of significant concern. RVFV (genus Phlebovirus) is comprised of an enveloped virion containing a three-segmented, negative-stranded RNA genome that is able to undergo genetic reassortment. Reassortment has the potential to produce viruses that are more pathogenic, easily transmissible, and that have wider vector or host range. This is especially concerning because of the wide use of live attenuated vaccine strains throughout endemic countries. This review focuses on the molecular aspects of RVFV, genetic diversity of RVFV strains, and RVFV reassortment.


Assuntos
Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/virologia , Vírus Reordenados , Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/classificação , Vírus da Febre do Vale do Rift/genética , Animais , Doenças Transmissíveis Emergentes/transmissão , Variação Genética , Genoma Viral , Interações Hospedeiro-Patógeno , Humanos , Estágios do Ciclo de Vida , RNA Viral , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/patogenicidade , Virulência , Replicação Viral
7.
Emerg Infect Dis ; 24(9): 1717-1719, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30124402

RESUMO

Rift Valley fever virus, a zoonotic arbovirus, poses major health threats to livestock and humans if introduced into the United States. White-tailed deer, which are abundant throughout the country, might be sentinel animals for arboviruses. We determined the susceptibility of these deer to this virus and provide evidence for a potentially major epidemiologic role.


Assuntos
Cervos , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/patogenicidade , Animais , Animais Selvagens , Masculino , Virulência , Zoonoses/prevenção & controle
8.
J Virol ; 90(13): 6140-7, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27122577

RESUMO

UNLABELLED: Rift Valley fever virus (RVFV, family Bunyaviridae, genus Phlebovirus) is a relevant pathogen of both humans and livestock in Africa. The nonstructural protein NSs is a major virulence factor known to suppress the type I interferon (IFN) response by inhibiting host cell transcription and by proteasomal degradation of a major antiviral IFN effector, the translation-inhibiting protein kinase PKR. Here, we identified components of the modular SCF (Skp1, Cul1, F-box protein)-type E3 ubiquitin ligases as mediators of PKR destruction by NSs. Small interfering RNAs (siRNAs) against the conserved SCF subunit Skp1 protected PKR from NSs-mediated degradation. Consequently, RVFV replication was severely reduced in Skp1-depleted cells when PKR was present. SCF complexes have a variable F-box protein subunit that determines substrate specificity for ubiquitination. We performed an siRNA screen for all (about 70) human F-box proteins and found FBXW11 to be involved in PKR degradation. The partial stabilization of PKR by FBXW11 depletion upregulated PKR autophosphorylation and phosphorylation of the PKR substrate eIF2α and caused a shutoff of host cell protein synthesis in RVFV-infected cells. To maximally protect PKR from the action of NSs, knockdown of structurally and functionally related FBXW1 (also known as ß-TRCP1), in addition to FBXW11 deletion, was necessary. Consequently, NSs was found to interact with both FBXW11 and ß-TRCP1. Thus, NSs eliminates the antiviral kinase PKR by recruitment of SCF-type E3 ubiquitin ligases containing FBXW11 and ß-TRCP1 as substrate recognition subunits. This antagonism of PKR by NSs is essential for efficient RVFV replication in mammalian cells. IMPORTANCE: Rift Valley fever virus is a pathogen of humans and animals that has the potential to spread from Africa and the Arabian Peninsula to other regions. A major virulence mechanism is the proteasomal degradation of the antiviral kinase PKR by the viral protein NSs. Here, we demonstrate that NSs requires E3 ubiquitin ligase complexes of the SCF (Skp1, Cul1, F-box protein) type to destroy PKR. SCF-type complexes can engage variant ubiquitination substrate recognition subunits, and we found the F-box proteins FBXW11 and ß-TRCP1 to be relevant for the action of NSs against PKR. Thus, we identified the host cell factors that are critically needed by Rift Valley fever virus to uphold its replication against the potent antiviral kinase PKR.


