Ocsyn and mitochondrial-canalicular complexes in vestibular hair cells.
Hear Res
; 222(1-2): 28-34, 2006 Dec.
Article
em En
| MEDLINE
| ID: mdl-17045436
Ocsyn, a syntaxin-interacting protein characterized by Safieddine et al. [Safieddine, S., Ly, C.D., Wang, Y.-X., Kachar, B., Petralia, R.S., Wenthold, R.J., 2002. Ocsyn, a novel syntaxin-interacting protein enriched in the subapical region of inner hair cells. Mol. Cell. Neurosci., 20, 343-353] in the guinea pig organ of Corti was primarily identified in organelles located at the subapical region of inner hair cells. They proposed that in cochlear inner hair cells, ocsyn was involved in protein trafficking associated to recycling endosomes. Ocsyn happens to be highly homologous to syntabulin with an almost identical syntaxin-binding domain. Syntabulin is believed to attach syntaxin-containing vesicles to kinesin for their axonal transport along microtubules. The present study shows the distribution of ocsyn in guinea pig and rat vestibular hair cells using immunocytochemistry and confocal microscopy. Ocsyn was characterized by intense immunolabeled spots distributed exclusively in type I and II vestibular hair cells. The subcuticular region under the cuticular plate exhibited particularly densely packed spots. In the neck region of the sensory cells, where microtubules are abundant, there was no colocalization of ocsyn and alpha-tubulin. Ocsyn labeled spots were also present in the medial and basal hair cell regions, particularly in the supranuclear and infranuclear regions. Mitochondria are particularly numerous in these three regions (subcuticular, supranuclear and infranuclear). Double labeling of ocsyn and cytochrome c showed that ocsyn was present in the same zones that mitochondria. This, together with the great similarity of ocsyn and syntabulin, suggest that, akin to syntabulin, ocsyn is involved in addressing organelles. We propose that ocsyn is involved in the formation of the canalicular-mitochondrial complexes depicted by Spicer et al. [Spicer, S.S., Thomopoulos, G.N., Schulte, B.A., 1999. Novel membranous structures in apical and basal compartments of inner hear cells. J. Comp. Neurol., 409, 424-437].
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Proteínas de Transporte
/
Células Ciliadas Vestibulares
/
Mitocôndrias
Limite:
Animals
Idioma:
En
Revista:
Hear Res
Ano de publicação:
2006
Tipo de documento:
Article
País de afiliação:
França