Your browser doesn't support javascript.
loading
Automatic policing of biochemical annotations using genomic correlations.
Hsiao, Tzu-Lin; Revelles, Olga; Chen, Lifeng; Sauer, Uwe; Vitkup, Dennis.
Afiliação
  • Hsiao TL; Center for Computational Biology and Bioinformatics and Department of Biomedical Informatics, Columbia University, Irving Cancer Research Center, New York, New York, USA.
Nat Chem Biol ; 6(1): 34-40, 2010 Jan.
Article em En | MEDLINE | ID: mdl-19935659
With the increasing role of computational tools in the analysis of sequenced genomes, there is an urgent need to maintain high accuracy of functional annotations. Misannotations can be easily generated and propagated through databases by functional transfer based on sequence homology. We developed and optimized an automatic policing method to detect biochemical misannotations using context genomic correlations. The method works by finding genes with unusually weak genomic correlations in their assigned network positions. We demonstrate the accuracy of the method using a cross-validated approach. In addition, we show that the method identifies a significant number of potential misannotations in Bacillus subtilis, including metabolic assignments already shown to be incorrect experimentally. The experimental analysis of the mispredicted genes forming the leucine degradation pathway in B. subtilis demonstrates that computational policing tools can generate important biological hypotheses.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bacillus subtilis / Bioquímica / Biologia Computacional / Genômica Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Nat Chem Biol Assunto da revista: BIOLOGIA / QUIMICA Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Bacillus subtilis / Bioquímica / Biologia Computacional / Genômica Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Nat Chem Biol Assunto da revista: BIOLOGIA / QUIMICA Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Estados Unidos