Assuntos
Vírus da Febre do Vale do Rift/patogenicidade , Ubiquitina-Proteína Ligases/metabolismo , Proteínas não Estruturais Virais/metabolismo , Fatores de Virulência/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , eIF-2 Quinase/metabolismo , Animais , Linhagem Celular , Chlorocebus aethiops , Proteínas Culina/genética , Proteínas Culina/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Humanos , RNA Interferente Pequeno , Vírus da Febre do Vale do Rift/química , Vírus da Febre do Vale do Rift/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética , Células Vero , Proteínas não Estruturais Virais/genética , Fatores de Virulência/genética , Replicação Viral , Proteínas Contendo Repetições de beta-Transducina/deficiência , Proteínas Contendo Repetições de beta-Transducina/genética , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/genética
9.
J Virol ; 89(14): 7262-76, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25948740

RESUMO

UNLABELLED: Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and characterized by a high rate of abortion in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), which has a tripartite negative-stranded RNA genome (consisting of the S, M, and L segments). Further spread of RVF into countries where the disease is not endemic may affect the economy and public health, and vaccination is an effective approach to prevent the spread of RVFV. A live-attenuated MP-12 vaccine is one of the best-characterized RVF vaccines for safety and efficacy and is currently conditionally licensed for use for veterinary purposes in the United States. Meanwhile, as of 2015, no other RVF vaccine has been conditionally or fully licensed for use in the United States. The MP-12 strain is derived from wild-type pathogenic strain ZH548, and its genome encodes 23 mutations in the three genome segments. However, the mechanism of MP-12 attenuation remains unknown. We characterized the attenuation of wild-type pathogenic strain ZH501 carrying a mutation(s) of the MP-12 S, M, or L segment in a mouse model. Our results indicated that MP-12 is attenuated by the mutations in the S, M, and L segments, while the mutations in the M and L segments confer stronger attenuation than those in the S segment. We identified a combination of 3 amino acid changes, Y259H (Gn), R1182G (Gc), and R1029K (L), that was sufficient to attenuate ZH501. However, strain MP-12 with reversion mutations at those 3 sites was still highly attenuated. Our results indicate that MP-12 attenuation is supported by a combination of multiple partial attenuation mutations and a single reversion mutation is less likely to cause a reversion to virulence of the MP-12 vaccine. IMPORTANCE: Rift Valley fever (RVF) is a mosquito-transmitted viral disease that is endemic to Africa and that has the potential to spread into other countries. Vaccination is considered an effective way to prevent the disease, and the only available veterinary RVF vaccine in the United States is a live-attenuated MP-12 vaccine, which is conditionally licensed. Strain MP-12 is different from its parental pathogenic RVFV strain, strain ZH548, because of the presence of 23 mutations. This study determined the role of individual mutations in the attenuation of the MP-12 strain. We found that full attenuation of MP-12 occurs by a combination of multiple mutations. Our findings indicate that a single reversion mutation will less likely cause a major reversion to virulence of the MP-12 vaccine.


Assuntos
Febre do Vale de Rift/patologia , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/fisiologia , Vacinas Virais/genética , Vacinas Virais/imunologia , Animais , Análise Mutacional de DNA , Modelos Animais de Doenças , Feminino , Camundongos , Mutação de Sentido Incorreto , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/patogenicidade , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Virulência
10.
Bull Math Biol ; 78(9): 1796-1827, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27651156

RESUMO

In this article, we discuss the structural and practical identifiability of a nested immuno-epidemiological model of arbovirus diseases, where host-vector transmission rate, host recovery, and disease-induced death rates are governed by the within-host immune system. We incorporate the newest ideas and the most up-to-date features of numerical methods to fit multi-scale models to multi-scale data. For an immunological model, we use Rift Valley Fever Virus (RVFV) time-series data obtained from livestock under laboratory experiments, and for an epidemiological model we incorporate a human compartment to the nested model and use the number of human RVFV cases reported by the CDC during the 2006-2007 Kenya outbreak. We show that the immunological model is not structurally identifiable for the measurements of time-series viremia concentrations in the host. Thus, we study the non-dimensionalized and scaled versions of the immunological model and prove that both are structurally globally identifiable. After fixing estimated parameter values for the immunological model derived from the scaled model, we develop a numerical method to fit observable RVFV epidemiological data to the nested model for the remaining parameter values of the multi-scale system. For the given (CDC) data set, Monte Carlo simulations indicate that only three parameters of the epidemiological model are practically identifiable when the immune model parameters are fixed. Alternatively, we fit the multi-scale data to the multi-scale model simultaneously. Monte Carlo simulations for the simultaneous fitting suggest that the parameters of the immunological model and the parameters of the immuno-epidemiological model are practically identifiable. We suggest that analytic approaches for studying the structural identifiability of nested models are a necessity, so that identifiable parameter combinations can be derived to reparameterize the nested model to obtain an identifiable one. This is a crucial step in developing multi-scale models which explain multi-scale data.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/imunologia , Animais , Vetores Artrópodes/virologia , Surtos de Doenças , Humanos , Gado , Conceitos Matemáticos , Modelos Imunológicos , Febre do Vale de Rift/transmissão , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/patogenicidade
11.
Nanomedicine ; 12(5): 1185-92, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26970026

RESUMO

In this work we have tested the potential antiviral activity of silver nanoparticles formulated as Argovit™ against Rift Valley fever virus (RVFV). The antiviral activity of Argovit was tested on Vero cell cultures and in type-I interferon receptor deficient mice (IFNAR (-/-) mice) by two different approaches: (i) different dilutions of Argovit were added to previously infected cells or administrated to animals infected with a lethal dose of virus; (ii) virus was pre-incubated with different dilutions of Argovit before inoculation in mice or cells. Though the ability of silver nanoparticles to control an ongoing RVFV infection in the conditions tested was limited, the incubation of virus with Argovit before the infection led to a reduction of the infectivity titers both in vitro and in vivo. These results reveal the potential application of silver nanoparticles to control the infectivity of RVFV, which is an important zoonotic pathogen.


Assuntos
Antivirais/farmacologia , Nanopartículas/uso terapêutico , Vírus da Febre do Vale do Rift/efeitos dos fármacos , Prata/uso terapêutico , Animais , Camundongos , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/patogenicidade
12.
J Virol ; 88(4): 2235-45, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24335307

RESUMO

Rift Valley fever (RVF) is a veterinary and human disease in Africa and the Middle East. The causative agent, RVF virus (RVFV), can be naturally transmitted by mosquito, direct contact, or aerosol. We sought to develop a nonhuman primate (NHP) model of severe RVF in humans to better understand the pathogenesis of RVF and to use for evaluation of medical countermeasures. NHP from four different species were exposed to aerosols containing RVFV. Both cynomolgus and rhesus macaques developed mild fevers after inhalation of RVFV, but no other clinical signs were noted and no macaque succumbed to RVFV infection. In contrast, both marmosets and African green monkeys (AGM) proved susceptible to aerosolized RVF virus. Fever onset was earlier with the marmosets and had a biphasic pattern similar to what has been reported in humans. Beginning around day 8 to day 10 postexposure, clinical signs consistent with encephalitis were noted in both AGM and marmosets; animals of both species succumbed between days 9 and 11 postexposure. Marmosets were susceptible to lower doses of RVFV than AGM. Histological examination confirmed viral meningoencephalitis in both species. Hematological analyses indicated a drop in platelet counts in both AGM and marmosets suggestive of thrombosis, as well as leukocytosis that consisted mostly of granulocytes. Both AGM and marmosets would serve as useful models of aerosol infection with RVFV.


Assuntos
Aerossóis/administração & dosagem , Callithrix/virologia , Chlorocebus aethiops/virologia , Modelos Animais de Doenças , Meningoencefalite/virologia , Vírus da Febre do Vale do Rift/patogenicidade , Análise de Variância , Animais , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Telemetria
13.
Vopr Virusol ; 60(2): 41-3, 2015.
Artigo em Russo | MEDLINE | ID: mdl-26182657

RESUMO

The report discusses the research into the impact of some factors, especially the passage in a suspension of continuous cells BHK-21/13 and storage at different temperatures, upon immunobiological characteristics of the Rift Valley fever (RVF) virus strain 1974-VNIIVViM. The limits for the passage levels and optimal storage conditions providing maximal infectious and immunogenic activity, as well as protection of the attenuated RVF strain 1974- VNIIVViM, were determined. It was found that the RVF virus growth in VHK-21123 cell suspension in the course of 20 consecutive passages and storage at -50 degrees C for 1 to 2 years did not reduce any infectious, immunogenic or protective characteristics of the virus, It was also shown that the RVF virus strain 1974-VNIIVViM could be stored at the following temperature ranges: 1 month at 4 to 6 degrees C, 4 months at -10 to -12 degrees C, 6 months at -20 degrees C, and up to 2 years at -50 degrees C.


Assuntos
Criopreservação , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/imunologia , Vacinas Virais/farmacologia , Animais , Cricetinae , Camundongos , Vírus da Febre do Vale do Rift/patogenicidade , Fatores de Tempo , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/farmacologia , Vacinas Virais/imunologia
14.
J Virol ; 87(1): 676-82, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23097454

RESUMO

The NSm nonstructural protein of Rift Valley fever virus (family Bunyaviridae, genus Phlebovirus) has an antiapoptotic function and affects viral pathogenesis. We found that NSm integrates into the mitochondrial outer membrane and that the protein's N terminus is exposed to the cytoplasm. The C-terminal region of NSm, which contains a basic amino acid cluster and a putative transmembrane domain, targeted the protein to the mitochondrial outer membrane and exerted antiapoptotic function.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Membranas Mitocondriais/metabolismo , Transporte Proteico , Vírus da Febre do Vale do Rift/patogenicidade , Proteínas não Estruturais Virais/metabolismo , Animais , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos
15.
Methods Mol Biol ; 2824: 425-445, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039428

RESUMO

Rift Valley fever virus (RVFV) is an arboviral pathogen of clinical and agricultural relevance. The ongoing development of targeted RVFV prophylactics and therapeutics is overwhelmingly dependent on animal models due to both natural, that is, sporadic outbreaks, and structural, for example, underresourcing of endemic regions, limitations in accessing human patient samples and cohorts. Elucidating mechanisms of viral pathogenesis and testing therapeutics is further complicated by the diverse manifestations of RVFV disease and the heterogeneity of the host response to infection. In this chapter, we describe major clinical manifestations of RVFV infection and discuss the laboratory animal models used to study each.


Assuntos
Modelos Animais de Doenças , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Febre do Vale de Rift/virologia , Animais , Vírus da Febre do Vale do Rift/patogenicidade , Humanos , Camundongos , Animais de Laboratório/virologia
16.
Methods Mol Biol ; 2824: 397-408, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39039426

RESUMO

The NSs protein is a major virulence factor in bunyaviruses, crucial for viral pathogenesis. However, assessing NSs protein function can be challenging due to its inhibition of cellular RNA polymerase II, impacting NSs protein expression from plasmid DNA. The recombinant Rift Valley fever virus (RVFV) MP-12 strain (rMP-12), a highly attenuated vaccine strain, can be safely manipulated under biosafety level 2 conditions. Leveraging a reverse genetics system, we can engineer rMP-12 variants expressing heterologous NSs genes, enabling functional testing in cultured cells. Human macrophages hold a central role in viral pathogenesis, making them an ideal model for assessing NSs protein functions. Consequently, we can comprehensively compare and analyze the functional significance of various NSs proteins in human macrophages using rMP-12 NSs variants. In this chapter, we provide a detailed overview of the preparation process for rMP-12 NSs variants and introduce two distinct human macrophage models: THP-1 cells and primary macrophages. This research framework promises valuable insights into the virulence mechanisms of RVFV and other bunyaviruses and the potential for vaccine development.


Assuntos
Macrófagos , Vírus da Febre do Vale do Rift , Proteínas não Estruturais Virais , Humanos , Macrófagos/virologia , Macrófagos/imunologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/patogenicidade , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Células THP-1
17.
Annu Rev Virol ; 11(1): 309-325, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38635867

RESUMO

Rift Valley fever virus (RVFV) is a mosquito-borne virus endemic to Africa and the Middle East. RVFV infection can cause encephalitis, which is associated with significant morbidity and mortality. Studies of RVFV encephalitis following percutaneous inoculation, as would occur following a mosquito bite, have historically been limited by a lack of consistent animal models. In this review, we describe new insights into the pathogenesis of RVFV and the opportunities provided by new mouse models. We underscore the need to consider viral strain and route of inoculation when interpreting data obtained using animal models. We discuss the trafficking of RVFV and the role of host genetics and immunity in modulating the pathogenesis of RVFV encephalitis. We also explore potential strategies to prevent and treat central nervous system disease caused by RVFV and discuss remaining knowledge gaps.


Assuntos
Modelos Animais de Doenças , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/patogenicidade , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/fisiologia , Febre do Vale de Rift/virologia , Febre do Vale de Rift/imunologia , Humanos , Camundongos , Encefalite Viral/virologia , Encefalite Viral/imunologia , Interações Hospedeiro-Patógeno
18.
Virulence ; 15(1): 2384563, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39072499

RESUMO

Phenuiviruses are a class of segmented negative-sense single-stranded RNA viruses, typically consisting of three RNA segments that encode four distinct proteins. The emergence of pathogenic phenuivirus strains, such as Rift Valley fever phlebovirus (RVFV) in sub-Saharan Africa, Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV) in East and Southeast Asia, and Heartland Virus (HRTV) in the United States has presented considerable challenges to global public health in recent years. The innate immune system plays a crucial role as the initial defense mechanism of the host against invading pathogens. In addition to continued research aimed at elucidating the epidemiological characteristics of phenuivirus, significant advancements have been made in investigating its viral virulence factors (glycoprotein, non-structural protein, and nucleoprotein) and potential host-pathogen interactions. Specifically, efforts have focused on understanding mechanisms of viral immune evasion, viral assembly and egress, and host immune networks involving immune cells, programmed cell death, inflammation, nucleic acid receptors, etc. Furthermore, a plethora of technological advancements, including metagenomics, metabolomics, single-cell transcriptomics, proteomics, gene editing, monoclonal antibodies, and vaccines, have been utilized to further our understanding of phenuivirus pathogenesis and host immune responses. Hence, this review aims to provide a comprehensive overview of the current understanding of the mechanisms of host recognition, viral immune evasion, and potential therapeutic approaches during human pathogenic phenuivirus infections focusing particularly on RVFV and SFTSV.


Assuntos
Interações Hospedeiro-Patógeno , Imunidade Inata , Humanos , Interações Hospedeiro-Patógeno/imunologia , Phlebovirus/imunologia , Phlebovirus/genética , Phlebovirus/patogenicidade , Evasão da Resposta Imune , Fatores de Virulência/genética , Fatores de Virulência/imunologia , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/patogenicidade , Sistema Imunitário/virologia , Sistema Imunitário/imunologia
19.
Viruses ; 16(7)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-39066162

RESUMO

Rift Valley fever (RVF) is a mosquito-borne zoonotic viral disease endemic to Africa and the Middle East. Live-attenuated RVF vaccines have been studied for both veterinary and human use due to their strong immunogenicity and cost-effective manufacturing. The live-attenuated MP-12 vaccine has been conditionally approved for veterinary use in the U.S.A., and next-generation live-attenuated RVF vaccine candidates are being actively researched. Assessing the virulence phenotype of vaccine seeds or lots is crucial for managing vaccine safety. Previously, preweaning 19-day-old outbred CD1 mice have been used to evaluate the MP-12 strain. This study aimed to characterize the relative virulence of three live-attenuated RVF vaccine strains in 19-day-old inbred C57BL/6 mice: the recombinant MP-12 (rMP-12), the RVax-1, and the ∆NSs-∆NSm-rZH501 strains. Although this mouse model did not show dose-dependent pathogenesis, mice that succumbed to the infection exhibited distinct brain pathology. Mice infected with ∆NSs-∆NSm-rZH501 showed an infiltration of inflammatory cells associated with infected neurons, and focal lesions formed around virus-infected cells. In contrast, mice infected with rMP-12 or RVax-1 showed a minimal association of inflammatory cells in the brain, yet the virus spread diffusely. The preweaning model is likely useful for evaluating host responses to attenuated RVFV strains, although further refinement may be necessary to quantitate the virulence among different RVFV strains or vaccine lots.


Assuntos
Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Vacinas Atenuadas , Vacinas Virais , Animais , Vírus da Febre do Vale do Rift/patogenicidade , Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/genética , Febre do Vale de Rift/virologia , Febre do Vale de Rift/patologia , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/imunologia , Camundongos , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Virais/imunologia , Vacinas Virais/administração & dosagem , Virulência , Feminino
20.
J Virol ; 86(4): 2109-20, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22156530

RESUMO

Rift Valley fever (RVF) virus (RVFV) can cause severe human disease characterized by either acute-onset hepatitis, delayed-onset encephalitis, retinitis and blindness, or a hemorrhagic syndrome. The existing nonhuman primate (NHP) model for RVF utilizes an intravenous (i.v.) exposure route in rhesus macaques (Macaca mulatta). Severe disease in these animals is infrequent, and large cohorts are needed to observe significant morbidity and mortality. To overcome these drawbacks, we evaluated the infectivity and pathogenicity of RVFV in the common marmoset (Callithrix jacchus) by i.v., subcutaneous (s.c.), and intranasal exposure routes to more closely mimic natural exposure. Marmosets were more susceptible to RVFV than rhesus macaques and experienced higher rates of morbidity, mortality, and viremia and marked aberrations in hematological and chemistry values. An overwhelming infection of hepatocytes was a major consequence of infection of marmosets by the i.v. and s.c. exposure routes. Additionally, these animals displayed signs of hemorrhagic manifestations and neurological impairment. Based on our results, the common marmoset model more closely resembles severe human RVF disease and is therefore an ideal model for the evaluation of potential vaccines and therapeutics.


Assuntos
Callithrix , Modelos Animais de Doenças , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/fisiologia , Animais , Humanos , Macaca mulatta , Febre do Vale de Rift/mortalidade , Vírus da Febre do Vale do Rift/patogenicidade , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA